
A Proofs459

A.1 Additional Lemmas460

Lemma 1 (Monotonicity). If a utility function u satisfies Eq. 1, then u is monotone with respect to461

the probability that Y = 1, i.e., for any P, P 0
2 P({0, 1}) such that P (Y = 1)  P 0(Y = 1), it462

holds that EY⇠P [u(1, Y )]  EY⇠P 0 [u(1, Y )].463

Proof. We readily have that464

EY⇠P [u(1, Y )] = P (Y = 1) · u(1, 1) + (1� P (Y = 1)) · u(1, 0)

 P 0(Y = 1) · u(1, 1) + (1� P 0(Y = 1)) · u(1, 0)

= EY⇠P 0 [u(1, Y )],

where, in the above inequality, we use that u(1, 1) > u(1, 0) and P (Y = 1)  P 0(Y = 1).465

Lemma 2 (Trivial policies are not always optimal). If a utility function u satisfies Eq. 1, then there466

exist P, P 0
2 P({0, 1}) such that the trivial policies ⇡ that either always decide T = 1 or always467

decide T = 0 are suboptimal. In particular, for any P, P 0
2 P({0, 1}) such that P (Y = 1) < c and468

P 0(Y = 1) > c, where469

c =
u(0, 0)� u(1, 0)

u(1, 1)� u(1, 0) + u(0, 0)� u(0, 1)
2 (0, 1), (8)

it holds that470

EY⇠P [u(1, Y )] < EY⇠P [u(0, Y )] and EY⇠P 0 [u(1, Y )] > EY⇠P 0 [u(0, Y )]. (9)

Proof. Let P be any distribution such that471

P (Y = 1) < c =
u(0, 0)� u(1, 0)

u(1, 1)� u(1, 0) + u(0, 0)� u(0, 1)
,

where c 2 (0, 1) because, by assumption, u satisfies Eq. 1. Now, by rearranging the above inequality,472

we have that473

P (Y = 1) · u(1, 1) + (1� P (Y = 1)) · u(1, 0) < P (Y = 1) · u(0, 1) + (1� P (Y = 1)) · u(0, 0),

and, using the definition of the expectation, it immediately follows that474

EY⇠P [u(1, Y )] < EY⇠P [u(0, Y )].

The same argument can be used to show that, for any distribution P 0 such that P 0(Y = 1) > c, it475

holds that EY⇠P 0 [u(1, Y )] > EY⇠P 0 [u(0, Y )]. Finally, note that, since c 2 (0, 1), we know that476

such distributions P and P 0 exist.477

A.2 Proof of Theorem 3478

Before proving Theorem 3, we rewrite the expected utility with respect to the probability distribution479

PM in terms of confidence H and B by using the law of total expectation,480

E⇡[u(T, Y )] = EH,B⇠PM(H,B) [E⇡[u(T, Y )|H,B]] .

Here, to simplify notation, we will write481

EH,B [E⇡[u(T, Y ) | H,B]] ,

where note that, using the law of total expectation, we can write the inner expectation in the above482

expression in terms of the utilities of the trivial policies, i.e.,483

E⇡[u(T, Y ) | H,B] = E[u(1, Y ) | H,B] · P⇡(T = 1 | H,B)

+ E[u(0, Y ) | H,B] · P⇡(T = 0 | H,B), (10)

and we will use P to refer to probabilities induced by SCM M, e.g., P (H,B) to denote PM(H,B).484

Now, we restate and prove Theorem 3.485

Theorem 3. There exist (infinitely many) AI-assisted decision making processes M satisfying Eqs. 2486

and 3, with utility functions u(T, Y ) satisfying Eq. 1, such that fB is perfectly calibrated and fH is487

monotone but any AI-assisted decision policy ⇡ 2 ⇧(H,B) that satisfies monotonicity is suboptimal,488

i.e., E⇡[u(T, Y )] < E⇡⇤ [u(T, Y )].489
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Proof. To prove the above claim, we construct a monotone confidence function fH , perfectly490

calibrated confidence function fB and distribution PM for which any monotone AI-assisted decision491

policy ⇡ 2 ⇧(H,B) achieves strictly lower utility than a carefully constructed non monotone492

