
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

DySarl: Dynamic Structure-Aware Representation Learning for
Multimodal Knowledge Graph Reasoning

Anonymous Author(s)
ABSTRACT
Multimodal knowledge graph (MKG) reasoning has attracted sig-
nificant attention since impressive performance has been achieved
by adding multimodal auxiliary information (i.e., texts and images)
to the entities of traditional KGs. However, existing studies heav-
ily rely on path-based methods for learning structural modality,
failing to capture the complex structural interactions among mul-
timodal entities beyond the reasoning path. In addition, existing
studies have largely ignored the dynamic impact of different mul-
timodal features on different decision facts for reasoning, which
utilize asymmetric coattention to independently learn the static
interplay between different modalities without dynamically join-
ing the reasoning process. We propose a novelDynamic Structure-
aware representation learning method, namely DySarl, to over-
come this problem and significantly improve the MKG reasoning
performance. Specifically, we devise a dual-space multihop struc-
tural learning module in DySarl, aggregating the multihop struc-
tural features of multimodal entities via a novel message-passing
mechanism. It integrates the message paradigms in Euclidean and
hyperbolic spaces, effectively preserving the neighborhood infor-
mation beyond the limited multimodal query paths. Furthermore,
DySarl has an interactive symmetric attention module to explic-
itly learn the dynamic impacts of unimodal attention senders and
multimodal attention targets on decision facts through a newly
designed symmetric attention component and fact-specific gated
attention unit, equipping DySarl with the dynamic associations
between the multimodal feature learning and later reasoning. Ex-
tensive experiments show that DySarl achieves significantly im-
proved reasoning performance on two public MKG datasets com-
pared with that of the state-of-the-art baselines. Source codes are
available at https://anonymous.4open.science/r/DySarl.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
Multimodal knowledge graph, graph convolutional network, cross-
modal fusion
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1 INTRODUCTION
Reasoning overmultimodal knowledge graphs (MKGs) has attracted
significant attention due to its greater conformity to real-world
complex scenarios, such as multimodal retrieval and social media
analysis. An MKG is essentially a multirelational graph composed
of multimodal nodes (entities). It contains not only the structural
triples (subject , relation, object ) of traditional KGs but also rich
multimodal auxiliary information (e.g., texts and images).

Two fundamental issues need to be well addressed to perform
good MKG reasoning. 1) At the graph level, how can the complex
structural features among multimodal entities (also known as the
structural modality) be effectively learned? 2) At the entity level,
how can the auxiliary features of different modalities be efficiently
fused?We argue that existing studies fail to properly learn the very
complex graph-level structural modality (i.e., multimodalmultihop
structures) and entity-level cross-modal attentive dynamics, hin-
dering performance improvements in MKG reasoning.

To effectively learn the structural modality, early methods [4,
21, 32] merely focus on limited one-hop information. Recently, a
series of multihop path learning methods [30, 39, 40] have been
applied to MKGs and achieved state-of-the-art reasoning perfor-
mance. However, these methods fail to capture complex structural
interactions beyond query paths with a very limited number of
hops. As shown in Figure 1(a), in an MKG consisting of multi-
modal entities, the query decision fact is denoted as (Joe Biden,
Live At , ?), and “White House” is the ground-truth answer. Then,
the traditional multihop path learning approaches merely focus

on the orange path “Joe Biden President←− USA
Capital
−→ Washinдton

LocatedIn←− White House” to perform reasoning. Nevertheless, more
structural information outside the query path valuable for factual
reasoning is ignored. Taking the blue relational facts presented
in Figure 1(a) as examples, the structural neighborhoods beyond
multihop paths can provide more useful features for the query
(Joe Biden, Live At , ?), such as its political context (Joe Biden,
MemberO f ,Democratic Party) and abstract concept (White House ,
SubclassO f , Buildinд). There exists multihop structural learning
methods [13, 15, 20, 28] for unimodal multirelational graphs but
they are not able to integrate the complex modalities of entities.

To efficiently fuse entity-levelmultimodal features, early approa-
ches [9] only integrate the coarse-grained information of differ-
ent modalities through vector concatenation. Some works [33, 37]
used conventional self-attention mechanisms [29] for extracting
the fine-grained image features of entities, but these methods ne-
glect the fine-grained attention interactions between variousmodal-
ities. Coattention mechanisms [14, 38, 40] are later proposed to
address this issue and achieved significant performance improve-
ments. However, none of them address the dynamic effects of dif-
ferent modalities on various decision facts when reasoning. As
shown in Figure 1(b), in the cross-modal feature fusion stage, the

https://anonymous.4open.science/r/DySarl
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Capital
LocateIn

President

LiveAt

MemberOf

SubclassOf

Building Washington USA

Text Image Text Image Text Image

Text Image

Text

Image

White House
Democratic 

Party

Joe Biden

Text Image

StructureText Image

Co-attention

Cross-modal Feature Fusion Stage

LiveAt

Text
Joe Biden 
is born in 
November 
20, 1942). 
He ……

Image

Joe Biden

Reasoning Stage

(a) Illustration of multimodal multihop structures

(b) Illustration of cross-modal attentive dynamics

Fixed

Embs

Figure 1: Illustration of the challenges of multimodal multi-
hop structures and cross-modal attentive dynamics.

