
Published as a conference paper at ICLR 2025

TAMING TRANSFORMER

WITHOUT USING LEARNING RATE WARMUP

Xianbiao Qi1, Yelin He1, Jiaquan Ye1, Chun-Guang Li2†, Bojia Zi3, Xili Dai4, Qin Zou5, Rong Xiao1†

1Intellifusion Inc. 2BUPT 3CUHK 4HKUST (GZ) 5WHU

ABSTRACT

Scaling Transformer to a large scale without using some technical tricks such
as learning rate warump and using an obviously lower learning rate is an ex-
tremely challenging task, and is increasingly gaining more attention. In this
paper, we provide a theoretical analysis for the process of training Transformer
and reveal the rationale behind the model crash phenomenon in the training
process, termed spectral energy concentration of Wq

⊤Wk , which is the reason
for a malignant entropy collapse, where Wq and Wk are the projection ma-
trices for the query and the key in Transformer, respectively. To remedy this
problem, motivated by Weyl’s Inequality, we present a novel optimization strat-
egy, i.e., making the weight updating in successive steps smooth—if the ratio
σ1(∇Wt)
σ1(Wt−1) is larger than a threshold, we will automatically bound the learning

rate to a weighted multiple of σ1(Wt−1)
σ1(∇Wt) , where ∇Wt is the updating quantity in

step t . Such an optimization strategy can prevent spectral energy concentration
to only a few directions, and thus can avoid malignant entropy collapse which
will trigger the model crash. We conduct extensive experiments using ViT, Swin-
Transformer and GPT, showing that our optimization strategy can effectively
and stably train these Transformers without using learning rate warmup.

“Nothing in life is to be feared. It is only to be understood.”

— Marie Curie

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has revolutionized various domains of artificial intelligence,
including natural language processing (Radford et al., 2018; 2019; Brown et al., 2020; Chowdh-
ery et al., 2023; Touvron et al., 2023; Dubey et al., 2024) and computer vision (Dosovitskiy et al.,
2020; Liu et al., 2021) and many more applications (Radford et al., 2021; Ramesh et al., 2021;
Peebles & Xie, 2023), owning to their ability to capture long-range dependencies through self-
attention mechanisms. However, despite their widespread application and empirical success,
training deep Transformer models remains quite challenging. Practitioners frequently encounter
variant issues, such as gradient explosion (Qi et al., 2023b), rank collapse (Dong et al., 2021), en-
tropy collapse (Zhai et al., 2023) and general training instability (Kim et al., 2021; Qi et al., 2023b),
especially during the initial training stage.

To address these challenges, researchers have proposed various modifications to the original
Transformer architecture, including altering the placement of Layer Normalization (Wang et al.,
2019; Xiong et al., 2020) (e.g., pre-LN vs. post-LN schemes), carefully conditioning the residual
connections (Bachlechner et al., 2021), and QKNorm (Henry et al., 2020; Dehghani et al., 2023)
for the self-attention module. Similarly, DeepNet (Wang et al., 2022) introduces a new normal-
ization function to modify the residual connection in Transformer. ReZero (Bachlechner et al.,
2021) introduces a learnable residual scalar parameter for the residual shortcut, and requires ini-
tiating it to 0 at the start stage of training. More recent approaches (Kim et al., 2021; Qi et al.,
2023a) have focused on examining and enforcing Lipschitz continuity properties of Transformer

† Corresponding authors

1

Published as a conference paper at ICLR 2025

components, which can provide insights into the network behavior and the training stability. Al-
though there are a few works (Bachlechner et al., 2021; Qi et al., 2023a) that can avoid using learn-
ing rate warmup to train Transformer successfully, all of them require significant modifications of
the network structure.

Learning rate warmup (Loshchilov & Hutter, 2016) seems to be a must-have technology for stan-
dard optimizers (Robbins & Monro, 1951; Duchi et al., 2011; Kingma & Ba, 2014; Loshchilov &
Hutter, 2019) in some popular large Transformer models (Radford et al., 2018; 2019; Brown et al.,
2020; Chowdhery et al., 2023; Touvron et al., 2023). Without the learning rate warmup stage, the
Transformer training will prone to diverge.

Although it is usual to train a Transformer by modifying the network structure as mentioned
above or using the learning rate warmup, two natural and interesting questions remain:

1. What are the training dynamics of a Transformer model when its training fails or succeeds?

2. Can we successfully tame a Transformer without changing the network structure or without
using learning rate warmup?

This paper aims to answer these questions. To answer the first question, we examine the training
processes of three types of Transformers, by visualizing the changing trajectories along with the
training process of 15 (or 13) quantities about the parameters, activations, and attention maps.
By doing so, we observe that the model crash is accompanied by a weird phenomenon that the
entropy of the attention map is almost 0 and the spectral norm of Wq

⊤Wk increases to a very
large value. By conducting mathematical analysis for the Transformer training, we identify that
the Spectral Energy Concentration (SEC) of Wq

⊤Wk is the key problem leading to the model
crash. To answer the second question, motivated by Weyl’ Inequality, we present a novel opti-
mization strategy, i.e., making weight updating smooth, and verify empirically that our optimiza-
tion strategy can prevent spectral energy concentration and thus achieving a stable convergence
in training.

Paper Contributions. The contributions of the paper are highlighted as follows.

• We visualize the training dynamics of Transformers that train successfully or unsuccessfully
and summarize two important observations from unsuccessful training that: a) the rank of the
attention map matrix tends to very low and the entropy of attention probability matrix tends
to 0; and b) σ1(Wq

⊤Wk) increases rapidly to a very large value.

• We present theoretical analysis for the Transformer training, finding that the Jacobian matrix
∂vec(P)

∂vec(Wq
⊤Wk)

=X⊤⊗X⊤, where P =X⊤Wq
⊤WkX . It implies that the gradient of Wq

⊤Wk

is largely dominated by the rank of X⊤⊗X⊤.

• We reveal that SEC of W⊤
q Wk makes the attention map matrix to be sparse yet low-rank and it

is the reason leading to model crash.

• Motivated by the Weyl’s inequality, we introduce a novel strategy to address the problem of SEC
of Wq

⊤Wk by controlling the rapid growth of singular values, and verify that our strategy leads
to a stable training process.

2 PRELIMINARIES

Matrix norm. Given a matrix W , its ℓp -norm is defined as: ∥W ∥p = supx̸=0
∥Wx∥p

∥x∥p
. When

p = 2, the induced matrix norm is the spectral norm, which is defined as the largest singular
value of W and is also expressed as the square root of the largest eigenvalue of the Gram matrix
W⊤W . The spectral norm of a matrix W can be calculated as: ∥W ∥2 = maxx∈Sn−1 ∥Ax∥2 =√
λmax(W⊤W) = σ1(W), where σ1(W) denotes the largest singular value of matrix W and

λmax(W⊤W) denotes the largest eigenvalue of W⊤W , and Sn−1 denotes a unit sphere in Rn .

Power iteration to compute matrix spectral norm. The power iteration algorithm starts with

a vector x0 of unit ℓ2-norm. The entire iteration process is as follows: xk+1 = Wxk
∥Wxk∥2

for k =
0, · · · ,K −1. At every iteration, xk is multiplied by matrix W and normalized. After K iterations,

2

Published as a conference paper at ICLR 2025

∥xK ∥2 is used as the estimated spectral norm. Usually, it takes 3 to 5 iterations to converge, and
thus the computation cost is cheap.

Adam Optimizer. Adam (Kingma & Ba, 2014) is currently the most widely used optimizer for
training neural networks, owing to its efficiency and effectiveness. Adam can be simply defined
as: Mt =β1Mt−1+(1−β1)Gt , Vt =β2Vt−1+(1−β2)G2

t , Wt =Wt−1−αtMt ⊘
√
Vt +ϵ, where

Gt is the gradient at step t , G2
t is the element-wise square of Gt , and ⊘ denotes element-wise

division, αt is the learning rate at step t , and β1,β2 are the first-order and the second-order mo-
mentum factors, respectively.

3 TAMING TRANSFORMER REQUIRES TO REVISIT THE TRAINING DYNAMICS

To begin with, we first give some basic notions in a Transformer, which includes an attention
module, an FFN module and two normalization modules that are used before the attention mod-
ule and the FFN module. For the attention module, we usually use a multi-head attention which
allows the model to jointly attend to information from different representations with different
heads. Here, for the convenience, without losing generality, we only use a single-head attention.
To be precise, we define each of them as follows:

Attn(X ;Wq ,Wk ,Wv ,Wo) = WoWvX softmax

X⊤Wq
⊤WkX√
dq

 ,

FFN(x;W1,W2) = W2 ReLU(W1x),

LN(x) = γ⊙z+β, where z = y

std(y)
and y =

(
I − 1

D
11⊤

)
x,

where X ∈ Rd×n , Wq ∈ Rdq×d , Wk ∈ Rdq×d , Wv ∈ Rdv×d , Wo ∈ Rd×d , W1 ∈ R4d×d , W2 ∈
Rd×4d , γ ∈ Rd and β ∈ Rd . Note that only in a single-head definition, Wo can be put before
Wv ; otherwise, it should be after a concatenation operator. For the convenience of discussion,
we define:

A= softmax(
P√
dq

) and P =X⊤Wq
⊤WkX ,

where A is called the attention map and Pp
dq

is usually called the logit.

3.1 VISUALIZATION: WHAT HAPPENS WHEN A TRANSFORMER TRAINING FAILS OR SUCCEEDS

Visualizations are commonly used as an effective means to help us examine whether the neural
network’s training succeeds or fails. In particular, what happens when the training of a Trans-
former tends to crash? And what happens when the training succeeds?

One of the most important aspects of understanding the training of neural networks is the obser-
vation of changes in parameters and activations. Since the parameters or activations and their
gradients are matrices or vectors, the norm is the best way to observe these quantities. In this
paper, for a Transformer training, we summarize the following 15 terms to watch:

σ1(Wq), σ1(Wk), σ1(Wv), σ1(Wo), σ1(W1), σ1(W2), σ1(Wq
⊤Wk),

σ1(WoWv), ∥γ1∥2, ∥β1∥2, ∥γ2∥2, ∥β2∥2, σ1(W2W1), ∥x∥2,

∥∥∥∥ ∂L

∂x

∥∥∥∥
2

,
(1)

where β1 and γ1 denote the parameters of the first LayerNorm, and β2 and γ2 denote the pa-
rameters of the second LayerNorm. When RMSNorm (Zhang & Sennrich, 2019) is used, there are
only 13 terms that will be analyzed since it does not have β. For the weight matrix, we use the
spectral norm. For a vector, we use its ℓ2 norm.

To ensure that the phenomena we observed can generalize well, we visualized them on both
ViT (Dosovitskiy et al., 2020) and GPT (Radford et al., 2018). ViT is a pure encoder architectures
whereas GPT is a pure decoder architecture.

