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A RELATED WORKS

With the evolution of scientific paradigms (Caı́no-Lores et al., 2020), researches on natural science
has mitigated from empirical and theoretical approaches to computational and data-intensive sci-
entific paradigms driven by computer simulations and big data (Babovi & Bajat, 2023; Li et al.,
2023). In the field of computational fluid dynamics, numerical models including FLUENT (Galeev
et al., 2013), MODFLOW (Brunner et al., 2010; Harbaugh, 2005; Hariharan & Shankar, 2017), and
COMSOL Multiphysics (Multiphysics, 1998), have achieved accurate simulations of physical pro-
cesses like complex multiphase flow, solute transport, and interactions between surface and soil wa-
ter within groundwater systems. Important issues in those spatial discretization methods for solving
the partial differential equations (PDEs) of groundwater are the computationally intensive. More-
over, the implementation of these models is typically challenging for personnel at water resource
management agencies, as highly specialized knowledge and extensive experience in numerical mod-
eling are required. Continuous advancements in data-intensive scientific paradigms have empowered
deep neural networks to achieve significant breakthroughs in image recognition (Krizhevsky et al.,
2017), meteorological modeling (Wan et al., 2018), material informatics (Niu et al., 2020), hydrol-
ogy (Maxwell et al., 2021), and mathematics(Choudhary et al., 2020), due to the powerful feature
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extraction (Yu et al., 2013; Hinton & Salakhutdinov, 2006) and complex function approximation
abilities (Cybenko, 1989). Nonetheless, as ”black box” models, neural networks exhibit a lack of
transparency in their decision-making processes and depend significantly on extensive training data,
limiting their use in groundwater research. Recently, by combining physical laws with neural net-
works, the physics-informed neural network (PINNs) method has improved the interpretability of
models and diminished reliance on extensive datasets, providing an efficient and accurate approach
for groundwater system modeling, and thus promoting the scientific and reliability of groundwater
prediction and management decisions.

The concept of PINNs was first proposed by Raissi et al. (2019). In their approach, the neural net-
work was trained by constructing physical constraints, and optimized by using the residuals based
on initial conditions, boundary conditions, and governing equations as loss functions. Neural net-
work derivatives were computed through automatic differentiation (AD). This method effectively
solves both continuous and discrete PDEs, marking a new era of integration of physical knowl-
edge and deep learning. The introduction of PINNs has significantly expanded the scope of neural
networks in scientific research and engineering applications, while markedly enhancing the predic-
tion accuracy, generalization ability, and interpretability of models. Since then, researchers have
continued to explore and innovate within the PINNs framework, applying it to various fields such
as fluid mechanics (Haghighat et al., 2021), structural dynamics (Moradi et al., 2023), acoustics
(Song et al., 2021), and solid mechanics (Wang et al., 2023). In hydrological research, PINNs of-
fer a new perspective for more convenient and efficient prediction of groundwater flow with their
unique physical guidance characteristics. Wang et al. (2020) proposed a theoretically guided neural
network model (TgNN) based on the loss function of groundwater seepage differential equations,
which improved the generalization performance of the groundwater seepage model with limited
observational data. Additionally, the team demonstrated that the physics-informed model could ef-
fectively use physical information to predict groundwater seepage responses beyond the training set
through groundwater seepage transfer learning tasks. Cho & Kim (2022) used an LSTM network
to regress the residual differences between a neural network model and the Weather Research and
Forecasting model-Hydro (WRF-Hydro). They developed a hybrid model (WRF-Hydro-LSTM) to
predict groundwater levels, and experimental results indicated that this hybrid model achieved higher
prediction accuracy, less sensitivity to training datasets, and better generalization performance than
the LSTM network or WRF-Hydro model alone. Wang et al. (2021a) proposed a neural network
constrained by geostatistical information and a physics-guided autoencoder based on convolutional
neural networks (CNNs) (Wang et al., 2021b), applying the physical guidance method to the pa-
rameter inversion of groundwater hydraulic conductivity fields. The model’s accuracy and practi-
cality were further enhanced. The study by (Pashaei Kalajahi et al., 2022) demonstrated that, even
with limited data, physics-guided neural networks could accurately estimate key parameters such
as hydraulic conductivity and porosity of the medium, showcasing their strong ability to combine
data-driven approaches with physical guidance. Daolun et al. (2021) established a new specialized
neuron model incorporating pressure gradient information and proposed an algorithm called sign-
post neural network (SNN), which significantly improves the accuracy of solving unsteady seepage
partial differential equations. Although significant progress has been made in improving groundwa-
ter seepage models using PINNs, current models still heavily depend on the adequacy and quality
of observed data and remain sensitive to outliers. If the training datasets are insufficient or contain
corrupted data, the simulation results may exhibit considerable bias. Moreover, after the model has
been trained, its applicability is generally limited to specific hydrogeological parameter settings,
making it difficult to generalize to broader or unforeseen hydrogeological scenarios, thus restricting
the model’s versatility and practicality.

