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A Appendix
A.1 Motivation of RPW2

We give here, additional information to justify the form that RPW2 (Eq. (8)) takes. In particular,
the choice of using canonical vector basis {ui}pi=1 of Rp to project distributions. We will show that
this choice ensures that RPW2 is a metric on discrete distribution space of Rp, verifying symmetry,
identity of indiscernibles and triangular inequality properties just like PW2 from which it is derived.
Then we will show that for any choice of vector family which does not span Rp, ensuring the identity
of indiscernibles may require the same amount of computation as to calculate W2. Note that here we
will not write the proof that PW2 is a metric since it can be derived straightforwardly from the proof
that RPW2 is a metric. It is also easy to derive from this proof that RPWs (and PWs) for s 2 N⇤

is also a metric on discrete distribution space.

In order to facilitate the reading we recall below the definition of RPW2 :

RPW2(µ, ⌫)
2 =

1

p

pX

k=1

n,n0X

i,j=1

⇡
uk,⇤
i,j ||xi � x0

j ||22 (12)

Where µ =
Pn

i=1 ai�xi and ⌫ =
Pn0

i=1 bi�x0
i

are distributions of Rp with strict positive weights
(ai)ni=1 and (bi)n

0

i=1 which add up to 1; ⇡uk,⇤ are 1-d optimal transport plans of projected distributions
µuk =

Pn
i=1 ai�xi(k) and ⌫uk =

Pn0

i=1 bi�x0
i(k)

. Since µuk and ⌫uk are projected distribution they
may have non unique bins which lead to potentially several optimal transport plans, in such cases the
chosen transport ⇡uk,⇤

i,j is one of those which minimize Eq. (12).

A.1.1 RPW2 is a metric on discrete distribution space

Let’s show that RPW2 verifies the three canonical properties of metrics.

Symmetry. The symmetry is straightforward to derive. Since the cost ||xi � x0
j ||22 and the transport

plans ⇡uk,⇤ (which depend exclusively on the sorting of
�
xi(k)

�
i2{1,...,n} and

�
x
0
j(k)

�
j2{1,...,n0})

are symmetric, RPW2 is thus symmetric.

Identity of indiscernibles. We have to show that RPW2(µ, ⌫) = 0 if and only if µ = ⌫.

First, let’s assume that µ 6= ⌫, then:

RPW2(µ, ⌫)
2 =

1

p

pX
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n,n0X
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i,j ||xi � x0

j ||22 (13)

By definition of W2 (Eq. (3)) � 1

p

pX

k=1

W2(µ, ⌫)
2 (14)

Because W2 is a metric and µ 6= ⌫ > 0 (15)

Hence RPW2(µ, ⌫) = 0 =) µ = ⌫.

Secondly, let’s assume that µ = ⌫. This implies that n = n
0, ai = bi and µuk = ⌫uk

for i 2 {1, . . . , n} and k 2 {1, . . . , p}. Because of these equalities, each optimal transport
⇡
uk,⇤ can be associated to a unique permutation. By introducing the notation �k such that

8i, j 2 {1, . . . , n},�k(j) = i iff ⇡uk,⇤
i,j = aj , we can write:
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RPW2(µ, ⌫)
2 =

1

p

pX

k=1

nX
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aj ||x�k(j) � x0
j ||22 (16)

In addition, since µ = ⌫, they have the same bins, therefore there is a permutation ⌧ such that:

x⌧(j) = x0
j (17)

Thus:

8k 2 {1, . . . , p},
nX

j=1

aj ||x⌧(j)(k)� x0
j(k)||22 = 0 (18)

Since, 8k 2 {1, . . . , p}:

0 = W2(µuk , ⌫uk) =
nX

j=1

ai||x⌧(j)(k)� x0
j(k)||22 (19)

It is clear that ⌧ is a permutation associated to an optimal transport between ⌫uk and µuk . Therefore
by definition of �k (i.e. a permutation associated with the optimal transport between ⌫uk and µuk

which minimizes Eq. (12)):
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Hence µ = ⌫ =) RPW2 = 0. This concludes the proof.