previous approaches [4, 40] treat certain modal features (e.g., texts
and images) as attention senders; thus, the attention target learn-
ing process excludes these modalities and focuses on capturing
their effects on the target modal features (e.g., structures). More-
over, in the traditional codec-based architecture, the feature fusion
stage (the encoder part) delivers fixed entity embeddings to the
reasoning stage (the decoder part). As presented in Figure 1(b), the
fixed entity embeddings remain static during the score calculation
process in the reasoning stage, consequently limiting the contri-
butions of the diverse multimodal entity-level features to different
decision facts in the reasoning stage and resulting in poor reason-
ing performance.

Our contributions. To further fill this research gap, we pro-
pose a novel MKG reasoning method, namelyDySarl, which prop-
erly learns the graph-level multimodal multihop structures and
entity-level cross-modal attentive dynamics viaDynamic Structure-
aware representation learning. To properly learn the complexmul-
timodal multihop structure, we propose a Dual-space Multihop
Structural learning (DMS) module. Specifically, as shown in Fig-
ure 2(a), we leverage the multilayer graph neural network (GNN)
architecture and carefully devise a new message-passing mecha-
nism to aggregate the multihop structural features among the mul-
timodal entities in MKGs. Furthermore, it integrates the message
paradigms in the Euclidean space and hyperbolic space to learn the
association-based and hierarchy-based structural features, effec-
tively preserving the complex neighborhood information beyond
the limited multimodal query paths.

To capture the cross-modal attentive dynamics during the entity-
level feature fusion process, we propose an Interactive Symmetric
Attention fusion (ISA) module. As shown in Figure 2(c), a novel
attention mechanism is devised to learn the dynamic influences

Table 1: Summary of the existing MKG reasoning methods.

KGs
Models Types

Single-hop Multihop path Multihop structure

Unimodal KGs
TransE, RotatE

ComplEx, DistMult
ConvTransE, ATTH

DeepPath, MINERVA
FIRE, GaussianPath

RLH, NeuralLP

RGCN, CompGCN
StarE, KBGAT
REGCN, ReTIN

Multimodal KGs
IKRL, TransAE
KR-AMD, MKRL
MTRL, OTKGE

MMKGR DySarl

of different modal entity explicitly features on decision facts, sym-
metrically and uniformly treating all modal information in MKGs
as attention targets for factual inference. Meanwhile, we incor-
porate a carefully designed learnable fact-specific gated attention
unit to establish dynamic associations betweenmultimodal feature
learning and later reasoning, learning dynamic weights to the en-
tity features of different decision facts. Hence, the effects of both
unimodal attention senders and dynamically learned multimodal
attention targets on reasoning can be well captured. This signifi-
cantly enhances the symmetry of the cross-modal feature fusion
process in the ISA module.

Our contributions are summarized as follows.
• We propose a novel framework to address the challenges

of graph-level multimodal multihop structures and entity-
level cross-modal attentive dynamics in MKG reasoning.
• To aggregate themultihop structures among themultimodal

entities, we design a DMS module that incorporates both
associative and hierarchical structural features by passing
dual-space messages through multilayer GNNs.
• To capture the dynamic effects of different modalities on

various decision facts, we design an ISA module to fuse the
cross-modal features in an interactive symmetric manner.
• Exhaustive experiments are conducted on two well-known

MKG datasets. The effectiveness of DySarl in MKG reason-
ing is evident from the improvements achieved over all the
baseline models across all the performance metrics.

The remainder of this paper is structured as follows. Section 2
discusses the related work. Section 3 details the DySarl model. The
experimental analyses are described in Section 4, and the conclu-
sions are presented in Section 5.

2 RELATEDWORK
The existing modeling strategies for reasoning over MKGs can be
divided into two categories: unimodal methods and multimodal
methods. We make a summary about the categories of the exist-
ing MKG reasoning methods in Table 1 according to the ability of
capturing complex multimodal structures.

2.1 Unimodal Reasoning Methods
Unimodal methods only consider the structural information con-
tained inMKGs, excluding the visual and linguisticmodalities. Early
approaches can merely capture single-hop features. Among them,
translation-based models such as TransE [3] and RotatE [24] mini-
mize the relational distances between subjects and objects in valid
factual triples. Tensor factorization-based methods such as Com-
plEx [26] andDistMult [35] establish connections between subjects
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Figure 2: The framework of DySarl. For a multimodal factual query (Joe Biden, LiveAt, ?), the (a) DMS module learns the mul-
tihop structural features among the multimodal entities. The (b) AMI module extracts entity features from the multimodal
auxiliary information. The (c) ISA module fuses all the modal features in an interactive and symmetric manner.

