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1 HYPERBOLIC GEOMETRY

Hyperbolic geometry [1, 7] is a non-Euclidean geometry with neg-
ative curvature, while Euclidean geometry has zero curvature. Cur-
vature measures the extent to which a point deviates from a plane.
Due to the superlinear growth of distances on hyperbolic mani-
folds, hyperbolic geometry can effectively express the hierarchi-
cal structures within low-dimensional limited Euclidean neighbor-
hoods [4, 5].

Inspired by hyperbolic embedding-based approaches [3, 4], the
design of hyperbolic messages that perceive hierarchy-based mul-
tihop structural features over MKGs in the dual-space multihop
structural learning (DMS) module of our proposed DySarl model
extensively utilizes hyperbolic geometry. Hence, we present some
basic formulas to facilitate a thorough understanding of Equations
2,3, and 11 in Section 3.

In Equation 2, exp, (-) and log, (-) denote the exponential and
logarithmic mapping operations with reference to the hyperbolic
origin 0, which project the entity embeddings from the Euclidean
space (R) to the hyperbolic space (B) and from the hyperbolic space
(B) back to the Euclidean space (R), respectively. They can be for-

mulated as follows:
u

exp, () = tanh(Verlull) = (1)
log,, (u®) = artanhwc‘rnu%m (2)

where u € R? and u® € B refer to specific embeddings (points)
in the Euclidean space and hyperbolic space, respectively. c, de-
notes the learnable relation-specific curvatures. || - || denotes the
L2 normalization operation. & indicates the Mobius addition op-
eration [6], which can be formulated as follows:

(1+ 2602, v2) + IvEI2) u® + (1 - o llu®)?) v
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3
where uP and vB € B represent specific embeddings (points) in
the hyperbolic space. (-) denotes the dot product operation.
Then, in Equation 3, Rot (©,) and Ref (®,) are block diagonal
matrices that represent the rotation and reflection operations, re-
spectively. ©, and ®, are relation-specific parameters. Specifically,

Rot (©,) =diag(GT (©,.1),---,GT (Gr’g)), and Ref (®,) = diag
(G (®r1), .G (@r d )),Where G*(-) denotes the given trans-
> 2

formations [3] in the form of 2 X 2 matrices:

+ N _ | cosOp; —sin®O;;

G™ (Or.i) = [ sin®,; cosO,; } )
_ N _ | cos®p; sin®,;

G (®ri) = [ sin®,; —cos®, ; ®)

Att(-) in Equation 3 learns an appropriate combination of hyper-
bolic reflections and rotations through a learnable attention weight
a,. This process can be formulated as follows:

Att(u® vE;a,) = expcr(f(arTu)u + f(a,Tv)v) (6)

where u = logcr(uB) and v = logcy(vB). f(-) is the Softmax acti-
vation function.

Finally, in Equation 11, for a certain multimodal query (s,r, ?),
ATTH [3] calculates the hyperbolic distances between all candi-
date entities and the Mébius summation of s and r, assigning higher
scores to entities that are closer in distance. This process can be for-
mulated as follows:

S = —d((H(s®) @ rB), H)? + bs + b, 7)

where H,(s®) € BY refers to Equation 3. s® and r® € BY are
hyperbolic embeddings of entity s and relation r. H € BN*4 is
the embedding matrix in the hyperbolic space of all entities corre-
sponding to the Euclidean embeddings in E (or Ey). bs € R and
b, € RN are the learnable biases for subject s and candidate objects
o, respectively. Moreover, the hyperbolic distance d°(+) is formu-
lated as follows:

—uf @7 VBH) (8)

Cr

2
d(u®,v®) = — artanh (\/cr
where uP? and vE € BY.

2 CROSSMODAL ATTENTIVE DYNAMICS

Cross-modal attentive dynamics in MKG reasoning refer to the
dynamic changes in the attentional emphasis of different reason-
ing facts on different modal features. It signifies the dynamic role
played by different modal features in predicting different reason-
ing facts. Here, we further explain the two aspects involved to fa-
cilitate the understanding of cross-modal attentive dynamics.
Different modal features play dynamic (distinct) roles in
reasoning for a specific decision fact. For example, for the rea-
soning fact (Joe Biden, LiveAt, 7), the structural neighborhood fea-
tures of the entity “Joe Biden” and the visual and linguistic fea-
tures derived from his pictures and resumes respectively play dif-
ferent roles in the prediction process. As mentioned in Section 1,
previous coattention-based cross-modal fusion methods [2, 8] in
MKG reasoning have primarily focused on the interplay between
different modalities, making it challenging to effectively capture
the dynamic effects of different modal features on reasoning facts.
In our proposed interactive symmetric attention fusion (ISA) mod-
ule, the symmetric attention component is carefully designed to
introduce an initialized feature matrix Eg; as the attention sender.
It then symmetrically and uniformly treats all modal feature matri-
ces {Eg, E1, ET} in MKGs as attention targets for factual inference
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(see Equation 9). Hence, DySarl effectively addresses the 157 aspect
of the cross-modal attentive dynamics issue in MKG reasoning.

A specific type of modal features plays dynamic (distinct)
roles in reasoning for different decision facts. This phenome-
non is more pronounced in predicting different facts that involve
the same entity. For instance, when predicting (Joe Biden, LiveAt, ?)
and (Joe Biden, Visit,?7), the structural modal features that need
to be aggregated from the neighborhoods of the “Joe Biden” en-
tity should include more information related to residential build-
ings and political countries to highlight the ground-truth entities
“White House” and “Ukraine” respectively in the final prediction.
Thus, for the same entity “Joe Biden” in different factual predic-
tions such as (Joe Biden, LiveAt,?) and (Joe Biden, Visit, ?), a spe-
cific type of modal features (e.g., the structural modality) exerts
different influences. As illustrated in Figure 1(b), traditional codec-
based architectures fail to effectively address this problem because
they rely on fixed, static multimodal embeddings learned by the en-
coder for score calculation during the decoding process. In our pro-
posed ISA module, the carefully designed fact-specific gated atten-
tion unit establishes a connection between the cross-modal feature
fusion process in the encoding stage and the score calculation pro-
cess in the decoding stage by introducing two learnable parameters
{85, 8,} during the inference (decoding) phase. Specifically, the 8
and &, parameters provide the capability to finetune the scores
derived from the attention sender and attention targets based on
specific entities (e.g., “Joe Biden”) and relations (e.g., “LiveAt” and
“Visit”) for the inference facts. Therefore, DySarl effectively ad-
dresses the 274 aspect of the cross-modal attentive dynamics issue
in MKG reasoning.

In the experiments conducted in Section 4.5, we demonstrate
that our proposed DySarl model takes into account both the above-
mentioned aspects, thereby effectively capturing the cross-modal
attentive dynamics in MKG reasoning.
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