Triangular inequality. Let’s consider the distributions µ =
Pn

i=1 ai�xi , ⌫ =
Pn0

i=1 bi�x0
i
, and a

third distribution ⇣ =
Pw

i=1 ci�zi 2 P(Rp) with strictly positive coefficient (ci)wi=1. We have to
show that RPW2(µ, ⌫)  RPW2(µ, ⇣) +RPW2(⇣, ⌫).

In order to ease the reading of the proof, we will make an abuse of notation. For any k 2 {1, . . . , p},
we denote ⇡

uk,⇤
i,l (resp. ⇡uk,⇤

l,j ) the coefficients of optimal transport plan between µuk and ⇣uk (resp.
⇣uk and ⌫uk ). Since µuk , ⌫uk and ⇣uk are 1-d dimensional distributions, the composition of the
optimal transport plans between µuk and ⇣uk and the transport plan between ⇣uk and ⌫uk is an
optimal transport plan between µuk and ⌫uk . This one is expressed as ⇡uk,⇤

i,j =
Pw
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uk,⇤
l,j /cl.

Therefore by definition of RPW2, we can write :
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Using the Minkowski inequality, we have:
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Since by definition cl =
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i,l , this leads to:
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This concludes the proof. Therefore RPW2 is a metric for the discrete distributions on Rp.

A.1.2 Projection on canonical basis vector

Projecting onto the family of canonical vector basis is a choice that stems from a spanning constraint,
and also a choice of simplicity. As we stated, for a given k, there may be several optimal transport
plans between µuk and ⌫uk . This happens when, for a given k, there are bins where :

xi(k) = xj(k) and xi 6= xj (23)

For continuous data (such as those that are the outputs of a GCN) this condition is particularly unlikely
to happen. However, if we were projecting onto a non spanning vector family, that we call

�
vu

 
,

every bins lying in an orthogonal space of span
�
vu

 
would be projected on 0. This would lead on

several couple of bins where the above condition (23) would be verified. In an extreme case where
all bins of µ and ⌫ would be in the orthogonal space, any transport plan would be optimal between
projected distribution. Therefore, finding the OT plan which minimizes (12) would be equivalent to
finding the optimal transport plan of Wasserstein distance. This is the reason why it is mandatory to
find a family of vectors which spans Rp.

A natural choice is then to use the canonical basis from which it is easy to derive the identity of
indiscernibles property (proven above) and from which the projection is costless on a numerical
point of view. Anyway, in a different context from this work, where the distribution bins are not
only continuous but also fit categorical data, some other spanning family may be more suitable. We
hope that future works will take this idea to use specific family of vector to build specific distance
(independently of the question of approximation of an existing OT distance) a step further.

A.2 Motivation and Interpretation of NCCML

We detail here some of the insights that led us to propose NCCML for ML.

Since we want to maintain a low complexity to train our model, a batch training is desirable. As a
consequence and as said in section 4.3, the Large Margin Nearest Neighbor (LMNN) [15] loss was
not appropriate because it works very locally and is not optimal with batch training. Indeed, LMNN
tries to attract and repel points with elements of the datasets which are neighbours, according to their
labels. On a batch training, this could lead to some overfitting where we try to attract points which
should not be close even if they share the same label. This is even true the smaller the batch size we
use.

An alternative is to use Neighborhood Component Analysis (NCA) [14] which provided a slightly
better but limited performance. In reality, NCA is also a very locally method. Indeed it considers the
probability p(Gi,Gj) for two elements to have the same labels:
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p⇥(Gi,Gj) =
exp

⇣
�d

RPW2
⇥ (Gj ,Gi)2

⌘

P
k,k0 exp

⇣
�d

RPW2
⇥ (Gk,Gk0)2

⌘ (24)

Given this form of probability, it tries to maximize them for all elements which have effectively the
same labels:

max
⇥

X

Gi2G

X

Gj2G
E(Gi)=E(Gj)

p⇥(Gi,Gj) (25)

However, as one can see from Eq. (25), the probability of having the same labels is a softmax, so
distant elements do not contribute a lot to these probability. It contains mostly local information. We
believe that one could obtain better results by considering a more global criterion. Moreover, using a
batch would be now advantageous since it will help the model to build good metric, even for k-NN
(which requires a local fine metric) since the batch training will act as a regularization and will help
to generalize.