3

Published as a conference paper at ICLR 2025

0k 50k 100k 150k 200k
Step

10

20

30

40

50

60

70

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(a) ∥γ1∥2

0k 50k 100k 150k 200k
Step

0

10

20

30

40

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(b) ∥β1∥2

0k 50k 100k 150k 200k
Step

0

100

200

300

400

500

600

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(c) σ1
(
Wq

)

0k 50k 100k 150k 200k
Step

0

100

200

300

400

500

600

700

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(d) σ1
(
Wk

)
0k 50k 100k 150k 200k

Step

0

50000

100000

150000

200000

250000

300000

350000

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(e) σ1
(
Wq

⊤Wk
) 0k 50k 100k 150k 200k

Step

0

50

100

150

200

250

300

350

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(f) σ1 (Wv)

0k 50k 100k 150k 200k
Step

0

100

200

300

400

500

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(g) σ1 (Wo)

0k 50k 100k 150k 200k
Step

20

40

60

80

100

120

140

160

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(h) ∥γ2∥2

0k 50k 100k 150k 200k
Step

0

2

4

6

8

10

12

14

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(i) ∥β2∥2

0k 50k 100k 150k 200k
Step

0

100

200

300

400

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(j) σ1 (W1)

0k 50k 100k 150k 200k
Step

0

200

400

600

800

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(k) σ1 (W2)

0k 50k 100k 150k 200k
Step

0

50000

100000

150000

200000

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(l) σ1 (W2W1)

0k 50k 100k 150k 200k
Step

0

20000

40000

60000

80000

100000

120000

140000

160000

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(m) σ1 (WoWv)

0k 50k 100k 150k 200k
Step

2

3

4

5

6

7

8

V
a
lu

e
 (

lo
g
)

||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(n) ∥x∥2

0k 50k 100k 150k 200k
Step

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

V
a
lu

e
 (

lo
g
)

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(o) ∥ ∂L
∂x∥2

FIGURE 1: Training dynamics of a failure ViT. This figure shows how 15 items of quantities as de-
fined in Equation (1) change during the training period. Please pay more attention to subfigures
(a)-(e).

4

Published as a conference paper at ICLR 2025

(a) Block 0 (successful). (b) Block 6 (successful). (c) Block 11 (successful).

(d) Block 0 (crashed). (e) Block 6 in (crashed). (f) Block 11 (crashed).

FIGURE 2: Visualization of the dynamics process of attention map
in different training steps for a successful and a crashed ViT-base
model, respectively. Please click the images to play the flash. Best
viewed with Acrobat Reader.

In this section, due to
the space limitation,
we will only visualize
ViT-base, and put more
visualization results into
the Appendix H. For the
ViT implementation, we
use Timm Wightman
(2019), in which “timm”
library provides rich
model architectures of
many pre-trained image
models in PyTorch. For
the GPT implementation,
we use nanoGPT, which
uses LayerNorm without
a bias term, and thus only
watch 13 terms, rather
than 15 terms in ViT.

To achieve a successful
ViT training, we use a long
learning rate warmup.
For instance, we use 60
epochs of warmup and
the whole training process
takes 150 epochs. To

obtain the dynamics of a failure training of ViT, we do not use warmup.

Figure 1 visualizes a failure training process of a ViT-base model. The model includes 12 blocks
with index from 0 to 11. In Figure 1, we visualize the weight matrices in blocks {0,2,4,6,8,10,11},
where the index of the last block is 11. For the features x and the gradients ∂L

∂x , we hook the
input features that enter into the corresponding blocks. Figure 8 in the Appendix I visualizes a
successful training process of a ViT-L model. Meanwhile, in Figure 2, we visualize the dynamic
processes of attention maps during the training period about a successful case and a failure case
of the ViT-base model, respectively. We visualize the attention map of the same image at different
steps.

We observe the following phenomena from Figures 1 and 2.

• As shown in Figure 1, at the beginning, the maximum singular value σ1(Wq
⊤Wk) gradually

increases, and at a certain point, the maximum singular value suddenly and rapidly increases
to a very large value (e.g., around 200,000), at where the loss divergence emerges. However, for
a successful training process, σ1(Wq

⊤Wk) gradually increases to a medium value as shown in
Figure 8 and then vibrates around that value.

• As shown in Figure 2, in a failure training process of Transformer, the attention maps gradu-
ally become sparse and low-rank. Finally, the entropy of the attention map is 0; whereas in a
successful training process, the attention map is not too sparse and of a medium rank.

• The normalization layers exhibit a huge difference: γ1 and β1 in a successful ViT training pro-
cess are very smooth, but ∥γ1∥2 and ∥β1∥2 suddenly increase dramatically in an unsuccessful
case.

• The ranges of the activation and the gradients are very large in a crashed model, and the gradi-
ents in different blocks vary much larger than that in a successful model.

Remark. We summarize that the successful training and the unsuccessful training of a Trans-
former exhibit significant differences among their σ1(Wq

⊤Wk), their normalization parameters

γ and β, and their activations x and gradients ∂L
∂x .

5

Published as a conference paper at ICLR 2025

3.2 THEORETICAL ANALYSIS: MATRIX CALCULUS OF TRANSFORMER

To understand the training dynamics of Transformer, we should investigate the process of back-
propagation (Rumelhart et al., 1986; LeCun et al., 2002; 1989; 1998). In the attention mechanism,
however, the input and the output are both matrices, we cannot directly use vector calculus.
Instead, we need to use Vectorization (Graham, 2018; Petersen et al., 2008) and Kronecker Prod-
uct (Graham, 2018; Petersen et al., 2008). In matrix calculus, the vectorization of a matrix is a
linear transformation that converts a matrix into a vector. Specifically, the vectorization of a ma-
trix M ∈Rm×n , denoted as vec(M), is a column vector, obtained by an ordered stacking of the

columns of the matrix M , i.e., vec(M) ∈Rmn . For example, for a 2×3 matrix M =
[

a b c
d e f

]
,

the vectorization of M is vec(M) = [a d b e c f]⊤. For the attention module of Transformer,
we have the following proposition about the Jacobian matrix of the output P with respect to the
input X and the parameters.

Proposition 1 (Matrix Calculus for Self-Attention)
Let P =X⊤Wq

⊤WkX , where X ∈Rd×n ,Wq ∈Rdq×d ,Wk ∈Rdq×d , according to vectorization
and matrix calculus, we have the following derivations:

∂vec(P)

∂vec(Wq
⊤Wk)

=X⊤⊗X⊤,
∂vec(P)

∂vec(X)
= (X⊤Wk

⊤Wq ⊗In)K+ (In ⊗X⊤Wq
⊤Wk), (2)

∂vec(P)

∂vec(W⊤
q)

= (WkX)⊤⊗X⊤,
∂vec(P)

∂vec(Wk)
=X⊤⊗ (WqX)⊤, (3)

where ⊗ denotes the Kronecker product, In ∈Rn×n denotes an identity matrix with shape n ×n,
K is the commutation matrix, which depends on the dimensions of X . Since X ∈Rd×n , then we
know K ∈Rnd×nd . The commutation matrix K has the property that vec(X⊤) =K vec(X) for
any matrix X .

In Appendices A and B, we supply some elementary information for the vectorization and the
Kronecker product and the derivations of the Jacobian matrix for a single-head attention.

We have the following observations from Proposition 1.

• We have ∂vec(P)
∂vec(Wq

⊤Wk)
=X⊤⊗X⊤ in Equation 2, and we know about the Kronecker product

that rank(X⊤ ⊗X⊤) = rank(X⊤)
2

, which implies that if the rank of X is very low, then the
rank of ∂vec(P)

∂vec(Wq
⊤Wk)

will also be very low. Note that X being low rank means that the features

across different timestep are highly correlated or coherent. If all xi in X collapses to a single
point, then X⊤⊗X⊤ will only have a large singular value, and the rest are 0.

• The Jacobian matrix ∂vec(P)
∂vec(X) in Equation 2, is in direct proportion to X and Wq

⊤Wk . If the

spectral norm σ1(Wq
⊤Wk) is very large, it implies that the gradient ∂L

∂X will more likely to be
magnified a lot.

• Equation 3 suggests that changes in the query weights Wq are related to both the input X
and the key representation WkX . Equation 3 suggests that changes in the key weights Wk are
related to both the input X and the query representation WqX .

• All these relationships are interconnected, with changes in one variable potentially affecting
the others. For instance, if Wk increases fast, then according to Equation 3, ∂vec(P)

∂vec(W ⊤
q)

will more

likely to be very large. In this way, Wq will likely increase very fast.

3.3 RATIONALE IN MODEL CRASH: SPECTRAL ENERGY CONCENTRATION

Before we reveal the rationale in model crash, let us first discuss a bit on the entropy collapse.

Two Entropy Collapse Modes. In experiments, we observe two types of attention entropy
collapse modes. Note that when attention collapse happens, the attention map tends to

https://en.wikipedia.org/wiki/Vectorization_(mathematics)
https://en.wikipedia.org/wiki/Kronecker_product

6

https://en.wikipedia.org/wiki/Vectorization_(mathematics)
https://en.wikipedia.org/wiki/Kronecker_product

Published as a conference paper at ICLR 2025

a sparse matrix (i.e., there are a few dominate nonzero coefficients in attention map), and
thus the entropy of the attention map is vanishing. To be more specific, when the attention
map is sparse but not low-rank, we call it a benign collapse; whereas if the attention map
is sparse and simultaneously low-rank, we call it a malignant collapse. When benign col-
lapse occurs, the attention map is shown in the right panel of Figure 3 that, there is almost
an identity matrix. In this way, the diagonal elements are almost 1, and the non-diagonal
elements have values around 0. Unfortunately, when malignant collapse happens, the at-
tention map becomes a sparse and simultaneously low-rank matrix as shown in the middle
panel of Figure 3. Furthermore, we observe that the distribution of the spectral energy of
Wq

⊤Wk for the benign collapse is relatively uniform; whereas the spectral energy of the atten-
tion matrix for the malignant collapse tends to concentrate on a few dominate singular values.

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

0.1

0.2

0.3

0.4

(a) Normal attention

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

0.0

0.2

0.4

0.6

0.8

1.0

(b) Malignant collapse

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

0.0

0.2

0.4

0.6

0.8

1.0

(c) Benign collapse

FIGURE 3: Three modes of attention maps. The left panel shows
a normal attention map. The middle panel shows a classical at-
tention map when model crash occurs, for which the entropy is
almost 0. The right panel shows an attention map from a normal
model training but its entropy is almost 0.

