
A Poly24 Dataset
Poly24 is a dataset provided by Density Function Theory and is designed to calcu-
late the enthalpy change in ring-opening polymerization (∆HROP), a critical thermo-
dynamic principle dictating ring-opening polymerization processes. This process in-
volves breaking a cyclic monomer ring and attaching the "opened" monomer to an
extensive chain, ultimately forming a polymer chain. The dataset was generated using
Molecular Dynamics (MD) simulations of various monomer and polymer models at a
consistent level of DFT [6, 9] computations.

Leveraging the Polymer Structure Predictor (PSP) package [13], various polymer
models were generated from a given cyclic monomer. Each model was obtained by
multiplying the monomer with a small integer L, for instance, L= 3,4,5, and 6, thereby
creating a loop of size L (with larger loops more accurately modeling polymers). For
every monomer or polymer model, approximately ten or more maximally diversified
configurations were selected as the starting points for the MD simulations based on
Density Functional Theory (DFT).

Given that all of our models are non-periodic, we utilized the Γ-point version of
the Vienna Ab initio Simulation Package (VASP) [10, 11], applying a plane wave basis
set with kinetic energy reaching up to 400 eV for the depiction of Kohn-Sham orbitals.
The interactions between ions and electrons were calculated using the Projector Aug-
mented Wave (PAW) method [2], while the exchange-correlation (XC) energies were
determined utilizing the Generalized Gradient Approximation (GGA) in the form of
the Perdew-Burke-Ernzerhof (PBE) functional [12].

Table 1 presents the polymers utilized in our study, which consists of 24 distinct
polymer types. These types are broadly categorized into cycloalkanes, ethers, lactones,
and others, in alignment with the classification system applied in [16]. On average,
the dataset encompasses 10 DFT trajectories for both monomers and polymers. The
polymers are produced by polymerizing the monomers, thereby yielding a thorough
dataset for each type of polymer.

B Multi-molecule Forces Training
In this section, we provide an empirical justification for a force-centric framework for
training a unified machine learning model for molecules. In recent studies in the ma-
chine learning forcefield community [1, 15, 14, 4, 8, 5], the paradigm is often learning
both the potential energy and forces, where the forces are taken as the derivative of the
potential energy. However, here we note an inherent inconsistency of this approach in
a greedy optimization framework caused by drastically different distributions of poten-
tial energy and forces when multiple molecules are considered in the dataset.

[3] noticed a different noise signature for energy and forces, arguing that learning
on forces alone is better than learning on potential energy. In recent studies in the
machine learning community [1, 15, 14, 4, 8, 5], the paradigm is often learning both
the potential energy and forces, where the forces are taken as the derivative of the
potential energy. However, here we note an inherent consistency of this approach in a
greedy optimization framework caused by drastically different distributions of potential
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Index Type # Atoms Monomer Polymer

CK1 cyclopropane 9

CK2 cyclobutane 12

CK3 cyclopentane 15

CK4 cyclohexane 18

CK5 cycloheptane 21

CK6 cycloctane 24

ETH ethylene oxide 7

LAC1 γ-butyrolactone 9

LAC2 γ-butyrolactone 12

LAC3 1,4-dioxan-2-one 13

LAC4 δ -valerolactone 15

LAC5 3-methyl-1,4-dioxan-2-one 16

LAC6 β -methyl-δ -valerolactone 18

LAC7 δ -caprolactone 18

LAC8 δ -decalactone 30

LAC9 (-)-Menthide 30

OTH1 n-alkane sub δ -valerolactone 18

OTH2 α-Methylene-γ-butyrolactone 13

OTH3 n-alkane sub δ -valerolactone 21

OTH4 n-alkane sub δ -valerolactone 24

OTH5 n-butyl δ -valerolactone 27

OTH6 n-alkane sub δ -valerolactone 30

OTH7 n-alkane sub δ -valerolactone 33

OTH8 n-alkane sub δ -valerolactone 42

Table 1: Polymers in our used poly24 dataset. We follow [7] and classify polymers
into 4 broad categories: cycloalkanes, lactones, ethers, and others.
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Figure 1: The distribution of per-atom potential energies and forces across different
polymers. Forces exhibit similar distributions for various types of polymers, whereas
the per-atom potential energy does not.
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(a) Model Output vs DFT Potential Energy.