AI-assisted decision policy ⇡̃ 2 ⇧(H,B).493

We will present the proof in three parts. First, we will introduce the main building block and idea494

behind the proof by a small construction of fH , fB and PM with |H| = |B| = 3, where B ✓ [0, 1]495

denotes the (discrete) output space of the classifier’s confidence function. We then construct examples496

of fH , fB and PM for arbitrary |H| = k and |B| = m with m, k 2 N, m > k � 2. Lastly, we497

construct examples where B is non-discrete and |H| = k with k > 2.498

Main building block and small example.499

We start by presenting the main idea of the proof using an example with a small set of confidence500

values H and B. Let the values of the decision maker’s confidence H be in H = {h1, h2, h3} and501

the values of the classifier’s confidence B be in B = {b1, b2, b3}, with order hi < (hi + 1) and502

bi < (bi + 1) respectively.503

Our main building block, consists of two distributions P�, P+
2 P({0, 1}) with P�(Y = 1) < c504

and P+(Y = 1) > c, where c depends on utility u as described by Eq. 8 in Lemma 2. We use505

these distributions for our constructions of fH , fB and PM, so that for some realizations of H,B506

distribution P (Y = 1 | H,B) is either P� or P+. Using Lemma 2 and from Eq. 10, we have that:507

(I) For any hi, bi such that P (Y | H = hi, B = bi) = P�, it holds that

E[u(1, Y ) | H = hi, B = bi] < E[u(0, Y ) | H = hi, B = bi].

Hence, decreasing P⇡(T = 1 | H,B) increases E[u(T, Y ) | H = hi, B = bi].508

(II) For any hi, bi such that P (Y | H = hi, B = bi) = P+, it holds that

E[u(1, Y ) | H = hi, B = bi] > E[u(0, Y ) | H = hi, B = bi].

Hence, increasing P⇡(T = 1 | H,B) increases E[u(T, Y ) | H = hi, B = bi].509

Intuitively, suppose we now have that, for confidence values h2, b2, Y ⇠ P+ and, for confidence510

values h3, b2, Y ⇠ P�, i.e., P (Y | H = h2, B = b2) = P+ and P (Y | H = h3, B = b2) = P�.511

Then, any non-monotone AI-assisted decision policy ⇡̃ with P⇡̃(T = 1 | H = h2, B = b2) >512

P⇡̃(T = 1 | H = h3, B = b2) will have higher expected utility than any monotone AI-assisted513

decision policy given confidence values h2, b2 and h3, b2. Finally, under an appropriate choice of514

distribution P (H,B), such non-monotone AI-assisted decision policies ⇡̃ will offer higher overall515

utility in expectation.516

We formalize this intuition with the following lemma:517

Lemma 3. Let M be any AI-assisted decision making process satisfying Eqs. 2 and 3, with utility518

function u(T, Y ) satisfying Eq. 1. If fH , fB and PM
are such that there exists confidence values519

b 2 B, hi, hj 2 H, with hi < hj , which satisfy520

P (H = hi, B = b) > 0, P (H = hj , B = b) > 0,

P (Y | H = hi, B = b) = P+
and P (Y | H = hj , B = b) = P�,

(11)

for some distributions P�, P+
with P�(Y = 1) < c and P+(Y = 1) > c, where521

c =
u(0, 0)� u(1, 0)

u(1, 1)� u(1, 0) + u(0, 0)� u(0, 1)
. (12)

Then, for any monotone AI-assisted decision policy ⇡ 2 ⇧(H,B), there exists an AI-assisted522

decision policy ⇡̃ 2 ⇧(H,B) which is not monotone and achieves a stricly greater utility than ⇡, i.e.,523