By analyzing the ma-
trix Wq

⊤Wk in the be-
nign collapse when it
happens in the exper-
iments, we find that it
has the following prop-
erty: Wq

⊤Wk is usually
a non-symmetric posi-
tive quasi-definite square
matrix (see Appendix O
for details), and the
self-attention layer de-
generates into a linear
projection layer because

Y =WvXA≈WvXI =WvX . We give an intuitive analysis in Appendix C.

When the malignant collapse happens, the model will usually crash. We identify that the ratio-
nale behind the model crash is a phenomenon called spectral energy concentration (SEC). Be-
fore we present our theorem about SEC, let us first introduce an index to quantify it. Recall that
Wq ∈Rdq×d and Wk ∈Rdq×d , where dq < d . We have that Wq

⊤Wk ∈Rd×d , but its rank is less
than or equal to dq . Precisely, we define a SEC index as follows:

SEC(dq , s) =
∑s

i=1σ
2
i (Wq

⊤Wk)∑dq

i=1σ
2
i (Wq

⊤Wk)
, (4)

where dq is the head dimension and s ≤ dq . For instance, if we have dq = 64 and s = 4, and if at
this time, SEC(64,4) > 99%, we could say the spectral energy of Wq

⊤Wk highly concentrates on
only four dominant singular values.

To be precise, we have the following theorem for the reason to cause a malignant collapse.

Theorem 1 (Malignant Entropy Collapse)
Let P =XTWX and A= softmax

(
Pp

dq

)
, W =W T

q Wk ∈Rd×d . Suppose that the following

two conditions are simultaneously satisfied:

• X is a low-rank matrix;

• W is a low-rank matrix with only a few dominant singular values (e.g., the singular values are

greater than C0 ·
√

dq where C0 ≫ 1 is a constant).

Then, the attention map A will be sparse and simultaneously low-rank in high probability.

When the malignant entropy collapse happens, the training process will crash. We provide a
proof for Theorem 1 in Appendix D.

For a sparse and simultaneously low-rank matrix, we refer the reader to a recent textbook (Wright & Ma,
2022).

7

Published as a conference paper at ICLR 2025

According to Theorem 1, we know that the model crash is caused by the spectral energy concen-
tration. In Figure 4, we evaluate and compare the curves of SEC(dq , s) of three different blocks
under a successfully trained model and a crashed model. In a successfully trained model, the
spectral energy distributes in all directions. However, the spectral energy of a crashed model only
concentrates on a few directions. As shown in Figure 4, in a crashed model, the SEC collapses
into less than 10 directions. Figure 5 reveals how the attention collapse propagates through

0 10 20 30 40 50 60
the dimension s

0.2

0.4

0.6

0.8

1.0

SE
C(

d,
s)

Spectral Energy Concentration

Block 0 Head 0 (Baseline Model)
Block 0 Head 0 (Crashed Model)

(a) Block 0

0 10 20 30 40 50 60
the dimension s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SE
C(

d,
s)

Spectral Energy Concentration

Block 6 Head 0 (Baseline Model)
Block 6 Head 0 (Crashed Model)

(b) Block 6

0 10 20 30 40 50 60
the dimension s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SE
C(

d,
s)

Spectral Energy Concentration

Block 11 Head 0 (Baseline Model)
Block 11 Head 0 (Crashed Model)

(c) Block 11

FIGURE 4: Comparison of spectral energy concentration index SEC between a successfully
trained model and a crashed model. The attention maps of three different blocks are shown.
The spectral energy distributes in all directions in a successful training case; whereas the spectral
energy only concentrates on a few directions in a crashed model.

X l↓ X⊤⊗X⊤↓
∂vec(P)

∂vec(Wq
⊤Wk)↓ Wq

⊤Wk↓ A⇓ X l+1↓

FIGURE 5: Attribution flow chart of attention collapse.

each term, illustrating the entire attribution chain from the input X l to the output X l+1 in the
attention module. Note that ↓ indicates being low-rank and ⇓ means being sparse and simul-
taneously low-rank. If X is low-rank, then X⊤ ⊗X⊤ is also low-rank because rank(X ⊗X) =
rank(X) · rank(X). According to the gradient computation, we have ∂vec(P)

∂vec(W ⊤
q Wk)

= X⊤ ⊗X⊤,

thus we know ∂vec(P)
∂vec(W ⊤

q Wk)
is also low-rank. Meanwhile, it should be noted that the spectral en-

ergy of ∂vec(P)
∂vec(W ⊤

q Wk)
is over-concentrated, which means that the gradient update will dramatically

change W⊤
q Wk , thus W⊤

q Wk will have large probability to be low-rank. In the paper, we have

proved that being low-rank and the leading singular values of W⊤
q Wk are very large will lead to

the attention map A over-concentrated (see Appendix C for the proof), and become to a sparse
and simultaneously low-rank matrix. Finally, an over-concentrated A will lead to X l+1 to be
low-rank. We provide a more detailed analysis of Figure 5 in Appendix Q.

3.4 OUR SOLUTION: TAMING TRANSFORMER VIA WEYL’S INEQUALITY

The analysis above reveals that spectral energy concentration is the key reason leading to un-
stable training. One manifestation of spectral energy concentration is the rapid growth of the
singular values of of the weight matrices. Thus, our basic idea to prevent malignant collapse is
to suppress the fast growth of the singular values. Fortunately, Weyl’s inequality provides us a
simple but effective tool.

Theorem 2 (Weyl’s Inequality on Singular Values)
Let W1,W2 ∈Rm×n where m ≥ n,σ1(W1) ≥σ2(W1) ≥ ... ≥σn(W1) be the ordered singular values
of W1, and σ1(W2 ≥σ2(W2) ≥ ... ≥σn(W2) be the ordered singular values of W2. Then we have:

σi+ j−1(W1 +W2) ≤σi (W1)+σ j (W2).

The proof for Theorem 2 is provided in Appendix E. From Theorem 2, it is easy to see that
σ1(W1 +W2) ≤ σ1(W1) +σ1(W2). Let Wt be the weight matrix at time step t , ∇Wt be the
quantity computed from the gradients and their derivations (where ∇Wt can be obtained by

8

Published as a conference paper at ICLR 2025

Algorithm 1 AdamW2: Taming Transformer via Weyl’ Inequality without learning rate warmup.
Input: learning rate scheduler αt , weight decay λ, and first-order and second-order momentum β1, β2
Output: updated weight wT

1: for t = 1,2, . . . ,T do
2: Gt =∇Wt−1

L
3: Mt =β1Mt−1 +

(
1−β1

)
Gt , Vt =β2Vt−1 +

(
1−β2

)
G2

t
4: M̂t =Mt /

(
1−βt

1

)
, V̂t =Vt /

(
1−βt

2

)
5: ∇Wt =M̂t ⊘

√
V̂t +ϵ ▷ ∇Wt is the final update quantity.

6: δ̂1 = PowerIter(∇Wt), σ̂1 = PowerIter(Wt−1) ▷ Power iteration to compute spectral norm.

7: if αt δ̂1
σ̂1

> τ then ▷ If Rule 1 does not meet, adjust the learning rate αt .

8: αt = τσ̂1

δ̂1
9: end if

10: if Weight Decay is Yes then
11: Wt = Wt−1 −αt∇Wt −αtλtWt−1
12: else
13: Wt = Wt−1 −αt∇Wt
14: end if
15: end for

SGD (Robbins & Monro, 1951), Adagrad (Duchi et al., 2011), or Adam (Kingma & Ba, 2014)), αt is
the learning rate at time step t . Usually, our update equation is Wt =Wt−1 −αt∇Wt . According
to Weyl’s Inequality, we have,

σ1(Wt) =σ1(Wt−1 −αt∇Wt) ≤σ1(Wt−1)+αtσ1(∇Wt). (5)

An important observation from Equation 5 is that if σ1(∇W) is very large, then Wt will be signif-
icantly different from Wt−1. It means that the successive updates of Wt at time step t from time
step t −1 would “jump” too much. A “smoother” updating should satisfy the following rule.
Rule 1 (Steady Weights Updating Rule)
Given weights matrix Wt−1 and the updating quantity ∇Wt at step t , with the learning rate αt , a
steady weights should satisfy the following inequality: ∥Wt−1−αt∇Wt∥2 ≤ (1+τ)∥Wt−1∥2, where
τ> 0 is a small factor.

To meet Rule 1, what we need is thatσ1(Wt−1)+αtσ1(∇Wt) ≤ (1+τ)∥Wt−1∥2 = (1+τ)σ1(Wt−1).
It is easy to see that:

αt ≤ τσ1(Wt−1)

σ1(∇Wt)
. (6)

This inequality tell us that the learning rate αt should be bounded by a ratio of singular values
σ1(Wt−1) and σ1(∇Wt). Generally, τ is a small value, e.g., 0.004 or 0.005. The intuition behind
is that if the spectral norm of ∇Wt is significantly larger than that of Wt , then the model is po-
tentially undergoing rapid changes. In such cases, a large learning rate could lead to training

instability. Therefore, our strategy is that if αt > τσ1(Wt−1)
σ1(∇Wt) then we truncate αt to τσ1(Wt−1)

σ1(∇Wt) .
Since our base optimizer is AdamW (Loshchilov & Hutter, 2019) and our algorithm is motivated
by Weyl’s Inequality, we term our algorithm as AdamW2.

For clarity, we summarize our AdamW2 in Algorithm 1, where lines 6-9 highlight our improve-
ments over the base optimizer, the other codes are same as AdamW. According to line 6 in Al-
gorithm 1, σ1(∇Wt) and σ1(Wt−1) are computed via a fast power iteration method. In practice,
we set the maximum iterations in power iteration to 3. Actually, we find that two iterations are

enough to estimate the spectral norm of matrices. According to Equation 6, if αt > τσ1(Wt−1)
σ1(∇Wt) ,

then the learning rate αt will be truncated to τσ1(Wt−1)
σ1(∇Wt) , or the algorithm will adjust αt and use

the default learning rate set by the learning rate schedule.

4 EXPERIMENTS

Compared to some previous works (Bachlechner et al., 2021; Wang et al., 2019; Xiong et al., 2020;
Wang et al., 2022; Qi et al., 2023b) that focuse on improving the training stability of Transformer,

9

Published as a conference paper at ICLR 2025

TABLE 1: Quantitative comparison of AdamW and AdamW2 with and without learning rate
warmup. AdamW2 demonstrates a very competitive performance compared to AdamW.

Method ViT (Acc. ↑) GPT (Loss ↓) Swin-Transformer (Acc. ↑)
Configurations ViT-B ViT-L GPT-S Swin-S Swin-B

Parameters 86M 307M 125M 50M 88M

AdamW (with warmup) 80.22 81.65 2.848 83.02 83.48
AdamW2 (no warmup) 80.58 81.82 2.840 83.14 83.44

our AdamW2 does not need to adjust the network structure and we do not use learning rate
warmup. For ViT, Swin-Transformer and GPT, we will use a warmup of 60 epochs, 20 epochs,
and 2000 steps, respectively. In AdamW2, we directly use a cosine learning rate schedule and
decay the learning rate from maximum to minimum.