and objects by decomposing the relational matrices. Convolution-
based methods such as ConvE [8] and ConvTransE [22] and hyper-
bolic embedding-based method ATTH [5] achieve advanced per-
formance in single-hop structural learning by modeling the one-
hop associations and hierarchies in the Euclidean and hyperbolic
spaces, respectively.Multihop path learningmethods primarily rely
on reinforcement learning to heuristically generate query-relevant
reasoning paths; these methods include GaussianPath [31], Deep-
Path [34], MINERVA [7], and RLH [30]. Additionally, other mul-
tihop path learning methods, such as the transfer learning-based
FIRE [39] and the rule-based NeuralLP [36], are available. GNN-
based methods have been widely applied to multihop structural
learning in unimodal KGs. Among them, association-based meth-
ods focus on capturing themultihop relational interactions between
center entities with their Euclidean neighborhoods; these methods
include CompGCN [28], RGCN [20], StarE [10], KBGAT [19], and
so on. In contrast, hierarchy-based methods such as ReTIN [13]
focus on perceiving multihop stratified features across neighbor-
hoods through hyperbolic embedding-based GNNs. However, on
the one hand, the existing hierarchy-based and association-based
message-passing paradigms located in different spaces are sepa-
rated and not yet unified, thus making it difficult to learn com-
plete multihop structural features.On the other hand, the afore-
mentioned methods fail to effectively integrate the multimodal in-
formation (e.g., texts and images) that is present in MKGs.

2.2 Multimodal Reasoning Methods
Recently, several MKG reasoning methods adapted for multimodal
scenarios have been proposed. Focusing on the single-hop struc-
tures betweenmultimodal entities inMKGs, someworks utilize tra-
ditional concatenation or self-attention operations to extract entity-
level auxiliary modal features and employ TransE to predict miss-
ing entities; these methods include TransAE [32] and IKRL [33]. In
addition, MKRL [25] and KR-AMD [41] enhance entity represen-
tations using textual descriptions. Furthermore, MTRL [21] com-
prehensively integrates information derived from the structural,
visual, and linguistic modalities, combining these multimodal fea-
tures via the summation of subenergy functions. Optimal transport-
based method OTKGE [4] focuses on aligning the distributions be-
tween low-dimensional vector embeddings of different modalities;
this approach is a kind of coattention method as it emphasizes
the interplay between modalities. However, the use of single-hop
methods (e.g., TransE) to encode structural modalities in MKGs
brings significant limitations to the aforementioned approaches.
Among them, bothMTRL and OTKGE have achieved relative state-
of-the-art performance in single-hopMKG reasoning.MMKGR [40]
is currently the state-of-the-art multihop path learning method for
MKG reasoning; this model utilizes reinforcement learning to gen-
erate query paths for multimodal entities based on destinations,
distances, and diverse rewards and fuses cross-modal features by
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assigning coattention from the auxiliary modalities to the struc-
tural modality. However, on the one hand, the abovementioned
approaches fail to capture complex structural features that lie be-
yond the multihop paths of the multimodal entities. On the other
hand, the cross-modal feature fusion process in the previously de-
veloped methods is insufficient, overlooking the dynamic effects
of different modalities on different reasoning facts. Hence, a uni-
fied framework for dynamically integrating the visual, linguistic,
and multihop structural modalities in MKGs is needed.

3 METHODOLOGY
In this section, we present our proposed DySarl model. We first
introduce the notations and definitions and provide a framework
overview, which is followed by thorough explanations of its three
modules. In addition, we elaborate on the training strategy and
time complexity of DySarl.

3.1 Definitions and Notations
An MKG G = {E,V,T ,R,U} is an extension of a traditional KG
where each entity is augmented with visual and linguistic data in
addition to the structural modality. We define the entity, image,
and text sets as E,V , and T , each of which has a size of N . The re-
lation set is defined as R with a size of R.U = {(s, r ,o)|s,o ∈ E, r ∈
R} indicates a set of structural triples in the MKG G, where s and o
represent the subject and object entities and r denotes the relation
between them. For the entities {s,o} and relation r of a certain fact,
their embeddings in the Euclidean space are represented as s, o,
and r , respectively. The embedding dimensionality is set as d . We
represent the Euclidean space and hyperbolic space as R and B,
respectively. The multimodal entity embedding matrices derived
from the structures, images, and texts are defined as ES , EI , and
ET , respectively. In addition, we define the unimodal initialized en-
tity embedding matrix as EU . Finally, the multimodal unified en-
tity embedding matrix is denoted as E, and the relation embedding
matrix is denoted as R. In general, MKG reasoning aims to predict
a missing subject (?, r ,o) or a missing object (s, r , ?), where r is
a query relation and {s,o} are multimodal entities equipped with
structural, visual, and linguistic data. In practice, we unify these
two tasks as object reasoning by adding inverse-relation factual
triples (o, r−1, s) to G.