E⇡[u(T, Y )] < E⇡̃[u(T, Y )].524

Proof. Let ⇡ be a monotone AI-assisted decision policy, then it must hold that P⇡(T = 1 | H =525

hi, B = b)  P⇡(T = 1 | H = hj , B = b) (see Eq. 4). Let ⇡̃ be an identical AI-assisted decision526
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policy to ⇡ up to the decision for confidence values hi, b and hj , b. We distinguish between three527

cases.528

— Case 1: P⇡(T = 1 | H = hi, B = b) < P⇡(T = 1 | H = hj , B = b).529

Let the probability of T = 1 under ⇡̃ for confidence values hi, b and hj , b be switched compared to530

⇡, i.e.,531

P⇡̃(T = 1 | H = hi, B = b) = P⇡(T = 1 | H = hj , B = b),

P⇡̃(T = 1 | H = hj , B = b) = P⇡(T = 1 | H = hi, B = b).

Then, ⇡̃ is not monotone, as Eq. 4 is not satisfied, and it holds that532

P⇡̃(T = 1 | H = hi, B = b) > P⇡(T = 1 | H = hi, B = b),

P⇡̃(T = 1 | H = hj , B = b) < P⇡(T = 1 | H = hj , B = b).

As we decreased P (T = 1 | H = hj , B = b) and increased P (T = 1 | H = hi, B = b), by533

properties (I) and (II), it must hold that the expected utility of ⇡̃ given confidence values hi, b and534

hj , b is higher than the one of ⇡, i.e.,535

E⇡̃[u(T, Y ) | H = hi, B = b] > E⇡[u(T, Y ) | H = hi, B = b] and (13)
E⇡̃[u(T, Y ) | H = hj , B = b] > E⇡[u(T, Y ) | H = hj , B = b]. (14)

— Case 2: 0 < P⇡(T = 1 | H = hi, B = b) = P⇡(T = 1 | H = hj , B = b)  1.536

Let the probability of T = 1 under ⇡̃ for confidence values hj , b be strictly lower compared to ⇡ and537

be the same as ⇡ for hi, b. Then, ⇡̃ is not monotone, since by case assumption538

P⇡̃(T = 1 | H = hi, B = b) = P⇡(T = 1 | H = hj , B = b) > P⇡̃(T = 1 | H = hj , B = b)

and the inequality in Eq. 14 holds by property (I).539

— Case 3: P⇡(T = 1 | H = hi, B = b) = P⇡(T = 1 | H = hj , B = b) = 0.540

Let the probability of T = 1 under ⇡̃ for confidence values hi, b be strictly higher compared to ⇡ and541

be the same as ⇡ for hj , b. Then, ⇡̃ is not monotone, since by case assumption542

P⇡̃(T = 1 | H = hj , B = b) = P⇡(T = 1 | H = hi, B = b) < P⇡̃(T = 1 | H = hi, B = b)

and the inequality in Eq. 13 holds by property (II).543

As in all three cases at least one of the strict inequalities in Eqs. 13 or 14 holds and ⇡̃ is equivalent to544

⇡ (i.e., it has the same expected conditional utility) given any other pair of confidence values h0
2 H,545

b0 2 B, we have that546

E⇡̃[u(T, Y )] = E[E⇡̃[u(T, Y )]|H,B] > E[E⇡[u(T, Y )|H,B] = E⇡[u(T, Y )].

547

Before proceeding further, we would like to note that we may also state Lemma 3 using h 2 H,548

bi, bj 2 B, with bi < bj , the proof would follow analogously.549

Now, we construct an AI-decision making process M, with H = {h1, h2, h3} and B = {b1, b2, b3},550

such the decision maker’s confidence fH is monotone, the classifier’s confidence fB is perfectly551

calibrated, and the conditions of Lemma 3 are satisfied. First, let fH , fB and PM be such that552

P (fB(Z) = bj) =

8
>><

>>:

3/6 if j = 1
2/6 if j = 2
1/6 if j = 3
0 otherwise

and

P (H = hi | B = bj) := PX,V (H = hi | fB(Z) = bj) =

(
1

4�j
if i � j

0 otherwise.