B BASIC LAW OF GROUNDWATER SEEPAGE

Without considering changes in water density, the flow of groundwater in a three-dimensional
aquifer within porous media can be expressed by the following partial differential equation:
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Where t is time (T ); Kxx, Kyy , and Kzz are the hydraulic conductivities (LT−1) along the x, y,
and z axes, respectively. H is the hydraulic head (L) at the corresponding space-time point; W is
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the source/sink term of groundwater (such as precipitation, pumping, etc.); µs is the specific storage
(L−1) of the aquifer below the free surface. M is the thickness of the aquifer. Combined with fixed
solution conditions (boundary conditions and initial conditions), it can reflect the water balance
relationship per unit volume and per unit time under Darcy flow conditions.

C DEEP NEURAL NETWORK

The Deep Neural Network (DNN) consists of an input layer, several hidden layers, and an output
layer, where each layer contains multiple neurons connected by a weight matrix (which may include
bias terms). Consider a deep neural network with L layers, denoted as Y = fnet (X, θ) , with nl

neurons in the L-th layer. The number of neurons in the input layer equals the dimension of the
input feature vector X , and the number of neurons in the output layer equals the dimensionality of
the output vector Y . The value of the i-th neuron in L-th layer, zl,i , is computed as the product of
the weight WT

l,i and neurons from the previous layer, plus the bias term bl,i:

zl,i = WT
l,ial−1 + bl,i (2)

The output of neurons is nonlinearly transformed by the activation function, which provides nonlin-
ear capability to the network. After processing zl,i with the activation function σ, the output of the
i-th neuron in the L-th layer, al,i, Lis obtained:

al,i = σ(zl,i) (3)
The final output of the network is produced by the output layer of the multi-layer neural network,
and the network training process relies on a loss function that quantitatively assesses the difference
between the network’s predictions and the actual target values.

D PERFORMANCE METRICS

To evaluate the performance of the model, three main indicators were used for quantitative analysis:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Determination Coefficient
(R2). Their definitions are as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(6)

Where n represents the total number of samples, yi represents the reference output from MODFLOW
of the i-th sample, ŷi represents the predicted value of the i-th sample by the DNN model, and ȳi
is the average of the reference values of all samples. Ideally, the closer MAE and RMSE are to 0,
the smaller the prediction error and the higher the accuracy of the model. The closer the R2 value is
to 1, the better prediction the DNN model achieves.

E DETAILS OF PI-RGSM-K MODEL

Given that the PI-RGSM-K model is a specific application of the PI-RGSM model under conditions
of a heterogeneous hydraulic conductivity field, and since the structures of both models are similar,
most of the experimental settings are identical to PI-RGSM as follows:

(1) As the hydraulic conductivity field has been integrated into the physics-informed loss function,
the model input features are spatial-temporal coordinates (x, y, t), canal water levels (Ha, Hb), and
source/sink term W . The model still uses a random method to generate input data for self-supervised
training (shown in Table 1).

(2) A heterogeneous hydraulic conductivity field is introduced, with K defined as a function that
varies linearly with x (i.e., K = −0.01x + 0.8). The hydraulic conductivity linearly changes from
0.8m/d at the left boundary to 0.4m/d at the right boundary.
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Table 1: Input features and value ranges of the PI-RGSM-K

Input features x(m) y(m) t(d) W (m/d) Ha(m) Hb(m)
Value ranges [0,40] [0,10] [0,100] [0,0.007] [2,3.5] [2,3.5]
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