3.2 Framework Overview
Figure 2 presents the overview framework of our proposed DySarl
model. It consists of three modules: a dual-space multihop struc-
tural learning (DMS)module, an auxiliarymodal information learn-
ing (AMI) module, and an interactive symmetric attention fusion
(ISA) module. Specifically, the DMS module simultaneously incor-
porates both association-based and hierarchy-based features from
the structural modality via the proposed dual-space message pass-
ing mechanism. A multilayer GNN architecture can learn the mul-
tihop structural information contained in the neighborhoods of
MKGs. The AMI module extracts corresponding visual and linguis-
tic features for each entity in an MKG using pretrained models.
Finally, the ISA module employs symmetric attention to merge all
the obtained multimodal features as attention targets while utiliz-
ing the initialized unimodal features as attention senders, thereby

equally assigning dynamicweights to differentmodal features. Fur-
thermore, the fact-specific gated attention unit dynamically mod-
els the learnable weights of the multimodal unified attention tar-
gets and unimodal attention senders based on different decision
facts during the reasoning stage.

3.3 Dual-Space Multihop Structural Learning
Thismodule is responsible for learning the multihop structural fea-
tures of a given MKG in terms of the associations and hierarchies
observed in both the Euclidean and hyperbolic spaces.

As indicated in Figure 2(a), for each center entity o to be ag-
gregated, we represent its relation-specific neighborhoods as Ero ,
which contain all entities {s} connected to o through relation r .
Then, we employ relational messages [15, 20, 28] to aggregate the
associative features that are directly linked to o in the Euclidean
neighborhoods. This message can be represented as follows:

msgs,re = s+ r (1)
where msgs,re , s, and r ∈ Rd. Inspired by the superiority of hy-
perbolic embedding-based GNN approaches [13, 16] in terms of
modeling multilevel (multihop) stratified data through a message
aggregation process, we propose to design a hyperbolic message
to perceive the hierarchical features contained across the neigh-
borhoods of o. Formally, this message can be formulated in the
following manner:

msgs,rh = logcr(Hr(expcr(s)) ⊕
cr expcr(r)) (2)

where msgs,rh ∈ R
d. expcr(·) and logcr(·) denote the exponential

mapping and logarithmic mapping operations [5], which project a
specific entity embedding (point) from the Euclidean space (R) to
the hyperbolic space (B) and from the hyperbolic space (B) back
to the Euclidean space (R), respectively. cr denotes the learnable
relation-specific curvatures. ⊕cr indicates the Möbius addition op-
eration [27]. Hr(·) aims to capture hierarchies in the hyperbolic
space by learning isometric rotation and reflection operations for
the entities {s} in the neighborhoods of the aggregated entity o:

Hr(sB) = Att(Rot(Θr)sB,Ref(Φr)sB; ar) (3)

where Hr(sB) ∈ Bd. sB = expcr(s) ∈ B
d is the embedding of

entity s in hyperbolic space. Ref(Φr) and Rot(Θr) are hyperbolic
isometries representing reflection and rotation operations [5], re-
spectively, whereΦr andΘr are relation-specific parameters.Att(·)
learns an appropriate combination of hyperbolic reflections and ro-
tations through a learnable attention weight ar.

Then, we design a message attention function to integrate Eu-
clidean and hyperbolic messages. This process is formulated as:

msgs,re_h = f(ωTmsgs,re )msgs,re + f(ωTmsgs,rh )msgs,rh (4)

where msgs,re_h ∈ R
d is the obtained dual-space message. ω is an

attention vector, as presented in Figure 2(a). f(·) is the Softmax ac-
tivation function. Then, we employ a multilayer GNN framework
to aggregate both the multihop associative and hierarchical struc-
tural features among the multimodal entities of the given MKG.
This process can be represented as follows:

ol+1 = σ
©­«
∑
r ∈R

∑
s ∈Ero

Wl
rmsgs,r, le_h +Wl

0o
lª®¬ (5)
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where ol+1 and ol ∈ Rd denote the embeddings of the aggre-
gated entity o in the (l+1)th and lth layers of the DMS module,
respectively.msgs,r, le_h ∈ R

d is the lth -layer dual-space message (see
Equation 4).Wl

r andWl
0 represent the learnable parameters for the

relation-specific and self-loop structural features, respectively. σ(·)
indicates the rectified linear unit (ReLU) [11] activation function.

Finally, through Equation 5, we can obtain the embedding ma-
trix ES containing unifiedmultihop structural features of theMKG:

ES = DMS(g,EU ) (6)

where ES ∈ RN×d . EU ∈ RN×d is the initialized entity embedding
matrix. g records the structure of the given MKG. DMS(·) repre-
sents the dual-space multihop structural learning process.

3.4 Auxiliary Modal Information Learning
This module aims to extract the auxiliary visual and linguistic fea-
tures of each entity contained in the given MKG.

Following previous works [4, 21, 40], we utilize pretrained mod-
els to acquire features from the entity-level images and texts. Specif-
ically, as shown in Figure 2(b), we retrieve the dI-dimensional vec-
tor from the final fully connected layer prior to performing Soft-
max activation operation through a pretrained visual geometry
group (VGG) [6, 23] model. For a specific entity o in E, this pro-
cess can be formulated as follows:

Io = WI∥pooling(VGG(Io))∥ (7)

where Io ∈ Rd. WI ∈ RdI×d is a learnable parameter for mapping
the dimensionality of extracted image features to d . Io ∈ V refers
to the collection of all images attached to o. pooling(·) denotes the
mean pooling operation. ∥ · ∥ indicates the L2 normalization oper-
ation. To initialize the linguistic features derived from the textual
descriptions, we utilize a pretrained word2vec [17] framework to
encode the texts as a dT-dimensional embedding for each entity.
For a specific entity o in E, this process is represented as follows:

To = WT∥pooling(word2vec(To))∥ (8)

where To ∈ Rd. WT ∈ RdT×d is a learnable parameter for mapping
the dimensionality of the textual features tod . Additionally,To ∈ T
indicates the description words attached to o.