0 50 100 150 200 250 300
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

Swin-Small = 0.00075
Swin-Small = 0.003
Swin-Small = 0.004
Swin-Small = 0.005

(a) Swin-Transformer

0k 100k 200k 300k 400k 500k 600k
Step

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Va
l L

os
s

OpenWebText Val Loss
GPT2-S = 0.004
GPT2-S = 0.0075
GPT2-S = 0.01
GPT2-S = 0.015

(b) GPT

FIGURE 6: Ablation study of τ in AdamW2 using Swin-S and GPT-S.

We conduct experi-
ments on three pop-
ular Transformers,
i.e., ViT (Dosovitskiy
et al., 2020), GPT-
2 (Radford et al.,
2019) and Swin-
Transformer (Liu
et al., 2021), where
ViT and Swin-
Transformer are
pure encoder archi-
tectures and GPT
is a pure causal

decoder. Note that we do not conduct any adjustments to the networks and directly use the
original implementation. Our experiments include image classification on ImageNet (Deng
et al., 2009) and large language model on OpenWebText (Gokaslan & Cohen) dataset. We list
some training configurations in Appendix N. The quantitative results are shown in Table 1.
Our baseline model is the corresponding Transformer using a learning rate warmup; whereas
baseline models without using learning rate warmup will crash. AdamW2 demonstrates a very
competitive performance compared to the baseline method. These experimental results verify
that our understanding of the training dynamics of the Transformer is rational.

We also conduct an ablation study of the choice of τ in GPT and Swin-Transformer. The results
are shown in Figure 6. We can see that the performance of AdamW2 varies slightly for different
values of τ, but overall, our approach is robust for different choices of τ. The curves basically
overlap in the later epochs because our steady updating rule is never broken in the later epochs.

5 CONCLUSION

In this paper, we revisited the training dynamics of the Transformers by visualizing the spectral
norm of weight matrices, the activations and the attention map, presented a theoretical analysis
for the Transformer training and identified two modes of attention entropy collapse, i.e., the be-
nign collapse and the malignant collapse, in which the malignant collapse accompanies model
crash. Moreover, we revealed that the spectral energy concentration of Wq

⊤Wk is the reason
behind the model crash, which causes the attention map to be sparse and simultaneously low-
rank. Furthermore, we proposed a steady updating rule to resolve the problem of spectral energy
concentration of Wq

⊤Wk by controlling the rapid growth of singular values, which can prevent
the fast spectral energy concentration to a few directions and thus avoid the malignant entropy
collapse. We conducted extensive experiments to verify the proposed strategy with ViT, Swin
Transformer, and GPT, and demonstrated that the proposed strategy could effectively and stably
train a model without using any learning rate warmup.

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

In this paper, we aim to provide a novel approach to train transformers without learning rate
warmup. Our work does not involve any human subjects, and we have carefully ensured that it
poses no potential risks or harms. Additionally, there are no conflicts of interest, sponsorship
concerns, or issues related to discrimination, bias, or fairness associated with this study. We
have taken steps to address privacy and security concerns, and all data used comply with legal
and ethical standards. Our work fully adheres to research integrity principles, and no ethical
concerns have arisen during the course of this study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all the details to reproduce the experi-
ments. Theoretical proofs of the claims made in this paper, and detailed experimental settings
and configurations are provided in the Appendices.

ACKNOWLEDGMENTS

Chun-Guang Li was partially supported by the National Natural Science Foundation of China
under Grant 61876022. Qin Zou was partially funded by the National Natural Science Foundation
of China under Grant 62171324.

REFERENCES

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial
Intelligence, pp. 1352–1361. PMLR, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pp. 2793–2803. PMLR, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

11

Published as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Alexander Graham. Kronecker products and matrix calculus with applications. Courier Dover
Publications, 2018.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vi-
sion transformer using focused linear attention. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 5961–5971, 2023.

Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
normalization for transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4246–4253, 2020.

Roger A Horn and Charles R Johnson. Topics in matrix analysis, 1991. Cambridge University
Presss, Cambridge, 37:39, 1991.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In International Conference on Machine Learning, pp. 5562–5571. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay bal-
ances learning across neural networks. arXiv preprint arXiv:2305.17212, 2023.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate
warmup in gpt training. Advances in Neural Information Processing Systems, 2024.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. In International
Conference on Learning Representations, 2019.

12

https://github.com/karpathy/nanoGPT

Published as a conference paper at ICLR 2025

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank col-
lapse. Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical Univer-
sity of Denmark, 7(15):510, 2008.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing lips-
chitz continuity to vision transformers. In The Eleventh International Conference on Learning
Representations, 2023a.

Xianbiao Qi, Jianan Wang, and Lei Zhang. Understanding optimization of deep learning via ja-
cobian matrix and lipschitz constant. arXiv preprint arXiv:2306.09338, 2023b.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language un-
derstanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pp. 8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on ma-
chine learning, pp. 8821–8831. Pmlr, 2021.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathe-
matical statistics, pp. 400–407, 1951.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter confer-
ence on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding train-
ing dynamics and token composition in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demys-
tifying multilayer transformers via joint dynamics of mlp and attention. arXiv preprint
arXiv:2310.00535, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

13

Published as a conference paper at ICLR 2025

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

John Wright and Yi Ma. High-dimensional data analysis with low-dimensional models: Principles,
computation, and applications. Cambridge University Press, 2022.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architec-
ture. In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing at-
tention entropy collapse. In International Conference on Machine Learning, pp. 40770–40803.
PMLR, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Published as a conference paper at ICLR 2025

A KRONECKER PRODUCT AND VECTORIZATION

Kronecker product (Graham, 2018; Petersen et al., 2008), also called as matrix direct product, is
an operation defined on two matrices of arbitrary size. The specific definition is as follows.

Definition 1 (Kronecker Product)
Let A be an n ×p matrix and B an m ×q matrix. The mn ×pq matrix

A⊗B =


a1,1B a1,2B · · · a1,pB
a2,1B a2,2B · · · a2,pB

...
...

...
...

an,1B an,2B · · · an,pB


is called the Kronecker product ofA andB. It is also called the direct product or the tensor product.

For instance, if A=
[

1 2
3 4

]
, and B =

[
1 2 3
3 4 5

]
, then A⊗B =


1 2 3 2 4 6
3 4 5 6 8 10
3 6 9 4 8 12
9 12 15 12 16 20

.

Some basic properties of the Kronecker product include:

A⊗ (B⊗C) = (A⊗B)⊗C,

A⊗ (B+C) = (A⊗B)+ (A⊗C), (A+B)⊗C = (A⊗C)+ (B⊗C),

(A⊗B)T =AT ⊗BT .

For a matrix A, the rank of A⊗A can be computed as,

rank(A⊗A) = rank(A) · rank(A).

It means if the rank of the matrix A is small, then the rank of A⊗A will also be very small.

In mathematics, Vectorization (Graham, 2018; Petersen et al., 2008) is usually used together with
the Kronecker product to express matrix multiplication as a linear transformation on matrices.
After vectorization, we can calculate the Jacobian matrix of the matrix product more conve-
niently. A property of vectorization for the matrix product is defined below.
Proposition 2 (Property of Vectorization for Matrix Product)
Let A ∈Rm×n ,B ∈Rn×k ,C ∈Rk×l , then we have

vec(ABC) = (C⊤⊗A)vec(B).

Proof. Let Ci be the i -th row of C. Then we have:

vec(ABC) =
n∑

i=1

k∑
j=1

bi j vec(aiC j)

=
n∑

i=1

k∑
j=1

bi j (C⊤
j ⊗ai)

=
k∑

j=1
(C⊤

j ⊗A)b j

= (C⊤⊗A)vec(B).

□
Furthermore, we have the following properties:

vec(AB) = (Ik ⊗A)vec(B) = (
B⊤⊗Im

)
vec(A),

vec(ABC) = (
C⊤B⊤⊗Im

)
vec(A)

= (
C⊤⊗A

)
vec(B)

= (Il ⊗AB)vec(C)

15

Published as a conference paper at ICLR 2025

where Ik ∈Rk×k ,Il ∈Rl×l ,Im ∈Rm×m are all identity matrices.

Together with the Kronecker product, vectorization is an effective tool to compute matrix calcu-
lus. We can see the following two examples.

Let P =AB where A ∈Rm×n ,B ∈Rn×k , we have:

∂vec(P)

∂vec(A)
=B⊤⊗Im ,

∂vec(P)

∂vec(B)
= Ik ⊗A.

Let P =ABC where A ∈Rm×n ,B ∈Rn×k ,C ∈Rk×l , we have,

∂vec(P)

∂vec(A)
=C⊤B⊤⊗Im ,

∂vec(P)

∂vec(B)
=C⊤⊗A,

∂vec(P)

∂vec(C)
= Il ⊗AB.

Vectorization and Kronecker product provide us a convenient way to analyze the self-attention
module. We can compute the Jacobian matrix of the output with respect to the input or the
weight matrix more conveniently. For more introduction to Kronecker product and vectorization,
the readers can refer to (Petersen et al., 2008; Graham, 2018)

B DERIVATION OF JACOBIAN MATRIX FOR SINGLE-HEAD SELF-ATTENTION

A single-head self-attention can be defined as

Y =WvXA,

where A= softmax(Pp
dq

) in which P =X⊤Wq
⊤WkX . The matrix A is called the attention ma-

trix and Pp
dq

is called the logit, A ∈Rn×n ,X ∈Rd×n ,Wv ∈Rdv×d . Here, our goal is to calculate

∂vec(Y)
∂vec(X) .

In the main body, we have derived ∂vec(P)
∂vec(X) . Here, let us calculate the matrix calculus of A =

softmax(Pp
dq

) with respect to P using Kronecker products and vectorization. We can rewrite

it as A = exp(Pp
dq

)⊘ (1n1
⊤
n exp(Pp

dq
)), where 1n denotes an n-dimensional vector of 1’s in Rn .

Note that A is obtained by conducting a softmax operation in each column individually.

First, let us define two intermediate variables:

B = exp(
P√
dq

), C =11⊤ exp(
P√
dq

) =11⊤B.

In this way, we can represent the attention matrix A as A=B⊘C.

Then, we can vectorize the equation A=B⊘C as follows:

vec(A) = vec(B⊘C) = vec(B)⊘vec(C).

According to the chain rule, we have

∂vec(A)

∂vec(P)
= ∂vec(A)

∂vec(B)

∂vec(B)

∂vec(P)
+ ∂vec(A)

∂vec(C)

∂vec(C)

∂vec(P)
.