Then, it readily follows that P (H = hi, B = bj) = 1/6 for i � j and P (H = hi, B = bj) = 0553

otherwise. Moreover, for each pair of confidence values (hi, bj) with positive probability P (H =554

hi, B = bj), we set555

P (Y = 1 | H = hi, B = bj) =

⇢
P+ if i = j = 2 or (i = 3 and j 2 {1, 3})
P� if (j = 2 and i = 3) or (j = 1 and i 2 {1, 2}),
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Figure 4: Nonzero values of P (Y = 1|H = hi, B = bj) and P (H = hi, B = bj) for every hi 2 H

and bj 2 B used in the first (left) and second (right) part of the proof of Theorem 3. In each cell
(hi, bj) in both panels, P+ or P� is the value of P (Y = 1|H = hi, B = bj) and lighter color
means lower value of P (H = hi, B = bj), where white means P (Y = 1|h = hi, B = bj) = 0 and
P (H,B) = 0. In both panels, the assignment of values is very stylized to facilitate the proof—the
classifier’s confidence function fB partitions the feature space in a way such that a rational decision
maker is unable to take decisions that maximize utility for almost all confidence values. However,
less stylized examples also satisfy the conditions of Lemma 3. For example, as long as there is one
triplet of confidence values b2, h2, h3 (or h3, b1, b2 in the left example) for which a rational decision
maker is unable to take decisions that maximize utility, Lemma 3 can be applied.

as shown in Figure 4 (left). Then, it readily follows that fH is monotone with respect to the probability556

that Y = 1, i.e., P (Y = 1 | H = hi)  P (Y = 1 | H = hi+1)), and we have that the classifier’s557

confidence values558

bj :=
X

i:i�j

P (H = hi | B = bj) · P (Y = 1 | H = hi, B = bj)

=

8
>><

>>:

2/3 · P� + 1/3 · P+ if j = 1
1/2 · P� + 1/2 · P+ if j = 2
P+ if j = 3
0 otherwise

are perfectly calibrated and satisfy that bj < bj+1.559

Finally, using Lemma 3 with b = b2, hi = h2, hj = h3, we have that any monotone AI-assisted560

decision policy is suboptimal for any M with fH , fB and PM as defined above.561

Construction with arbitrary |H| = k and |B| = m, m > k � 2.562

In this second part of the proof, we construct an AI-assisted decision making processes M, with563

|H| = k and |B| = m such that m > k � 2, such that the decision maker’s confidence fH is564

monotone, the classifier’s confidence fB is perfectly calibrated and the conditions of Lemma 3 are565

satisfied.566

First, let the space of confidence values be H = {hi}i2[k] and B = {bj}j2[m], with order hi < hi+1567

and bi < bi+1, respectively, and fH , fB and PM be such that P (fB(Z) = bj) = 1/m and568

P (H = hi | B = bj) := PX,V (H = hi | fB(Z) = bj) =

8
>>>>><

>>>>>:

m�j+1
m

if j = i
m�j+1

m
if i = 1, j > k

j�1
m

if j = i+ 1, j  k
j�1
m

if i = k, j > k
0 otherwise.

(15)
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Moreover, for each pair of confidence values (hi, bj) with positive probability P (H = hi, B = bj),569

we set570

P (Y = 1 | H = hi, B = bj) =

8
>><

>>:

P� if j = i
P� if i = 1, j > k
P+ if j = i+ 1, j  k
P+ if i = k, j > k,

(16)

as shown in Figure 4 (right). Further, we set the classifier’s confidence values bj to571

bj :=
m� j + 1

m
· P� +

j � 1

m
· P+ .