Finally, by stacking the image features {Io } and textual features
{To } of all entities, we can obtain entity embedding matrices EI ∈
RN×d and ET ∈ RN×d for the visual and linguistic modalities of
the given MKG, respectively.

3.5 Interactive Symmetric Attention Fusion
This module aims to fuse all the modal features and capture the
dynamic effects of different modalities on different decision facts.

Inspired by the superiority of attention architectures [13, 29, 40]
in terms of integrating different elements, as shown in Figure 2(c),
we design a symmetric attention component to obtain multimodal
unified entity embeddings. We uniformly learn the obtained multi-
modal features {ES ,EI ,ET } as attention targets and assign differ-
ent attention weights to them using the initialized unimodal fea-
tures EU . Specifically, EU is used to generate the query matrix
for the multi-head attention (MHA) process, while {ES ,EI ,ET } is
used to generate the key and value matrices:

EMHA = σ(
WqEU (Wk[ES ;EI ;ET ])T√

dk
)Wv[ES ;EI ;ET ] (9)

where EMHA ∈ RN×d denotes the temporary output embeddings.
[; ] represents the concatenation operation. dk is a scaling factor
for preventing vanishing gradients. Wq, Wk, and Wv are learnable
parameters used to fit theweights of differentmodal features.Then,
a feed-forward network (FFN) with d hidden units is introduced:

E = W1(σ(W2EMHA)) (10)

where E ∈ RN×d indicates the multimodal unified entity embed-
dings. W1 andW2 ∈ Rd×d are learnable parameters that introduce
more semantics. Note that we employ layer normalization [1] and
residual connections [12] after the MHA and FFN stages.

Then, we design a fact-specific gated attention unit to learn a
unique weight of the features derived frommultimodal unified em-
beddings as attention targets and unimodal initialized embeddings
as attention senders based on each specific decision fact during the
reasoning phase. Following previous work [13], to perceive hierar-
chies during the decoding process, we use the ATTH [5] model as a
decoder to generate scores for both the attention target and sender
encoding features. Specifically, for a certain factual query (s, r , ?),
ATTH calculates the hyperbolic distances between all candidate
entities and the Möbius summation of s and r , assigning higher
scores to entities that are closer in distance:

S1 = ∇(ATTH(s, r)E),S2 = ∇(ATTH(ŝ, r)EU ) (11)
where s ∈ E, ŝ ∈ EU , and r ∈ R. S1 and S2 ∈ RN are scores gener-
ated from the attention target and sender embedding matrices, re-
spectively.∇(·) indicates the sigmoid activation function.Then, we
introduce two learnable parameters {δ s,δ r} ∈ RN to dynamically
adjust the attention of a specific fact on different modal features
during the reasoning stage. This process is formulated as follows:

S = ∇(δ)S1 + (1 − ∇(δ))S2 (12)
where δ = Max(δs [s],δ r[r ]) ∈ R denotes the learning weight for a
specific query, where δs [·] and δ r[·] represent the retrieval values
of a specific dimension from the vectors. S ∈ RN is the final rea-
soning score, where each dimension is the probability of predicting
the corresponding multimodal entity as the missing object.

3.6 Training Strategy
Weadopt amultilabel learning framework to train theDySarlmodel
through the cross-entropy loss function:

L =
∑

(s,r,o)∈Û

N−1∑
i=0

yi log(Si ) (13)

where Û ⊂ U contains the factual triples included in the training
set. yi is 1 if the training fact completed by the ith entity is valid,
and 0 otherwise. Si denotes the score produced for the ith entity
when reasoning about the current training fact.

3.7 Computational Complexity Analysis
To demonstrate the time efficiency of the DySarl model, we ana-
lyze the computational complexities of its three modules.The DMS
module uses a GNN-based framework to perform dual-space mes-
sage passingwith a depth of L layers, resulting in a time complexity
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Table 2: MKG reasoning performance (in percentages)
achieved across the WN9-IMG-TXT and FB-IMG-TXT
datasets in terms of raw metrics. The best and second-best
results are bolded and underlined, respectively.