16

Published as a conference paper at ICLR 2025

Let us calculate each individual term. We have

∂vec(A)

∂vec(B)
=1n2 ⊘diag(vec(C)),

∂vec(B)

∂vec(P)
= diag(vec(B))√

dq

,

∂vec(A)

∂vec(C)
=−diag(vec(B)⊘ (vec(C)⊙vec(C))),

∂vec(C)

∂vec(P)
= (In ⊗1n1

⊤
n)diag(vec(B))√

dq

,

where In is an identity matrix of n × n and ⊗ is the Kronecker product, 1nn denotes an n2-

dimensional vector of 1’s in Rn2
.

By substituting the above four terms into the chain rule, we have

∂vec(A)

∂vec(P)
=

(
1n2 ⊘diag(vec(C))

)
diag(vec(B))−diag(vec(B)⊘ (vec(C)⊙vec(C)))(In ⊗1n1

⊤
n)diag(vec(B))√

dq

= diag(vec(A))−diag(vec(B)⊘ (vec(C)⊙vec(C)))(In ⊗1n1
⊤
n)diag(vec(B))√

dq

=
blockdiag(diag(A:,1)−A:,1A

⊤
:,1, . . . ,diag(A:,n)−A:,nA

⊤
:,n)√

dq

.

For the simplicity, we denote

J = blockdiag(diag(A:,1)−A:,1A
⊤
:,1, . . . ,diag(A:,n)−A:,nA

⊤
:,n).

When A and P are vectorized into vectors, we use a and p to denote them, respectively. Then
we see that

∂vec(a)

∂vec(p)
= diag(a)−aa⊤√

dq

.

If a approaches to a unit vector e, then the Jabobian matrix ∂vec(a)
∂vec(p) will tend to 0.

In Section 3.2, we have the following Jacobian matrix

∂vec(P)

∂vec(X)
= (X⊤Wk

⊤Wq ⊗In)K+ (In ⊗X⊤Wq
⊤Wk).

By vectorization of Y =WvXA, we have

∂vec(Y) = (A⊤⊗Wv)∂vec(X)+ (In ⊗WvX)∂vec(A).

Therefore, according to the product rule and chain rule, we can denote the Jacobian matrix of Y
with respect to X as follows:

∂vec(Y)

∂vec(X)
= (A⊤⊗Wv)+ (In ⊗WvX)

∂vec(A)

∂vec(X)
,

= (A⊤⊗Wv)+ (In ⊗WvX)
∂vec(A)

∂vec(P)

∂vec(P)

∂vec(X)
.

Bringing in all these terms, we get the following formula:

∂vec(Y)

∂vec(X)
= (A⊤⊗Wv)+ (In ⊗WvX)

J√
dq

(
(X⊤Wk

⊤Wq ⊗In)K+ (In ⊗X⊤Wq
⊤Wk)

)
. (7)

17

Published as a conference paper at ICLR 2025

Let us analyze Equation 7. If a malignant entropy mode happens, Jp
dq

will approach 0 because

each a in A will be a unit vector e. From the perspective of the forward process, the features
Y will collapse to several directions. From the perspective of the backward process, Jp

dq
will

become 0, and ∂vec(Y)
∂vec(X) will be a sparse and simultaneously low-rank matrix. Through A⊤⊗Wv ,

most of the positions in X will get zero gradient, and only very few columns will obtain some
large noisy gradients. In a malignant entropy mode, the learned feature is invalid and useless.
Similarly, if a benign entropy mode happens, the attention map A will approach an identity ma-
trix I and Jp

dq
≈ 0 when A ≈ I . Therefore, we have ∂vec(Y)

∂vec(X) ≈ (I⊤ ⊗Wv). In this way, a self-

attention module degenerates to a linear layer.

C PROOF OF BENIGN ENTROPY COLLAPSE

Recall that A = softmax(Pp
dq

) where P = X⊤Wq
⊤WkX . Here, let W = Wq

⊤Wk and W ∈
Rd×d . In this way, we have that A= softmax(X

⊤WXp
dq

). We know that rank(W) ≤ dq and dq < d .

To prove A will always collapse to an identity matrix when W is a non-symmetric positive quasi-
definite square matrix, it is equivalent to prove E

[
xi

⊤Wxi
] ≫ E

[
xi

⊤Wx j
]

for any i ̸= j . It
will be very hard to prove it mathematically if W is a form of a non-symmetric positive quasi-
definite square matrix. Therefore, let us make some simplification assumptions. Assume W
is a real symmetric positive semi-definite square matrix and its trace is in direct proportion to

the dimension dq , and any xi is a high-dimension random vector and each element in xi , j
iid∼

N (0,1).

We break our proof into two sub-problems.

Proposition 3 (Expectation of xi
⊤Wxi)

Let W be a real symmetric positive semi-definite matrix, and any xi be a high-dimensional ran-
dom vector. Then, we have E

[
xi

⊤Wxi
]= trace(W).

Proof. Let W be a real symmetric positive semi-definite, thus it can be decomposed into W =
UΣU⊤. In this way, we have

E
[
xi

⊤Wxi
]= E[

xi
⊤UΣU⊤xi

]
= E[

z⊤Σz
]

(let z =U⊤xi)

= E
[

d∑
i=1

σi z2
i

]
(Σ is a diagonal matrix)

=
dq∑

i=1
σi × (0+1) (by independence, mean 0)

=
dq∑

i=1
σi = trace(W).

For a real symmetric positive semi-definite, all its singular values are larger or equal to 0. Thus,

we know
∑dq

i=1σi > 0 considering W is not a matrix of all zeros. □
Proposition 4 (Expectation of xi

⊤Wx j for i ̸= j)
Let W be a real symmetric positive semi-definite square matrix, and any xi is a high-dimension
random vector, Ei ̸= j

[
xi

⊤Wx j
]= 0.

18

Published as a conference paper at ICLR 2025

Proof. Let W be a real symmetric positive semi-definite. Thus, it can be decomposed into W =
UΣU⊤. In this way, we have

Ei ̸= j
[
xi

⊤Wx j
]= Ei ̸= j

[
xi

⊤UΣU⊤x j
]

= E[
z⊤Σv

]
(let z =U⊤xi , and v =U⊤x j)

= E
[

dq∑
i=1

σi j zi v j

]
(Σ is a diagonal matrix. z and v are independent)

= 0.

□
According to Proposition 3 and Proposition 4, we can have that E

[
xi

⊤Wxi
] > E[

xi
⊤Wx j

]
for

any i ̸= j . Considering that W is usually a high-dimensional matrix and some of its singular val-
ues are significantly larger than 0. Thus, after the softmax operation, A will always collapse to an
identity matrix. In this way, the self-attention module degenerates into a linear projection mod-
ule. The model fitting ability will decline, but model training will not crash. Our proof is based
on matrix computations (Golub & Van Loan, 2013) and high-dimensional probability (Vershynin,
2018).

D PROOF OF MALIGNANT ENTROPY COLLAPSE

Proof. Step 1. To prove the sparsity of A, we must show that the number of non-zero elements
in each column of A is small.

Now, let’s consider the properties of the matrix P = XTWX . Since X and W are low-rank
matrices, the matrix P will also be low-rank. Specifically, the rank of P is bounded by the rank of
X and W , which is much smaller than the dimension. In particular, P has only a small number
of significant singular values. This implies that the entries in P are concentrated in a lower-
dimensional subspace.

When we apply the softmax function to the rows of P , the function concentrates most of the
probability mass on a few components of each column. This is because the softmax function is
sharply peaked around the largest values in each row. The smaller values in each row contribute
less to the sum in the denominator of the softmax function, and therefore, their corresponding
entries in A will be small.

Thus, in each column of A, only a small number of entries will be non-zero with high probability,
and the rest will be close to zero. This establishes the sparsity of A.

Step 2. To prove the low-rankness of A, we turn to proving that A is approximately low-rank.

As noted earlier, the matrix P =XTWX is low-rank. Specifically, the rank of P is bounded by
the ranks of X and W , which are both small. Therefore, P has only a few dominant singular val-
ues. Assume that the softmax function does not significantly change the rank of the matrix. The
rank of A is controlled by the rank of P , as the softmax operation only introduces nonlinearities
that do not increase the rank.

Thus, since P has a small number of dominant singular values, A, formed by the softmax of P ,
will also have a small number of significant singular values. This implies that A is approximately
low-rank.

In conclusion, under the assumptions that X and W are low-rank matrices with sufficiently
large singular values, the matrix A formed by applying the softmax function to P will exhibit the
properties of both sparsity and low-rankness with high probability.

□

19

Published as a conference paper at ICLR 2025

E PROOF OF WEYL’S INEQUALITY ON SINGULAR VALUES

Our derivation depends on Horn & Johnson (1991; 2012). Readers can refer to these material for
more background information.

Proof. Before we prove Weyl’s Inequality on singular values, let us review Courant-Fischer min-
max principle that is important for analyzing the singular values of matrix.

Theorem 3 (Courant-Fischer Min-max Principle for Singular Values)
Let W ∈Rm×n be a matrix where m ≥ n. W has ordered singular values σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0.
Then, for i = 1,2, . . . ,n, we have

σi (W) = max
S⊂Rn

dim(S)=i

min
x∈S∥x∥=1

∥Wx∥ = min
S′⊂Rn

dim(S′)=n−i+1

max
x∈S′
∥x∥=1

∥Wx∥

where the maximum is taken over all i -dimensional subspaces S of Rn , and the minimum is taken
over all unit vectors x in S.

Let W1 = UΣ1V
⊤ and W2 = UΣ2V⊤ be singular value decompositions of W1 and W2 with

unitary matrix V = [v1, . . . ,vn],V = [v1, . . . ,vn] where vi ,vi ∈ Rn and unitary matrix U =
[u1, . . . ,um],U = [u1, . . . ,um], where u j ,u j ∈Rm .

Let i and j be positive integers with 1 ≤ i , j ≤ n and i + j ≤ n +1. Let S1 ≡ Span{vi , . . . ,vn} and
S2 ≡ Span{v j , . . . ,vn}; notice that dim(S1) = n− i +1 and dim(S2) = n− j +1. Let k ≡ dim(S1∩S2),
then we have

dim(S1 ∩S2) = dim(S1)+dim(S2)−dim(S1 +S2) = (n − i +1)+ (n − j +1)−dim(S1 +S2)

≥ (n − i +1)+ (n − j +1)−n = n − (i + j −1)+1 ≥ 1.