An inspiration for that comes from NCMML [38] which proposes a loss function specifically built
to increase performance of nearest mean classifier. This model also relies on a probabilistic model
where the probability to belong on a class is given by a softmax which considers the distance to the
mean of different classes. Obviously NCMML is not well suited for our tasks using kNN. Plus, it
would require an additional layer of computation for computing barycenter with OT.

We took a compromise between NCA and the NCMML loss. The probability to be part of a class is
given by a softmax which depends on the relative distance to different same label element (Eq. (11)).
It has the advantage that the loss on a batch will be representative of the loss over the whole dataset,
because the relative distance to different labels should remain the same also on subsamples of the
dataset. Moreover it benefits from the batch training which acts as a regularizer. That finally leads
to a better metric learned compared to NCA for k-NN as proven on our ablative study (Table. 3).
Anyway, in a regular setting where we could use all datasets to build and train theses losses, NCCML
would certainly shows worse results than LMNN and NCA.

The specific settings that is studied here, due to the requirement of scalability, forces to propose a
loss different from the literature, that indeed brongs some improvement when compared to NCA.

A.3 Implementation details

Sequential implementation. A priori, it is necessary to compute all the transport costs between two
distributions so as to calculate the optimal transport and this operation has a quadratic complexity. For
most OT distance such as W2, since the complexity is dominated by the computation of the optimal
transport plan, this was of no consequence. However for RPW2 (as well as for SW2) it becomes
a critical aspect. Hopefully, there is no need to compute all the costs to find the optimal transport
and the transport cost has no more than n+m (given that the distributions have sizes n and m) non
zero coefficients. This is why their complexity remains quasi-linear in O(n log n). The algorithm
of the implementation referred to as "sequential implementation" in the core text can be found on
Algorithm 2. The experiment on Section 5.2 assessed the quasi-linear complexity of this algorithm.

Quadratic implementation. In this second implementation, we compute all possible transport
costs using a library of matrix multiplication, and then we multiply these costs by the optimal
transport matrix. These operations allow us to benefit from the advantages of vectorization and to
gain time compared to the sequential implementation, when n is not too large. This result is assessed
experimentally in Section 5.2.

Both implementation can be found with this supplementary material.

Note: In the reported experiments, we have seen that for n < 1000, it’s better to use the quadratic
implementation. Anyway this result strongly depends on the hardware used, and also on the dimension
of the distribution support p. The scaling behavior of the two implementations is an interesting
characteristic, showing than the proposed method can be implemented in a quasi-linear way. The
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Table 4: Graph datasets used in our experiments. #Graphs: number of graphs. #Nodes: average
number of nodes. cont.: attributes have continuous values; lab.: attributes are labels. deg.: the
featurattributes are degrees of nodes. q is the feature dimension.

Datasets BZR COX2 PROTEINS ENZYMES MUTAG NCI1 IMDB-B IMDB-M CUNEIFORM

#Graphs 405 467 1113 600 188 4110 1000 1500 267
#Nodes 35.75 41.22 39.06 32.63 17.93 29.97 19.77 13 21.27

Node attributes cont. cont. cont. / lab. cont. / lab. deg. lab. deg. deg. cont. / lab.
q 3 3 1 / 3 18 /3 4 38 135 88 3 / 3

Table 5: Typical runtimes in our experiments. The running time of WWL (r = 2) and FGW
(↵ = 0.5 except for IMDB datasets where it is set to 1) to calculate distances are also provided.

Datasets BZR COX2 PROTEINS [lab.] ENZYMES [lab.] MUTAG NCI1 IMDB-B/M) IMDB-M

Training time (s) 35 40 240 220 15 480 80/120 120
Distances comp. (s) 5 7 40 40 1 480 10/55 55

Dist. comp. (s) - WWL 16 25 200 30 2 1500 80/140 140
Dist. comp. (s) FGW 240 270 1h 540 30 6h30min 1000/1400 1400

second comment is also that the method can be made rapid enough (and very competitive) with
optimizations.