Model WN9-IMG-TXT FB-IMG-TXT
MRR H@1 H@5 H@10 MRR H@1 H@5 H@10

ConvTransE 59.96 50.83 70.74 77.41 28.97 17.34 41.96 53.74
ATTH 59.44 50.53 70.36 76.88 26.70 14.92 40.08 52.44
FIRE 56.40 52.80 77.60 86.80 42.80 37.90 49.50 57.10
RLH 62.40 58.30 81.30 89.40 50.60 44.50 60.20 68.40
RGCN 65.04 48.79 84.34 88.44 76.97 65.06 91.69 95.04
ReTIN 74.18 65.28 85.22 90.98 88.82 82.36 97.07 98.86
MTRL 48.30 45.60 69.80 83.80 25.20 21.30 32.40 47.20
OTKGE 61.54 51.74 73.24 80.25 29.14 17.26 42.57 55.13
MMKGR 80.20 73.60 87.80 92.80 71.30 65.80 77.50 82.60
DySarl 88.65 83.70 94.69 96.40 93.72 89.62 98.85 99.84
∆Improve . 10.5% 13.7% 7.85% 3.88% 5.52% 8.81% 1.83% 1.00%

ofO(LdN ). For theAMImodule, the time complexity for extracting
visual features is O(NmIAk2c2), where A represents the image
size; I , k , and c denote the depth, kernel size, and maximum num-
ber of channels of the VGG model; andm represents the number
of images attached to each entity. The time complexity for extract-
ing linguistic features is O(Nn), where n is the description length
attached to each entity. For the ISA module, the time complexity
of the symmetric attention component is O(P2d), where P repre-
sents the number of modalities.The time complexity of the decoder
and the fact-specific gated-attention unit is O(|U|dN ).

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We assess our proposed DySarl model on two pub-
licMKGdatasets1: FB-IMG-TXT [21] andWN9-IMG-TXT [33].They
are bothwidely adopted by the existingMKG reasoningmethods [4,
21, 40], each entity of which contains an item from each of three
modalities: structures, texts, and images. Specifically, the structural
factual triples and textual descriptions of the FB-IMG-TXT and
WN9-IMG-TXT datasets are extracted from Freebase [2] andWord-
Net [18], respectively. To supplement the visual modality, 100 and
10 images are crawled for each entity in FB-IMG-TXT and WN9-
IMG-TXT, respectively. The statistics are detailed in Table 3.

4.1.2 Baseline Models. We compare our proposed DySarl model
with multiple representative unimodal and multimodal methods
for MKG reasoning. Specifically, among the unimodal approaches,
the single-hop comparison methods include ConvTransE [22] and
ATTH [5]; the multihop path learning models include FIRE [39]
and RLH [30]; and the multihop structural learning methods in-
clude RGCN [20] and ReTIN [13]. For the multimodal approaches,
we conduct comparisons with the representative single-hop mod-
els, including MTRL [21] and OTKGE [4], and the state-of-the-art
multihop path learning method MMKGR [40]. The baseline meth-
ods are described in detail in Section 2.

1https://public.ukp.informatik.tu-darmstadt.de/starsem18-multimodalKB

Table 3: Statistical information of the utilizedMKGdatasets.

Datasets #Training #Validation #Test #Ent #Rel #Scale
WN9-IMG-TXT 11,747 1,337 1,319 6,555 9 Small
FB-IMG-TXT 285,850 29,580 34,863 11,757 1,231 Large

4.1.3 Evaluation Metrics. We use the widely adopted mean recip-
rocal ranking (MRR) and Hits@K (H@K ) metrics to evaluate the
testedmodels. MRR reflects themean reasoning ranking of ground-
truth entities across all query facts. H@K indicates the proportion
of facts in the topK prediction hits out of the total number of query
facts. Following previous work [40], we choose K ∈ {1, 5, 10} and
report the mean results of multimodal object and subject reason-
ing tasks. Finally, to reflect the original capabilities of the tested
models, we adopt the raw setting without filtering operations.

4.1.4 ImplementationDetails. We implement and train ourDySarl
model using PyTorch on a single RTX A5000 GPU. We configure
the parameters according to the model performance on the valida-
tion set in terms of the MRR metric. The batch size is set as 1000.
We set the training epochs to 200 to guarantee model convergence.
The embedding dimensionalityd is set to 100. For the DMSmodule,
we set the number of GNN layers for dual-space multihop message
passing to 2. For the AMI module, we use the VGG19 and VGG-m-
128 models to produce 4096- and 128-dimensional (corresponding
to dI) embeddings for each image in the WN9-IMG-TXT and FB-
IMG-TXT datasets, respectively. Additionally, the dimensionalities
dT of each text generated for the FB-IMG-TXT andWN9-IMG-TXT
datasets are 1000 and 300, respectively. For the ISA module, the
number of symmetric attention heads is set to 2. We use the Adam
optimizer for training and the learning rate is set to 0.001.

Following the same datasets and evaluation settings, some of the
baseline results are adopted from [40]. We replicate the results of
the ConvTransE, ATTH, RGCN, ReTIN, and OTKGE models under
the same experimental settings. Note that ConvTransE and ATTH
are employed as the decoders of the RGCN and ReTIN, respectively.
For the MMKGR model without open-source codes, we adopt the
best results reported in its original paper.

4.2 Reasoning Results Obtained over MKGs
In this section, we compare the proposed DySarl model with mul-
tiple representative unimodal and multimodal baseline methods.
The main MKG reasoning results are presented in Table 2.