6.0 5.8 5.6 5.4
DFT Potential Energy (eV/Å/atom)

6.0

5.8

5.6

5.4

Ad
ju

st
ed

 M
od

el
 O

ut
pu

t (
eV

/Å
/a

to
m

)

Polymer Type
cycloalkanes
lactones
ethers
others

(b) Adjusted Model Output vs DFT Potential
Energy.

Figure 2: Energy Prediction Performance. Figure 2(a): model output plotted against
DFT potential energy in eV/Å/atom. Figure 2(b): model predicts accurate potential
energy after applying linear transforms for each polymer.
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eparate Energy + Forces Normed Energy + Forces Forces Pre-trained Forces
Relative MAE 1 5.62 2.31 0.76 0.53

Absolute MAE (kcal/mol) 0.13 0.73 0.30 0.10 0.07

Table 2: Comparison of multi-molecule training strategies with TorchMDNet on
MD17. Results are reported in relative MAE in comparison with separate TorchMD-
Net models on different molecules.

energy and forces when multiple molecules are considered in the dataset.
In Table 2, we compare the performance of different strategies for multi-molecule

training with separately trained models. The tests use the same backbone model, Torch-
MDNet [15]. The different strategies include

• Energy + Forces: joint optimization on energy (divided by the number of atoms)
and forces,

• Normed Energy + Forces: joint optimization on normalized energy and forces,

• Forces Only: optimization on forces only, and

• Pre-trained Forces: optimization of forces only, while the model is initialized
from a pre-trained forcefield model on poly24.

In Table 2 we show the relative performances of different strategies for joint train-
ing on all molecules from MD17. The Relative MAE in Table 2 is calculated as
(e− esep)/esep, where e is the mean absolute error and esep is the baseline mean ab-
solute error evaluated with TorchMDNet trained on separate molecules [15]. Jointly
training on multiple molecules with both energy and forces would result in a deterio-
ration of performance of 5.62 times. Even if the energies are normalized per molecule,
which means that energies are supposed to have same means and variances across dif-
ferent molecules, jointly training on energies and forces still result in 2.31 times de-
terioration on average, suggesting more inherent conflicts in the joint optimization of
energy and forces for multiple molecules. In comparison, by simply focusing exclu-
sively on forces, the performance can be improved to 0.76 of the separately trained
models. With the model pre-trained on polymers and further finetuned on MD17, the
performance can further achieve an MAE of 0.07 kcal/mol, which is about half of the
error of the separately trained TorchMDNet and achieves the state-of-the-art accuracy
on MD17.

Our experiments provide empirical support that forces are a more essential and
informative feature for different types of molecules. Forces

C Energy Prediction
The above section provides a justification of force-centric optimization. However, the
potential energy is an important value indicating the energy state of the molecule. In
this section, we further show that training exclusively on forces do not lose us much
information on the energy, as the energy is essentially the integral of the forces.
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In Figure 2(a), we plot the model output of TorchMDNet trained exclusively on
forces on all polymers in poly24 against ground-truth potential energies. Although the
model is only trained on forces, the model output is naturally linearly correlated with
ground-truth potential energy. For each polymer, if we take 4 ground-truth confor-
mations and potential energies and estimate their mean and variance then re-scale the
model output accordingly, we obtain Figure 2(b), showing perfect linear correlation and
high accuracy on potential energy for all polymers. This shows that the model trained
only on forces can be adjusted to predict potential energies with estimation from only
a few samples.

D Simulation Evaluation
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