Because of the bounds assumed for i and j . Thus, the subspace S1 ∩S2 has positive dimension
k, n −k +1 ≤ i + j −1, and we have

σi+ j−1(W1 +W2) ≤σn−k+1(W1 +W2)

= min
S⊂Rn

dim(S)=k

max
x∈S∥x∥2=1

∥(W1 +W2)x∥2

≤ max
x∈S1∩S2∥x∥2=1

∥(W1 +W2)x∥2

≤ max
x∈S1∩S2∥x∥2=1

∥W1x∥2 + max
x∈S1∩S2∥x∥2=1

∥W2x∥2

≤ max
x∈S1∥x∥2=1

∥W1x∥2 + max
x∈S2∥x∥2=1

∥W2x∥2 =σi (W1)+σ j (W2).

As a special case, the second part of the theorem follows directly from the general result of part
(a). Specifically, for i = j = 1, we have:

σ1(W1 +W2) ≤σ1(W1)+σ1(W2).

This completes the proof. □

20

Published as a conference paper at ICLR 2025

F RELATED WORKS

Training Dynamics of Transformer. Previous works have delved into understanding the training
dynamics of Transformers from two different perspectives: a high-level perspective and a low-
level perspective. From a high-level perspective, Scan&Snap (Tian et al., 2023a) unveiled com-
plex phenomena, particularly in single-layer architectures, relating to frequency and discrimi-
native bias. These studies linked sparse attention patterns to token co-occurrence frequencies
and observed two-stage behaviors in attention logits. JoMA (Tian et al., 2023b) further improved
upon previous models by incorporating residual connections and MLP nonlinearity, analyzing
joint training of MLP and self-attention layers, and offering qualitative explanations for multi-
layer Transformer dynamics. From a low-level perspective, two critical challenges in Transformer
training have been identified: rank collapse (Dong et al., 2021; Noci et al., 2022), where attention
output converges to a rank 1 matrix, potentially causing vanishing gradients; and entropy col-
lapse (Zhai et al., 2023), which denotes pathologically low attention entropy, corresponding to
highly concentrated attention scores. In this work, we analyze and prove two different entropy
collapse modes and identify the key reason for model failure is spectral energy concentration. Fi-
nally, we introduce a simple but effective solution to address this problem.

Training Stability of Transformer. ReZero (Bachlechner et al., 2021) introduces a simple yet ef-
fective mechanism for improving training stability. The key innovation lies in initializing residual
connections to zero, which allows networks to learn identity mappings more easily. Admin (Liu
et al., 2020) introduces a new network initialization strategy tailored for Transformers to make
the network train stable. DeepNorm (Wang et al., 2022) extends the concept of normalization to
accommodate increasingly deeper networks. By dynamically adjusting normalization parame-
ters, DeepNorm ensures stability even as network depth increases. LipsFormer Qi et al. (2023a)
addresses the specific challenge of stability in transformer networks. By introducing a Lipschitz
continuity constraint, Lipsformer effectively mitigates the issue of exploding gradients - a com-
mon problem in deep transformer architectures. This approach ensures that the network’s out-
put changes smoothly with respect to its input, promoting overall stability. ReZero, Admin, and
DeepNorm can all be considered as an approach to control the Lipschitz constant of the net-
work in the initial stage. In this work, by revisiting the training dynamics of Transformer, we can
achieve a stable training only by modifying the optimizer instead of using learning rate warmup or
changing the network structures as LipsFormer (Qi et al., 2023a) and QKNorm Henry et al. (2020);
Dehghani et al. (2023).

Learning Rate Schedule. Warmup (Loshchilov & Hutter, 2016) has emerged as a must-have tech-
nique for ensuring a stable network training, especially in the initial phases of the optimization
process. This method involves gradually increasing the learning rate from a small value to the
desired initial learning rate over a certain number of training steps or epochs. The cosine learn-
ing rate scheduler (Loshchilov & Hutter, 2016) has gained popularity due to its smooth annealing
properties. This schedule decreases the learning rate following a cosine curve, starting from an
initial value and decaying to a minimum value over a set number of epochs or iterations. Cyclic
learning rates (Smith, 2017) involve systematically varying the learning rate between boundary
values. The learning rate oscillates between a lower and upper bound, either linearly or follow-
ing other patterns (e.g., triangular, cosine). The above-mentioned learning rate schedules require
specification of a stopping time step T , Defazio et al. (2024) introduces a Schedule-Free approach
that avoids the need for this stopping time by eschewing the use of schedules entirely.

Compared to the up-mentioned works, the core novel contributions of our work lie on follows.

1. We present a theoretical analysis for Transformer training and point out two entropy collapse
modes, i.e.the benign collapse and the malignant collapse.

2. We reveal that spectral energy concentration (SEC) of Wq
⊤Wk is the main reason of model

crash.

3. We introduce AdamW2, a new optimization strategy motivated by Weyl’s Inequality.

We also observe there are two works (Kosson et al., 2023; 2024) discussing the needs of learning
rate warmup by explicitly controlling the angular updates via Rotational Optimizer Variants and
by limiting the Frobenius norm of the update relative to that of the weights. They provided some
different perspectives on the necessity of the learning rate warmup.

21

Published as a conference paper at ICLR 2025

G SIMULATION OF THREE ATTENTION MODES

We provide a simple simulation code to simulate three attention modes, but it is important to
note that the real picture is more complicated. In real case, in the benign attention entropy mode,
Wq

⊤W is a non-symmetric positive quasi-definite square matrix instead of a symmetric positive
definite matrix in our simulation. The code is just to demonstrate the core ideas behind three
attention modes.

CODE 1: Simulation of Three Attention Modes.

1 import torch
2 import torch.nn
3 import matplotlib.pyplot as plt
4 import numpy as np
5

6

7 #Randomly generate data and weight matrices
8 d_q, d, num_tokens= 64, 768, 197
9 Wq = torch.randn(d_q, d)

10 Wk = torch.randn(d_q, d)
11 X = torch.randn(d, num_tokens)
12 W = torch.mm(Wq.T, Wk)
13

14

15 # Normal attention mode
16 W1 = W
17 P = torch.mm(torch.mm(X.T, W1), X)
18 attn_map1 = P.softmax(dim=1)
19

20

21 # Malignant attention entropy collapse mode
22 u,s,v = torch.svd(W)
23 s[0:3] = torch.tensor([3., 2., 1.])*s[0:3]
24 s[3:] = 0.0
25 W2 = torch.mm(torch.mm(u, torch.diag(s)), v.T)
26 P = torch.mm(torch.mm(X.T, W2), X)
27 attn_map2 = P.softmax(dim=1)
28

29

30 # Benign attention entropy collapse mode
31 u,s,v = torch.svd(W)
32 W3 = torch.mm(torch.mm(u, torch.diag(s)), u.T)
33 P = torch.mm(torch.mm(X.T, W3), X)
34 attn_map3 = P.softmax(dim=1)
35

36

37 # Plot figures
38 fig, axs = plt.subplots(1, 3, figsize=(15, 5))
39 axs[0].imshow(attn_map1.detach().numpy())
40 axs[1].imshow(attn_map2.detach().numpy())
41 axs[2].imshow(attn_map3.detach().numpy())
42 plt.show()

22

Published as a conference paper at ICLR 2025

H ATTENTION MAP VISUALIZATION OF GPT

Figure 7 visualizes the dynamic process of attention map as the number of training steps in-
creases for a successful and unsuccessful GPT-Small model. It should be noted that the GPT
model uses a lower triangular attention mask.

(a) Block 11 (successful). (b) Block 11 (unsuccessful).

FIGURE 7: Visualization of the dynamic process of attention map as the number of training steps
increases for a successful and unsuccessful GPT-Small model. Attention map gradually becomes
sparse and low-rank along with the training process in a failure case. Please click the images to
play the flash. Best viewed with Acrobat Reader.

In Figure 7, the attention values in a successful case distribute to different position, but the at-
tention values in a unsuccessful case will only concentrate into several directions.

I MORE TRAINING DYNAMICS OF VIT AND GPT

Figure 8 visualizes a successful ViT training process. Compared with Figure 1, we find several
significant differences as follows.

• In a successful ViT training process, the value of σ1(Wq
⊤Wk) increases to 16,000, then starts

to oscillate smoothly. But for an unsuccessful training, the value suddenly increases to a very
large value, around 300,000, it triggers the model crash,

• The γ1 and β1 in a successful ViT training process are very smooth, but they change a lot in an
unsuccessful case,

• The fast increase of σ1(Wq
⊤Wk) is accompanied by a fast increase of Wq and Wk .

We can observe similar phenomenon in Figure 9 and Figure 15. In a successful GPT training
process, the value of σ1(Wq

⊤Wk) increases to 60, then starts to oscillate smoothly. But for an
unsuccessful GPT training, the value increases to 20,000. The difference between the sclae of
value between GPT and ViT may be due to the density and sparsity of the supervision signal. In
GPT, each token will contribute a gradient, but in ViT, only one class label in an image provides a
supervision information.

23

Published as a conference paper at ICLR 2025

0k 50k 100k 150k 200k
Step

5

10

15

20

25

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(a) ∥γ1∥2

0k 50k 100k 150k 200k
Step

0

1

2

3

4

V
a
lu

e

|| 1||2 of block 0
|| 1||2 of block 2
|| 1||2 of block 4
|| 1||2 of block 6
|| 1||2 of block 8
|| 1||2 of block 10
|| 1||2 of block 11

(b) ∥β1∥2

0k 50k 100k 150k 200k
Step

0

25

50

75

100

125

150

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(c) σ1
(
Wq

)

0k 50k 100k 150k 200k
Step

0

20

40

60

80

100

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(d) σ1
(
Wk

)
0k 50k 100k 150k 200k

Step

0

2000

4000

6000

8000

10000

12000

14000

16000

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(e) σ1
(
Wq

⊤Wk
) 0k 50k 100k 150k 200k

Step

2.5

5.0

7.5

10.0

12.5

15.0

17.5

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(f) σ1 (Wv)

0k 50k 100k 150k 200k
Step

0

10

20

30

40

50

60

70

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(g) σ1 (Wo)

0k 50k 100k 150k 200k
Step

15

20

25

30

35

40

45

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(h) ∥γ2∥2

0k 50k 100k 150k 200k
Step

0.0

0.5

1.0

1.5

2.0

2.5

V
a
lu

e

|| 2||2 of block 0
|| 2||2 of block 2
|| 2||2 of block 4
|| 2||2 of block 6
|| 2||2 of block 8
|| 2||2 of block 10
|| 2||2 of block 11

(i) ∥β2∥2

0k 50k 100k 150k 200k
Step

0

20

40

60

80

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(j) σ1 (W1)

0k 50k 100k 150k 200k
Step

0

20

40

60

80

100

120

140

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(k) σ1 (W2)

0k 50k 100k 150k 200k
Step

0

1000

2000

3000

4000

5000

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(l) σ1 (W2W1)

0k 50k 100k 150k 200k
Step

0

200

400

600

800

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(m) σ1 (WoWv)

0k 50k 100k 150k 200k
Step

2.0

2.5

3.0

3.5

4.0

4.5

V
a
lu

e
 (

lo
g
)

||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(n) ∥x∥2

0k 50k 100k 150k 200k
Step

4.0

3.5

3.0

2.5

2.0

1.5

V
a
lu

e
 (

lo
g
)

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(o) ∥ ∂L
∂x∥2

FIGURE 8: Training dynamics of a successful ViT training.