All the multimodal methods except MTRL exhibit significantly
superior performance to that of the unimodal single-hop methods
represented byConvTransE andATTH.This disparity can be attrib-
uted to the utilization of TransE byMTRL for capturing single-hop
features in a limited manner, as well as its coarse concatenation-
based multimodal fusion step. The unimodal multihop path learn-
ing methods, represented by FIRE and RLH, and the unimodal mul-
tihop structural learningmethods, represented by RGCNandReTIN,
outperform the multimodal single-hop methods, including MTRL
and OTKGE. This finding suggests that the graph-level complex
structural features among multimodal entities can effectively yield
improved MKG reasoning performance. The multimodal multihop
path learning method, MMKGR, achieves significant performance
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Table 4: Ablation results achieved across all the datasets.

Datasets WN9-IMG-TXT FB-IMG-TXT
w/o Multihop Associative Structural Features 70.98 88.86
w/o Multihop Hierarchical Structural Features 62.22 14.05
w/o Visual Features 80.31 92.95
w/o Linguistic Features 85.48 93.03
w/o Attention Sender Features 79.51 89.99
w/o Attention Target Features 59.11 26.70
DySarl 88.65 93.72

on the WN9-IMG-TXT dataset due to its ability to capture query-
relevant path information and its incorporation of coattention for
fusing multimodal features. However, it performs worse than the
RGCN and ReTIN on the FB-IMG-TXT dataset. This indicates that
the multihop structural learning methods can perform better on
large-scale graphs, such as the FB-IMG-TXT dataset.

The proposed DySarl model outperforms all the unimodal and
multimodal reasoning methods across all the MKG datasets and
evaluation metrics. This can be attributed to two key factors. First,
DySarl comprehensively integrates the auxiliary visual and linguis-
tic features derived from the entire input MKG in addition to the
structural modality. Second, DySarl is capable of capturing com-
plete complex features that lie beyond the paths contained in the
structural modality. Moreover, in the fusion step, DySarl dynami-
cally highlights the influences of different modal features. We ob-
serve that the improvement achieved by DySarl over ReTIN is rel-
atively small in terms of the H@5 and H@10 metrics produced
on the FB-IMG-TXT dataset. This highlights the fact that multi-
hop structural learning methods, especially hierarchy-based ap-
proaches, can roughly overcome the loss caused by the lack of mul-
timodal auxiliary information in large-scale graphs (as reflected by
the H@5 and H@10 metrics). However, due to the ability to effec-
tively integrate both association-based and hierarchy-based struc-
tural features, as well as multimodal features, DySarl achieves sig-
nificant improvements over the state-of-the-art baseline models in
terms of overall reasoning performance and accurate predictions
(as reflected by the MRR and H@1 metrics).

4.3 Ablation Study
In this section, we investigate the impact of each variant of DySarl
on its MKG reasoning performance using the MRR metric.

As presented in Table 4, the DySarl (w/o Multihop Associative
Structural Features) and DySarl (w/o Multihop Hierarchical Struc-
tural Features) variants remove the Euclidean and hyperbolic mes-
sages, respectively, from the multihop structural aggregation pro-
cess of the DMS module. The DySarl (w/o Visual Features) and
DySarl (w/o Linguistic Features) variants exclude the entity em-
beddings derived from images and texts in the AMI module, re-
spectively. The DySarl (w/o Attention Sender Features) variant ap-
plies coattention derived from the structural features to all modal
features in the ISA module. The DySarl (w/o Attention Target Fea-
tures) variant solely utilizes the initialized embeddings as attention
senders to generate the final reasoning scores in the ISA module.

The results indicate that multihop structural features contribute
more to MKG reasoning than do auxiliary visual and linguistic

(a) FB-IMG-TXT (b) WN9-IMG-TXT

Figure 3: Study on the multihop structural features over
MKGs on the FB-IMG-TXT and WN9-IMG-TXT datasets.

(a) FB-IMG-TXT (b) WN9-IMG-TXT

Figure 4: Study on the hierarchical features over MKGs on
the FB-IMG-TXT and WN9-IMG-TXT datasets.

modal features. DySarl (w/o Multihop Hierarchical Features) is sig-
nificantlyweaker thanDySarl (w/oMultihopAssociative Features),
especially on the FB-IMG-TXT dataset. On the one hand, this sug-
gests that the role of the hierarchical features conveyed by hyper-
bolic message passing is more significant than that of the associa-
tive features conveyed by Euclideanmessage passing. On the other
hand, the FB-IMG-TXT MKG contains more distinct multihop hi-
erarchical structures. The performance of DySarl (w/o Visual Fea-
tures) is relatively inferior to that of DySarl (w/o Linguistic Fea-
tures). This indicates that within the auxiliary data of MKGs, im-
ages play a more prominent role in improving the reasoning ca-
pabilities, surpassing the contributions of texts. During the cross-
modal feature fusion stage, DySarl outperforms DySarl (w/o Atten-
tion Sender Features), demonstrating the superiority of the sym-
metric attention component incorporated in the ISA module over
the conventional asymmetric coattention mechanism. Moreover,
DySarl (w/o Attention Target Features) exhibits a significant de-
crease in performance compared to that of DySarl. This is due to
the fusion of all modal features as attention targets for obtaining
the unified multimodal embeddings; however, the unimodal initial-
ized embeddings contain extremely limited patterns. Ultimately,
the ability of DySarl to outperform all its variants proves that each
component contributes to the overall performance of the model.