Then, it holds that bj < bj+1 and fB is perfectly calibrated as572

P (Y = 1 | B = bj) =

⇢
P (H = hj | B = bj) · P� + P (H = hj�1 | B = bj) · P+ if j  k
P (H = h1 | B = bj) · P� + P (H = hk | B = bj) · P+ if j > k

and thus, using the definitions of P (H | B) and P (Y | H,B), we have that P (Y | B = bj) = bj .573

To show that fH is monotone with respect to the probability that Y = 1, first note that P (H =574

hi, B = bi) decreases as i increases and P (H = hi, B = bi+1) increases as i increases. Moreover,575

further note that P (Y = 1 | H = hi, B = bi) = P� < P (Y = 1 | H = hi, B = bi+1) = P+.576

Hence, for any i 2 {2, . . . , k � 1}, it readily follows that577

P (Y = 1 | H = hi) = P+
· P (B = bi+1|H = hi) + P�

· P (B = bi|H = hi)

 P (Y = 1 | H = hi+1),

and, for i = 1, it is evident that P (Y = 1 | H = h1) < P (Y = 1 | H = h2).578

Finally, using Lemma 3 with any choice of confidence values b = bj , hi = hj�1 and hj = hj with579

j 2 {2, . . . , k}, we have that any monotone AI-assisted decision policy ⇡ is suboptimal for any M580

with |H| = k and |B| = m, m > k � 2, and fH , fB and PM as defined above. Here, note that,581

as we do not fix the exact distributions P� and P+, the above Lemma applies to infinitely many582

AI-assisted decision making processes M.583

Construction with B ✓ [0, 1] and |H| = k.584

In this last part of the proof, we construct an AI-assisted decision making process M, with |H| = k �585

2 and B ✓ [0, 1], such that the decision maker’s confidence function fH is monotone, the classifier’s586

confidence function fB is perfectly calibrated and the conditions of Lemma 3 are satisfied.587

First, let the space of confidence values be H = {hi}i2[k], with order hi < hi+1, the feature space10588

X = [0, 1], and f�, f+ be two strictly monotone increasing functions with589

f� : [0, 1]! [0, c) and f+ : [0, 1]! (c, 1], (17)

where590

c =
u(0, 0)� u(1, 0)

u(1, 1)� u(1, 0) + u(0, 0)� u(0, 1)
. (18)

Further, let Qk+1 = {q0, q1, . . . qk, qk+1} be a set of quantiles such that P (X  qj) = j/(k+1) for591

all j 2 {0, 1, . . . , k + 1} and thus, we have that, for all j 2 [k + 1],592

for Ij := (qj�1, qj ], it holds that P (X 2 Ij) =
1

k + 1
.

Now, let fH and PM be such that593

PV (H = hi | X,X 2 Ij) =

8
<

:

1/2 if i 2 {j � 1, j}
1 if i = j = 1 or (i = k and j = k + 1)
0 otherwise,

(19)

10For a more general feature space X , we can use a mapping � of X to [0, 1]. The proof works analogously
by substituting X with �(X).
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Figure 5: Nonzero values of P (Y = 1|X,H = hi, X 2 Ij) for every hi 2 H, with |H| = 3, and
Ij = (qj�1, qj ], with qj 2 Q4 used in the last part of the proof of Theorem 3. Lighter color means
lower value of f� or f+.

and let594

P (Y = 1 | X,H = hi, X 2 Ij) =

⇢
f�(X) if j = i or (i = j = 1 )
f+(X) if j = i+ 1 or (i = k and j = k + 1),

(20)

as shown in Figure 5. Next, we define595

fB(Z) = fB(X) := P (Y = 1 | X) =

8
<

:

f�(X) if X 2 I1
f+(X) if X 2 Ik+1

(f�(X) + f+(X))/2 otherwise,

which, by construction, is perfectly calibrated.596

To show that the decision maker’s confidence function fH is monotone with respect to the probability597

that Y = 1, we first note that, using Eq. 19, we have that598

P (X 2 Ij | H = hi) =

8
>><

>>:

1/2 if 1 < i < k and j 2 {i, i+ 1} and
1 if i = j = 1
1 if i = k and j = k + 1
0 otherwise.