24

Published as a conference paper at ICLR 2025

0k 10k 20k 30k 40k 50k
Step

5

10

15

20

25

30

V
a
lu

e
(1 2) of block 0
(1 2) of block 2
(1 2) of block 4
(1 2) of block 6
(1 2) of block 8
(1 2) of block 10
(1 2) of block 11

(a) ∥γ1∥2

0k 10k 20k 30k 40k 50k
Step

1

2

3

4

5

6

7

8

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(b) σ1
(
Wq

) 0k 10k 20k 30k 40k 50k
Step

2

4

6

8

10

12

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(c) σ1
(
Wk

)

0k 10k 20k 30k 40k 50k
Step

0

10

20

30

40

50

60

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(d) σ1
(
Wq

⊤Wk
) 0k 10k 20k 30k 40k 50k

Step

1

2

3

4

5

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(e) σ1 (Wv)

0k 10k 20k 30k 40k 50k
Step

0

2

4

6

8

10

12

14

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(f) σ1 (Wo)

0k 10k 20k 30k 40k 50k
Step

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

V
a
lu

e

(2 2) of block 0
(2 2) of block 2
(2 2) of block 4
(2 2) of block 6
(2 2) of block 8
(2 2) of block 10
(2 2) of block 11

(g) ∥γ2∥2

0k 10k 20k 30k 40k 50k
Step

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(h) σ1 (W1)

0k 10k 20k 30k 40k 50k
Step

0

2

4

6

8

10

12

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(i) σ1 (W2)

0k 10k 20k 30k 40k 50k
Step

0

20

40

60

80

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(j) σ1 (W2W1)

0k 10k 20k 30k 40k 50k
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(k) σ1 (WoWv)

0k 10k 20k 30k 40k 50k
Step

0

1000

2000

3000

4000

V
a
lu

e

||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(l) ∥x∥2

0k 10k 20k 30k 40k 50k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(m) ∥ ∂L
∂x∥2

FIGURE 9: Training dynamics of a successful GPT training.

25

Published as a conference paper at ICLR 2025

0k 10k 20k 30k 40k 50k
Step

0

50

100

150

200

V
a
lu

e

(W1) of block 0
(W1) of block 2
(W1) of block 4
(W1) of block 6
(W1) of block 8
(W1) of block 10
(W1) of block 11

(a) ∥γ1∥2

0k 10k 20k 30k 40k 50k
Step

0

20

40

60

80

100

120

V
a
lu

e

(Wq) of block 0
(Wq) of block 2
(Wq) of block 4
(Wq) of block 6
(Wq) of block 8
(Wq) of block 10
(Wq) of block 11

(b) σ1
(
Wq

) 0k 10k 20k 30k 40k 50k
Step

0

50

100

150

200

250

V
a
lu

e

(Wk) of block 0
(Wk) of block 2
(Wk) of block 4
(Wk) of block 6
(Wk) of block 8
(Wk) of block 10
(Wk) of block 11

(c) σ1
(
Wk

)

0k 10k 20k 30k 40k 50k
Step

0

5000

10000

15000

20000

V
a
lu

e

(Wq Wk) of block 0
(Wq Wk) of block 2
(Wq Wk) of block 4
(Wq Wk) of block 6
(Wq Wk) of block 8
(Wq Wk) of block 10
(Wq Wk) of block 11

(d) σ1
(
Wq

⊤Wk
) 0k 10k 20k 30k 40k 50k

Step

0

10

20

30

40

50

V
a
lu

e

(Wv) of block 0
(Wv) of block 2
(Wv) of block 4
(Wv) of block 6
(Wv) of block 8
(Wv) of block 10
(Wv) of block 11

(e) σ1 (Wv)

0k 10k 20k 30k 40k 50k
Step

0

20

40

60

80

100

120

140

V
a
lu

e

(Wo) of block 0
(Wo) of block 2
(Wo) of block 4
(Wo) of block 6
(Wo) of block 8
(Wo) of block 10
(Wo) of block 11

(f) σ1 (Wo)

0k 10k 20k 30k 40k 50k
Step

0

50

100

150

200

V
a
lu

e

(W2) of block 0
(W2) of block 2
(W2) of block 4
(W2) of block 6
(W2) of block 8
(W2) of block 10
(W2) of block 11

(g) ∥γ2∥2

0k 10k 20k 30k 40k 50k
Step

0

5

10

15

20

25

V
a
lu

e

(1 2) of block 0
(1 2) of block 2
(1 2) of block 4
(1 2) of block 6
(1 2) of block 8
(1 2) of block 10
(1 2) of block 11

(h) σ1 (W1)

0k 10k 20k 30k 40k 50k
Step

15

20

25

30

35

V
a
lu

e

(2 2) of block 0
(2 2) of block 2
(2 2) of block 4
(2 2) of block 6
(2 2) of block 8
(2 2) of block 10
(2 2) of block 11

(i) σ1 (W2)

0k 10k 20k 30k 40k 50k
Step

0

2000

4000

6000

8000

10000

12000

14000

V
a
lu

e

(W2W1) of block 0
(W2W1) of block 2
(W2W1) of block 4
(W2W1) of block 6
(W2W1) of block 8
(W2W1) of block 10
(W2W1) of block 11

(j) σ1 (W2W1)

0k 10k 20k 30k 40k 50k
Step

0

500

1000

1500

2000

2500

3000

V
a
lu

e

(WoWv) of block 0
(WoWv) of block 2
(WoWv) of block 4
(WoWv) of block 6
(WoWv) of block 8
(WoWv) of block 10
(WoWv) of block 11

(k) σ1 (WoWv)

0k 10k 20k 30k 40k 50k
Step

0

1

2

3

4

5

6

7

V
a
lu

e

1e7
||x||2 of block 0
||x||2 of block 2
||x||2 of block 4
||x||2 of block 6
||x||2 of block 8
||x||2 of block 10
||x||2 of block 11

(l) ∥x∥2

0k 10k 20k 30k 40k 50k
Step

10 4

10 2

100

102

104

V
a
lu

e

|| L
x ||2 of block 0

|| L
x ||2 of block 2

|| L
x ||2 of block 4

|| L
x ||2 of block 6

|| L
x ||2 of block 8

|| L
x ||2 of block 10

|| L
x ||2 of block 11

(m) ∥ ∂L
∂x∥2

FIGURE 10: Training dynamics of an unsuccessful GPT training.

26

Published as a conference paper at ICLR 2025

J EXPERIMENT OF 1B VIT

To further evaluate the effectiveness of our method at a larger scale, we assessed ViT-g with 1B
parameters. The ViT-g model architecture consists of 40 layers with a hidden dimension of 1408,
16 attention heads, and an MLP dimension of 6144. The total parameter count is 1011M, around
one billion parameters. We conducted a comparative study between ViT-g with AdamW2 and
ViT-g with AdamW, where ViT-g with AdamW was evaluated under two settings: with and without
learning rate warmup. Our AdamW2 does not use warmup. The comparison results are presented
in Figure 11 and Figure 12.

Figure 11 shows that ViT-g with AdamW crashes after only a few training steps when running
without warmup. While the use of warmup enables ViT-g to complete training, but the loss spikes
one time. Our ViT-g with AdamW2 not only achieves stable training without warmup but also
demonstrates better performance.

0 20 40 60 80 100 120 140 160
Epoch

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Validation Loss
ViT-g
ViT-g wo warmup
ViT-g AdamW2

FIGURE 11: Comparison of loss curve of AdamW2 and AdamW on ViT-g model.

0 20 40 60 80 100 120 140 160
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

ViT-g
ViT-g wo warmup
ViT-g AdamW2

FIGURE 12: Comparison of accuracy of AdamW2 and AdamW on ViT-g model.

27

Published as a conference paper at ICLR 2025

K EXPERIMENT OF 774M NANOGPT

We also evaluated the effectiveness of our method on a larger-scale language model, termed as
nanoGPT-large. The model architecture consists of 36 layers with a hidden dimension of 1280
and 20 attention heads. The total parameter count is 774M. Our experimental setup strictly fol-
lows the nanoGPT configuration, including all learning rate settings. It is important to note that
training nanoGPT-large is computationally intensive, requiring two weeks to train 600K steps on
16 A800 GPUs. To reduce the training time, we limited our training to 100K steps instead of the
full 600K steps. The comparison results are presented in Figure 13. We can see from Figure 13,
nanoGPT-large achieves a stable training without warmup and obtains a similar validation loss
with its counterpart, GPT2-large. This further verifies our understanding to the model crash of
Transformer.

0k 20k 40k 60k 80k 100k
Step

2.50

2.60

2.70

2.80

2.90

3.00

Va
l L

os
s

OpenWebText Val Loss
GPT2-L
GPT2-L AdamW2

FIGURE 13: Comparison of validation loss of AdamW2 and AdamW on nanoGPT-large model.

L EXPERIMENT OF FLATTEN-SWIN

Besides ViT, GPT, and Swin-Transformer, we further validated our approach on Flatten-
Transformer Han et al. (2023). We used Flatten-Swin, and we compared the performance of our
method and the baseline method training 150 and 300 epochs. Our method could stably train
and demonstrate performance comparable to the baseline. This further verified the correctness
of our understanding of neural network stability.

28

Published as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

Flatten-Swim (300epochs)
Flatten-Swim AdamW2 (300epochs)
Flatten-Swim (150epochs)
Flatten-Swim AdamW2 (150epochs)

FIGURE 14: Evaluation of Flatten-Swin.

29

Published as a conference paper at ICLR 2025

M ACTUAL LEARNING RATE CURVE ALONG WITH TRAINING STEPS

We recorded the actual learning rate throughout the training steps, we sample one point every 50
steps. Our initial setting of the learning rate is a cosine learning rate scheduler without warmup.

If αt
σ1(∇Wt)
σ1(Wt−1) > τ, then αt will be truncated to τσ1(Wt−1)

σ1(∇Wt) . From the figure, we observe that γ1 and
γ2 in RMSNorm only exceed the preset τ during the initial training phase and rarely exceed it
afterwards. For other curves, they somewhat look like a curve with learning rate warmup, but we
can see that different blocks have different learning rates.

We also observe that shallower layers are more likely to violate the preset τ value. It means the
shallower layers are more likely to lead to a greater update of weight matrix and typically require
a smaller learning rate. Additionally, we notice that for the weight matrix W2, it is more prone to
exceeding the preset τ value compared to the weight matrix W1.