4.4 On the Multihop Structures
In this section, we investigate the impact of themultihop structural
features among multimodal entities on MKG reasoning.

As shown in Figure 3, OTKGE and MMKGR are representative
multimodal one-hop learning andmultihop path learningmethods,
respectively. The DySarl-A and DySarl-H variants selectively pass
Euclidean and hyperbolic messages to consider association-based
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(a) FB-IMG-TXT (b) WN9-IMG-TXT

Figure 5: Study on the cross-modal attentive dynamics in MKG reasoning on the FB-IMG-TXT and WN9-IMG-TXT datasets.

(a) FB-IMG-TXT (b) WN9-IMG-TXT

Figure 6: Study on the low-dimensional stability of DySarl
on the FB-IMG-TXT and WN9-IMG-TXT datasets.

and hierarchy-based multihop structural features, respectively. It
can be observed that the method based on multihop paths can cap-
ture more structural features than the single-hop method. Due to
its ability to model the complex structures that lie beyond paths,
the proposed multihop structural method DySarl achieves further
performance improvements. This process of improvements at the
structural level is more pronounced on large-scale graphs (e.g., FB-
IMG-TXT), which aligns with the results in Section 4.3. In addition,
the multihop structural features of hierarchies exert stronger influ-
ences than those of associations during MKG reasoning.

We further demonstrate that DySarl has the ability to capture
the multilevel hierarchical features among multimodal entities. As
presented in Figure 4, we plot the relationships and trends between
the degrees of the entities and their hyperbolic distances to the ori-
gin in the reasoning stage. The points with higher degrees (i.e., ac-
tive entities) are at a higher level and closer to the origin. Despite
the additional noise introduced by the presence of auxiliary modal
information, DySarl effectively learns distinct multilevel (multi-
hop) hierarchical features for themultimodal entities inMKGs. Fur-
thermore, the FB-IMG-TXT MKG exhibits a more pronounced hi-
erarchical structure, which aligns with the findings in Section 4.3.

4.5 On the Attentive Dynamics
In this section, we demonstrate that the multimodal feature fu-
sion process of DySarl can capture the dynamic effects of different
modal features on various decision facts in the reasoning stage.

As illustrated by the x-axes in Figure 5, we randomly extract 20
decision fact samples from the reasoning graphs of the FB-IMG-
TXT and WN9-IMG-TXT MKGs during the testing phase. The y-
axes represent the three different modalities: structural, visual, and
linguistic. Subsequently, we depict the dynamic attention of the
sampling facts on the three modalities contained within the MKGs
during the inference process. Specifically, we utilize the feature

embeddings derived from different modalities to generate predic-
tion scores for each specific decision fact. Notably, the fact-specific
gated attention unit combines the scores obtained from the atten-
tion senders for each individual modality (serving as the attention
target). Then, we perform L1 normalization on a set of different
modal scores [struc , imд, txt] for each prediction fact.

It can be observed that the structural modality plays the most
crucial reasoning role for both MKGs. Compared to theWN9-IMG-
TXT dataset, the FB-IMG-TXT dataset benefits more from the vi-
sual and linguistic modalities, which can be attributed to the pres-
ence of more additional auxiliary images and words that provide
more effective multimodal representations. On the one hand, from
a horizontal perspective, each individual modality contributes dis-
tinctively to the predictions of different facts. On the other hand,
from a vertical perspective, specific decision facts exhibit varying
levels of attention towards different modal features. Hence, our
proposed DySarl model effectively captures the attentive dynam-
ics of the cross-modal fusion process.

4.6 On the Embedding Dimensions
Given the compatibility of hyperbolic embeddings [5, 13] with low
dimensions, in this section, we study the influences of different em-
bedding dimensions on the performance of the DySarl model. As
illustrated in Figure 6, we conduct experiments under varying di-
mensional settings:d ∈ {10, 20, 40, 60, 80, 100}. It can be observed
that as the number of embedding dimensions increases, the model
performance improves on both datasets. This is because higher di-
mensional embeddings can store more valuable features. Further-
more, DySarl maintains a certain degree of performance stability
under low dimensions, especially for the FB-IMG-TXT MKG. This
is because the superlinear growth property of hyperbolic distance
enables the effective expression of complex structures among data
using limited dimensions, particularly hierarchical structures.

5 CONCLUSIONS
In this paper, we proposeDySarl to address the challenges of graph-
level multimodal multihop structures and entity-level cross-modal
attentive dynamics encountered in MKG reasoning. Specifically,
DySarl excels in capturing complex multihop structures beyond
limited reasoning paths during the process of structural modality
learning. Moreover, DySarl can effectively highlight the dynamic
influence of different modalities on different reasoning facts dur-
ing the cross-modal feature fusion process. By learning accurate
representations of multimodal entities in MKGs, our experiments
demonstrate the significant reasoning performance improvements
of DySarl over the baseline models.
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