(21)

Hence, using Eq. 21 and the law of total probability, for any i 2 {2, . . . , k � 2}, we have that599

P (Y = 1 | H = hi) =
1

2
[P (Y = 1 | H = hi, X 2 Ii) + P (Y = 1 | H = hi, X 2 Ii+1)]


1

2

⇥
f�(qi) + f+(qi+1)

⇤

=
1

2

⇥
f� (inf Ii+1) + f+ (inf Ii+2)

⇤


1

2
[P (Y = 1 | H = hi+1, X 2 Ii+1) + P (Y = 1 | H = hi+1, X 2 Ii+2)]

= P (Y = 1 | H = hi+1),

where the inequalities follow from the fact that f� and f+ are strictly monotone increasing. Corner600

cases for i = 1 and i = k � 1 can be shown analogously by further using that f�(X) < c < f+(X)601

for all X .602
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Finally, using Lemma 3 with any choice of confidence values hi = hj�1 hj = hj , j 2 {2, · · · , k�1}603

and b = fB(X) with X 2 Ij , we have that any monotone AI-assisted decision policy ⇡ is suboptimal604

for any M with |B| ✓ [0, 1] and |H| = k, k � 2 and fH , fB and PM as defined above.605

A.3 Proof of Theorem 5606

We prove the statement by contraposition. Let M be an AI-assisted decision making process607

satisfying Eqs. 2 and 3, with a utility function u(T, Y ) satisfying Eq. 1 and let M be such that fB608

satisfies ↵-alignment with respect to fH and fB has output space B ✓ [0, 1]. Assume there exists no609

(near-)optimal monotone AI-assisted decision policy for utility u. Thus, there must exist an optimal610

AI-assisted decision policy ⇡ 2 ⇧(H,B) which is not monotone and has strictly greater expected611

utility than any monotone policy. However, we show that we can modify ⇡ to a monotone AI-assisted612

decision policy ⇡̂ 2 ⇧(H,B) with near-optimal expected utility.613

As ⇡ is not monotone, there must exist confidence values h1, h2 2 H, h1  h2, and b1, b2 2 B,614

b1  b2, such that615

⇡(h1, b1, w) > ⇡(h2, b2, w) for some w 2W, (22)

where W denotes the space of noise values. In what follows, let W̃(⇡,h2,b2)
h1,b1

✓ W denote the set616

containing any such w and let W̃(⇡,h2,b2) =
S

h,b2H⇥B
W̃

(⇡,h2,b2)
h,b

.617

For any confidence value h0, b0 2 H ⇥ [0, 1], we modify policy ⇡ to a policy ⇡̂ as follows. Let618

{S̃h}h2H denote the sets satisfying the ↵-alignment condition for fB with respect to fH and, given619

confidence h0, let b̂h0 denote the smallest confidence value of fB , such that there exist h  h0 with620

P (Y = 1 | B = b̂h0 , Z 2 S̃h) � c, i.e.,621

b̂h0 := min{b 2 B | P (Y = 1 | B = b, Z 2 S̃h) � c for h  h0
}. (23)

Now, we define a new AI-assisted policy ⇡̂ from ⇡ as follows,622

⇡̂(h0, b0, w) :=

8
><

>:

1 if b0 � b̂h and w 2
S

hh0,b2[b̂h0 ,b0] W̃
(⇡,h,b)

0 if b0 < b̂h and w 2
S

h�h0,b2[b0,b̂h0) W̃
(⇡,h,b)

⇡(h0, b0, w) otherwise.

(24)

Next, we show that ⇡̂ is monotone and E⇡̂[u(T, Y )] � E⇡[u(T, Y )] + ↵ · a for some constant a.623

Proof ⇡̂ is a monotone assisted policy.624

To prove that ⇡̂ 2 ⇧(H,B) is a monotone AI-assisted decision policy, we show that, for all625

h0, h00
2 H, b0, b00 2 B, with h0

 h00, b0  b00, it holds that W̃(⇡̂,h00
,b

00)
h0,b0

= ;. We distinguish between626

three cases.627

— Case 1: b0 � b̂h0 and b00 � b̂h00 .628

Since h0
 h00, b0  b00 and, by definition, b̂h00  b̂h0 since h0

 h00, we have that629

[

hh0,b2[b̂h0 ,b0]

W̃
(⇡,h,b)

✓

[

hh00,b2[b̂h00 ,b00]

W̃
(⇡,h,b).