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(1) of block 0
lr(1) of block 2
lr(1) of block 4
lr(1) of block 6
lr(1) of block 8
lr(1) of block 10
lr(1) of block 11
default lr

(a) learning rate αt of γ1

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(Wqkv) of block 0
lr(Wqkv) of block 2
lr(Wqkv) of block 4
lr(Wqkv) of block 6
lr(Wqkv) of block 8
lr(Wqkv) of block 10
lr(Wqkv) of block 11
default lr

(b) learning rate αt of Wq , Wk and Wv

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(Wo) of block 0
lr(Wo) of block 2
lr(Wo) of block 4
lr(Wo) of block 6
lr(Wo) of block 8
lr(Wo) of block 10
lr(Wo) of block 11
default lr

(c) learning rate αt of Wo

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(2) of block 0
lr(2) of block 2
lr(2) of block 4
lr(2) of block 6
lr(2) of block 8
lr(2) of block 10
lr(2) of block 11
default lr

(d) learning rate αt of γ2

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(W1) of block 0
lr(W1) of block 2
lr(W1) of block 4
lr(W1) of block 6
lr(W1) of block 8
lr(W1) of block 10
lr(W1) of block 11
default lr

(e) learning rate αt of W1

0k 50k 100k 150k 200k
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
a
lu

e

lr(W2) of block 0
lr(W2) of block 2
lr(W2) of block 4
lr(W2) of block 6
lr(W2) of block 8
lr(W2) of block 10
lr(W2) of block 11
default lr

(f) learning rate αt of W2

FIGURE 15: Actual Learning Rate Curve along with Training steps.

30

Published as a conference paper at ICLR 2025

N TRAINING CONFIGURATIONS

Training Configurations. We list the training configurations of ViT, GPT, Swin-Transformer and
Flatten-Swin in Table 2. For ViT, GPT, Swin-Transformer and Flatten-Swin, we do not use learning
rate warmup. For GPT, we follow the experimental configurations of nanoGPT (Karpathy, 2022),
all parameters are same as GPT2 (Radford et al., 2019). For ViT, we use Timm (Wightman, 2019).
For Swin-Transformer, we use the original code provided by Liu et al. (2021). For Flatten-Swin,
we use the original code provided by (Han et al., 2023).

TABLE 2: Training configurations for ViT, GPT and Swin-Transformer.

(a) Training configurations for ViT.

training config ViT-B/L/g (2242)
optimizer AdamW2

τ (In default) 0.004 or 0.003
warmup epochs 0
weight init Truncated Xavier
base learning rate 1e-3
weight decay 0.05/0.1
optimizer momentum β1,β2 = 0.9,0.99
batch size 1024
training epochs 150
learning rate schedule cosine decay
randaugment (9,0.5)
mixup 0.8
cutmix 1.0
random erasing 0
label smoothing 0.1
stochastic depth 0.1/0.5
gradient clip None
exp. mov. avg. (EMA) no

(b) Training configurations for GPT.

training config GPT-S/L
optimizer AdamW2

τ 0.01
warmup epochs 0
weight init Xavier
baseline learning rate 0.0006 or 0.00025
weight decay 0.1
optimizer momentum β1,β2 = 0.9,0.95
tokens seen each update 500,000
max iters 600K or 100K
batch size 480
sequence length 1024
dropout 0.0
bfloat16 True
gradient clipping 1.0

(c) Training configurations for Swin-Transformer.

training config Swin S/B (2242)
optimizer AdamW2

τ (In default) 0.004
warmup epochs 0
training epochs 300
others same as Liu et al. (2021)

(d) Training configurations for Flatten-Swin.

training config Flatten-Swin S (2242)
optimizer AdamW2

τ (In default) 0.004
warmup epochs 0
training epochs 150 or 300
others same as Han et al. (2023)

O NON-SYMMETRIC POSITIVE QUASI-DEFINITE SQUARE MATRIX

When we mention a non-symmetric positive quasi-definite square matrix, we mean it has the
following three properties,

1. W⊤
q Wk is not symmetric because generally, W⊤

q Wk ̸=W⊤
k Wq ,

2. W⊤
q Wk is a square matrix and most of its eigenvalues are larger than 0, and only very few are

less than 0.0. So we call it positive quasi-definite matrix.

3. if we assume W =W⊤
q Wk is positive definite matrix, if for each element in x is sampled from

a standard Gaussian distribution, we can prove

E
[
xi

⊤Wxi
]≫ E

[
xi

⊤Wx j
]

when i ̸= j , see Appendix C for the proof.

31

Published as a conference paper at ICLR 2025

P DISCUSSION ABOUT RANK COLLAPSE, ENTROPY COLLAPSE AND SPARSE YET

LOW-RANK ENTROPY MATRIX

Before we start our discussion, let us see three matrices,

A=


1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

, B =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, C =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


We can see that A is low-rank, B is sparse but not low-rank, C is sparse and low-rank.

In previous papers (Dong et al., 2021; Zhai et al., 2023), researchers have analyzed the problem
of model crash via rank collapse of activations and entropy collapse of attention map. Dong et
al. (Dong et al., 2021) attributes the model crash into rank collapse of the activations, but Zhai
et al. (2023) think it is the entropy collapse of the attention map leading to the model crash.

However, based on our analysis, we can find a counterexamples for entropy collapse, and mean-
while the rank collapse of the activation cannot fully describe the inner reason of the model
crash (the weight matrix instead of activations). When the state of C usually happens, the model
crashed,

• Rank collapse of the activations cannot reveal the underlying cause that exists in the weight
matrix. Weight matrix is the inner key ingredient of the model instead of activations.

• B is a counterexample of entropy collapse. we observe that in some successful cases, state B
occurs. According to the definition of entropy collapse, state B should lead to model crash;
however, our experiments show that the model remains stable in this state.

• Sparse yet low-rank attention matrix is the state of the attention map when a model crashs. We
believe rank collapse of activations and entropy collapse of attention map are not enough to
describe the state of the model crash precisely. According to our analysis, the Spectral Energy
Concentration (SEC) of the W⊤

q Wk is the inner reason the model crash, and the sparse yet
low-rank attention matrix is the phenomena observed on the attention matrix.

In summary, our paper, via a rigid theoritical analysis, our paper reveals the Spectral Energy Con-
centration (SEC) of the W⊤

q Wk is the inner reason the model crash, and the sparse yet low-rank
attention matrix is the phenomena that is observed on the attention matrix.

Q ILLUSTRATION OF FIGURE 5

Illustration of Arrow 1.

According to the property of Kronecker Product, we have

rank(X ⊗X) = rank(X) · rank(X).

Since X is low-rank, then X⊗X is also low-rank. In the following, we will also prove the singular
values of X ⊗X will also strengthen the concertration of spectral energy into some directions
with large singular values.

Illustration of Arrow 2.

32

Published as a conference paper at ICLR 2025

According to the computation of Jacobian matrix, we have

∂vec(P)

∂vec(Wq
⊤Wk)

=X⊤⊗X⊤

where P =X⊤W⊤
q WkX

⊤.

Illustration of Arrow 3.

Let X ∈Rm×n be a matrix with rank r ≤ min(m,n). Denote the singular values of X as σ1 ≥σ2 ≥
·· · ≥σr > 0 and σr+1 = ·· · =σmin(m,n) = 0.

Definition. (Singular Values of Kronecker Product)** For a matrix X , defineΛ(X) as the set of all
possible products of its singular values, i.e.,Λ(X) = {σiσ j : 1 ≤ i , j ≤ r }.

Theorem (Singular Values of Kronecker Product) For a low-rank matrix X ∈ Rm×n with rank r ,
the singular values of X ⊗X are precisely the elements in Λ(X). More formally, let {µk } be the
set of singular values of X ⊗X . Then {µk } = {σiσ j where1 ≤ i , j ≤ r }.

Proof. Consider the singular value decomposition (SVD) of X =UΣV T , where U ∈ Rm×m is an
orthogonal matrix, V ∈ Rn×n is an orthogonal matrix, and Σ= diag(σ1, . . . ,σr ,0, . . . ,0). Then, the
Kronecker product X ⊗X can be expanded as: X ⊗X = (UΣV T)⊗ (UΣV T) = (U ⊗U)(Σ⊗
Σ)(V T ⊗V T). The singular values of U ⊗U and V T ⊗V T are all 1, as they are composed of
orthogonal matrices.

Therefore, the singular values of X ⊗X are precisely the elements of Σ⊗Σ, which are exactly
{σiσ j : 1 ≤ i , j ≤ r }.

In summary, the Singular Values of Kronecker Product X⊗X will also strengthen the concertra-
tion of spectral energy into some directions with large singular values. In this way, the singular
values of ∂vec(P)

∂vec(Wq
⊤Wk)

will also concentrate to a few directions.

When we update W⊤
q Wk according to the following equation:

vec(W⊤
q Wk)new = vec(W⊤

q Wk)ol d −α ∂L
∂vec(P)

∂vec(P)

∂vec(Wq
⊤Wk)

where L is the loss function, and α is the step size. Since the singular values of ∂vec(P)
∂vec(Wq

⊤Wk)
will

also concentrate to a few directions, the update will lead to the singular values of W⊤
q Wk tends

to concentrate.

Illustration of Arrow 4.

Our Theorem 1 in the paper is to demonstrate that the spectral energy concentration of W⊤
q Wk

and the associated dominant large singular values will lead to A to be a sparse yet low-rank ma-
trix.

Illustration of Arrow 5.

Since X l+1 =V A, where V is the value matrix after projection in attention module and A is the
attention matrix, according to linear algebra, we have,

rank(X l+1) < min{rank(V), rank(A)}.

Thus, we have that X l+1 is also a low-rank matrix.

33

	Introduction
	Preliminaries
	Taming Transformer Requires to Revisit the Training Dynamics
	Visualization: What happens when a Transformer training fails or succeeds
	Theoretical Analysis: Matrix Calculus of Transformer
	Rationale in Model Crash: Spectral Energy Concentration
	Our Solution: Taming Transformer via Weyl's Inequality

	Experiments
	Conclusion
	Kronecker Product and Vectorization
	Derivation of Jacobian Matrix for Single-head Self-Attention
	Proof of Benign Entropy Collapse
	Proof of Malignant Entropy Collapse
	Proof of Weyl’s Inequality on Singular Values
	Related Works
	Simulation of Three Attention Modes
	Attention Map Visualization of GPT
	More Training Dynamics of ViT and GPT
	Experiment of 1B ViT
	Experiment of 774M nanoGPT
	Experiment of Flatten-Swin
	Actual Learning Rate Curve along with Training steps
	Training Configurations
	non-symmetric positive quasi-definite square matrix
	Discussion about Rank collapse, Entropy collapse and Sparse yet low-rank entropy matrix
	Illustration of Figure 5

	anm7:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