Algorithm 2 RPW2 - Sequential

Ensure: Build the distance between two discrete distributions µ and ⌫ in P(Rp).
Require: µ =

Pn
i=1 ai�xi and ⌫ =

Pm
j=1 bi�yj .

Set c = 0.
for each epoch k 2 {1, . . . , p} do

Get �k
µ, �k

⌫ sort permutation of supports vectors k-th components.
i.e x�k

µ(0)
(k)  · · ·  x�k

µ(n�1)(k) and y�k
⌫ (0)

(k)  · · ·  y�k
⌫ (m�1)(k).

Set T = true. Set i, j = 0, 0.
Set wµ, w⌫ = a�k

µ(0)
, b�k

⌫ (0)
.

while T == True do
if wµ < w⌫ then
c = c+ wµ ⇤ ||x�k

µ(i)
� y�k

⌫ (j)
||22

i = i+ 1
if i == n then
T = false

w⌫ = w⌫ � wµ

wµ = a�k
µ(i)

else
c = c+ w⌫ ⇤ ||x�k

µ(i)
� y�k

⌫ (j)
||22

j = j + 1
if j == m then
T = false

wµ = wµ � w⌫

w⌫ = b�k
⌫ (j)

return
q

c
q

A.4 Datasets

The characteristics of the datasets used are summarized in Table 4.
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A.5 SGML - Datasets runtimes

The following Table 5 provides the typical runtimes for both training part and distance computation
phases for the different datasets considered in this paper. We used the proposed quadratic implementa-
tion for all datasets. A tensorflow implementation is used during the training phase (to leverage the
build-in functions for optimization and training) while the numpy implementation is used during the
final distance computation. All running time experiments were conducted with a computer equipped
with an Intel CORE i9900ks processor (62 GB of RAM) and GeForce RTX 3090 (24 GB of RAM).

The parameters are the same as in the experiments described in the paper. We fixed the depth of our
GCN to r = 4.

As we can see despite lower theoretical complexity, the training time is bigger than distance compu-
tation. This is because the numpy implementation is much more efficient (especially in computing
the sort operation) and these datasets are not large enough (in terms of the number of graphs) for
tensorflow implementation catches up to numpy implementation. One clearly sees that the bigger
the dataset (e.g., the NCI1 dataset), the lower the numpy implementation saves time.

A.6 RPW2 runtimes according to graph size

In section 5.2, we have not been able to extend the comparison of computation times between RPW2

and SW2 up to 108 size distributions in the same experimental conditions. The reason is that, beyond
approximately 6 million points, we encountered a memory issue with SW2 on our Intel CORE
i9900ks processor ⇥ 62 GB of RAM computer. It appears to be an implementation issue from POT
toolboxes. Anyway, we have redone all the experiment with a computer with more RAM but a less
powerful processor, an Intel Xeon Gold 5218 ⇥ 2 To of RAM. This amount of RAM is obviously
overkill but it allows us to avoid any issue on the SW2 implementation. The results can be found in
Figure 2. It confirms the calculated complexity on Section 4.4, asymptotically RPW2 scale better
than SW2 since in our settings p(= 5) < M(= 50).

Figure 2: Run time comparisons 2.
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Table 6: Ablative experiment with FGW . Acc. is the accuracy. � is the difference in accuracy
between the model of the column and the proposed one SGML whose results are on Table. 1. Red
negative (resp. Green positive) number means that our model perform better (resp. worse). 7 symbol
means that we had infinite distance values with the default settings of FGW solver.

Dataset FGW
Method Acc. �

BZR 81.70 - 3.91
COX2 78.51 - 1.28
MUTAG 83.16 - 6.84
NCI1 7 7
PROTEINS 7 7
IMDB-B 80.80 11.9
IMDB-M 7 7
ENZYMES 70.83 19.33

A.7 Additional details

ENZYMES. (discrete) The learning rate 0.999 10�2 was too heavy for NCA loss on ENZYMES,
so we used 0.999 10�3 for this dataset. Accordingly we set the number of epochs to 20. However,
we let the possibility to early stop at 10 epochs, meaning that the epochs number E becomes an
hyper-parameter. E = {10, 20}.