Hence, we can conclude that630

⇡̂(h0, b0, w)  1 = ⇡̂(h00, b00, w) for all w 2
[

hh00,b2[b̂h00 ,b00]

W̃
(⇡,h,b). (25)

Further, for any other w 2 W �
S

hh00,b2[b̂h00 ,b00] W̃
(⇡,h,b)

✓ W � W̃
(⇡,h00

,b
00)

h0,b0
, we have that631

⇡̂(h0, b0, w) = ⇡(h0, b0, w) and ⇡̂(h00, b00, w) = ⇡(h00, b00, w) and, by definition of W̃(⇡,h00
,b

00)
h0,b0

, it632

follows that633

⇡̂(h0, b0, w)  ⇡̂(h00, b00, w) for all w 2W �

[

hh00,b2[b̂h00 ,b00]

W̃
(⇡,h,b). (26)
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From Eqs. 25 and 26, it follows that W̃(⇡̂,h00
,b

00)
h0,b0

= ;.634

— Case 2: b0 < b̂h0 and b00 � b̂h00 .635

By definition of ⇡̂, we have that636

⇡̂(h0, b0, w)  1 = ⇡̂(h00, b00, w) for all w 2
[

hh00,b2[b̂h00 ,b00]

W̃
(⇡,h,b) (27)

and637

⇡̂(h0, b0, w) = 0  ⇡̂(h00, b00, w) for all w 2
[

h�h0,b2[b0,b̂h0)

W̃
(⇡,h,b) (28)

Analogously to case 1, since the values of w below are also in W � W̃
(⇡,h00

,b
00)

h0,b0
and ⇡̂ is equivalent638

to ⇡ for these values, we have that639

⇡̂(h0, b0, w)  ⇡̂(h00, b00, w) for all w 2W �

[

hh00,b2[b̂h00 ,b00]

W̃
(⇡,h,b)

�

[

h�h0,b2[b0,b̂h0)

W̃
(⇡,h,b)

(29)
From Eqs. 27 28 and 29, it follows that W̃(⇡̂,h00

,b
00)

h0,b0
= ;.640

— Case 3: b0 < b̂h0 and b00 < b̂h00 .641

Since h0
 h00, b0  b00 and, by definition, b̂h00  b̂h0 since h0

 h00, we have that642

[

h�h00,b2[b00,b̂h00)

W̃
(⇡,h,b)

✓

[

h�h0,b2[b0,b̂h0)

W̃
(⇡,h,b).

Hence, we can conclude that643

⇡̂(h0, b0, w) = 0  ⇡̂(h00, b00, w) for all w 2
[

h�h0,b2[b0,b̂h0)

W̃
(⇡,h,b) (30)

Again analogously to case 1, since the values of w below are also in W � W̃
(⇡,h00

,b
00)

h0,b0
and ⇡̂ is644

equivalent to ⇡ for these values, we have that645

⇡̂(h0, b0, w)  ⇡̂(h00, b00, w) for all w 2W �

[

h�h0,b2[b0,b̂h0)

W̃
(⇡,h,b) (31)

From Eqs. 30 and 31, it follows that W̃(⇡̂,h00
,b

00)
h0,b0

= ;.646

Note that, we cannot have a case where b0 � b̂h0 and b00 < b̂h00 , as this would imply b00 < b0. Since,647

in all three possible cases, we have shown that W̃(⇡̂,h00
,b

00)
h0,b0

= ;, we can conclude that ⇡̂ 2 ⇧(H,B)648

is monotone.649

Proof ⇡̂ is near optimal.650

First, we rewrite the inner expectation in Eq. 10 as651

E⇡[u(T, Y ) | H,B] = E[u(0, Y ) | H,B] + (E[u(1, Y ) | H,B]

�E[u(0, Y ) | H,B]) · P⇡(T = 1 | H,B).