PROTEINS. The above remark applies to PROTEINS (with continuous attributes). The learning rate
was set to 0.999 10�4 and the epochs number E becomes an hyper-parameter E = {10, 20}.
CUNEIFORM. Since it has 30 different labels, the batch size has been set to 64.

ENZYMES. (continuous) It was trained in the same way as ENZYMES (discrete).

Extended vector attributes. We used a concatenation of continuous attributes and one-hot encoding
of discrete attributes to build an extended vectors attributes. Since our method is a ML method it is
pertinent to give all information we have and let the method to select the most relevant information.
In case of PROTEINS, this choice was motivated because its node features are scalars which is not
suitable for the adaptation procedure while in case of ENZYMES (continuous) and Cuneiform using
only continuous attributes lead to poor results. This choice help to have more flexibility for SGCN to
build the metric while avoiding to use more powerful but also more costly GCN.

A.8 FGW with k-NN

In the ablative study, we evaluated WWL with a k-NN to justify the design choice. Here, as a
complement, we reproduced this experiment with FGW . FGW has a parameter denoted ↵ 2 [0, 1]
which sets the trade-off between the structure and the characteristics of the nodes in the distance
computation. We performed a small grid search over this parameter ↵ = [0.25, 0.5, 0.75]. Except
for IMDB datsaets where ↵ = 1 as in original paper. The results can be found in Table 6. One can
see that the results are mitigated, FGW performs very well on some datasets and much less well on
others. Moreover one could probably get even better results by doing a much larger hyperparameters
tuning, as in the FGW original paper. Still, the present comparison is fair since, first, the grid search
on the proposed method was also relatively small. Second, these results must be analyzed keeping
in mind the significant difference in calculation time between the two methods (see Table 5). This
illustrates also that doing a fine hyperparameter tuning with such expensive methods is not often
feasible on very large data sets.

A.9 Limitations of this study

We discuss some of the limitations of the model and give some suggestions for improvements.

GCNs. To generate the distributions associated with the graphs, the model relies on a Graph
Convolutionnal Neural network (GCN).

Because of this we can expect some sub-optimal behavior of the model in terms of expressiveness.
Indeed, while they are very efficient to characterize graphs locally, GCNs tend to lose efficiency
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when their depths increase. Although variations on their architectures have been proposed to solve
this issue [39], it appears that most neural networks show similar results [6] and this defect seems
to be intrinsic of their low-pass message passing scheme [40]. Therefore, new ways to efficiently
characterize graphs at small and large scales could allow learning a better metric. In this regard,
transformers are promising methods [41, 42]. Their ability to characterize context at different scales
has already been successfully exploited in natural language processing tasks. Currently many attempts
have been made in recent years to adapt them to graphs. However, these are difficult networks to
train and their integration in SGML would not result in a simple and scalable metric learning model.

Performance. The model allows us to obtain an improvement in classification with k-NN as compared
to the current methods. It is then more suitable for dealing with real datasets where new input are
available after (or coming as graph streams) as the method do not need to be fully re-trained. However,
performance with the k-NN remain inferior to those reached with a SVM. Thus in a critical real
application (medical for example), where performance is of utmost importance, it is preferable to use
the SVM. Additional work would be therefore necessary to gain more performance with the k-NN.
This gain in performance could be acquired by introducing a different model of GCN so to generate
the features, as mentioned above. But it could also done by making the model more complex. For
example instead of considering uniform distributions from GCN features, we could introduce an
attention mechanism that could modulate theirs weights on the distributions. This could give more
flexibility to the model to build the metric, but at the cost of a more expensive training.

Theoretical. The work on the distance that we introduced here, RPW2, which is scalable and has a
good behavior in our model, is currently methodological and driven by insight. As of today, we have
not proven that it satisfies the triangular inequality so that it is not guaranteed that it is a true metric
or not. This aspects remains to be clarified.

Opening to other tasks. Our work has been limited here to the k-NN for supervised classication.
But other relevant classifiers with interesting properties where NCCML is not efficient enough could
be consider, eg. the Nearest Class Mean [43]. Other tasks can also be considered such as clustering
(k-means, ...) and regression (k-NN regression, ...). We believe that the present work is a first step on
the goal of lowering the cost of many other tasks on graphs.
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