Further, recall that |S̃h| � (1 � ↵/2)|Sh| for all h 2 H and, for all h0, h00
2 H, h0

 h00 and all652

b0, b00 2 [0, 1], b0  b00, we have that653

P (Y = 1 | fB(Z) = b0, Z 2 S̃h0)� P (Y = 1 | fB(Z) = b00, Z 2 S̃h00)  ↵ (32)

Now, for any h0
2 H, b0 2 B, we show an upper bound on E⇡[u(T, Y ) | H = h0, B = b0] �654

E⇡̂[u(T, Y ) | H = h0, B = b0]. We distinguish between three cases.655

— Case 1: b0 � b̂h0 and P (Y = 1 | H = h0, B = b0) � c.656
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Using Lemma 2, we have that657

(E[u(1, Y ) | H = h0, B = b0]� E[u(0, Y ) | H = h0, B = b0]) � 0 (33)

Moreover, as b0 � b̂h0 , the distribution of positive decisions in ⇡̂ may also increases for h0, b0658

compared to ⇡ (see Eq. 24), i.e.,659

P⇡(T = 1 | H = h0, B = b0)� P⇡̂(T = 1 | H = h0, B = b0)  0

Hence, it follows that660

E⇡[u(T, Y ) | H = h0, B = b0]� E⇡̂[u(T, Y ) | H = h0, B = b0]

= (E[u(1, Y ) | H = h0, B = b0]� E[u(0, Y ) | H = h0, B = b0])

⇥ (P⇡(T = 1 | H = h0, B = b0)� P⇡̂(T = 1 | H = h0, B = b0))  0.

(34)

— Case 2: b0 � b̂h0 and P (Y = 1 | H = h0, B = b0) < c.661

Since b0 � b̂h0 , there exists h, b 2 H ⇥ B, with h  h0, b  b0, such that P (Y = 1 | B = b, Z 2662

S̃h) � c. Moreover, using the definition of ↵-alignment, we have that663

P (Y = 1 | B = b, Z 2 S̃h)  P (Y = 1 | B = b0, Z 2 S̃h0) + ↵ (35)

Then, we can use this to lower bound the expected utility of T = 1 given B = b0 and Z 2 S̃h0 as664

follows:665

E[u(1, Y ) | B = b, Z 2 S̃h]� E[u(1, Y ) | B = b0, Z 2 S̃h0 ]

= u(1, 1) · (P (Y = 1 | B = b, Z 2 S̃h)� P (Y = 1 | B = b0, Z 2 S̃h0)

+ u(1, 0) · (P (Y = 1 | B = b0, Z 2 S̃h0)� P (Y = 1 | B = b, Z 2 S̃h))

 (u(1, 1)� u(1, 0)) · ↵,

(36)

where the last inequality due to Eq. 35 and the assumption that u(1, 1)� u(1, 0) > 0. Analogously,666

we can also upper bound the expected utility of T = 0 given H = h0, B = b0 and Z 2 S̃h0 as follows:667

668

E[u(0, Y ) | B = b, Z 2 S̃h]� E[u(0, Y ) | B = b0, Z 2 S̃h0 ]

= u(0, 1) · (P (Y = 1 | B = b, Z 2 S̃h)� P (Y = 1 | B = b0, Z 2 S̃h0)

+ u(0, 0) · (P (Y = 1 | B = b0, Z 2 S̃h0)� P (Y = 1 | B = b, Z 2 S̃h))

� (u(0, 1)� u(0, 0)) · ↵,

(37)

where the last inequality holds due to Eq. 35 and the assumption that u(0, 1)� u(0, 0) < 0.669

Now, as P (Y = 1 | B = b, Z 2 S̃h) � c, by Lemma 2, we have that670

E[u(1, Y ) | B = b, Z 2 S̃h] � E[u(0, Y ) | B = b, Z 2 S̃h] (38)

Combining Eqs. 36, 37 and 38, we obtain671

E[u(1, Y ) | B = b0, Z 2 S̃h0 ] + ↵(u(1, 1)� u(1, 0))

� E[u(0, Y ) | B = b0, Z 2 S̃h0 ] + ↵(u(0, 1)� u(0, 0))
(39)

In addition, note that we have following trivial bound for the expectation when H = h0 but Z /2 S̃h0672

u(1, 0)  E[u(1, Y ) | H = h0, B = b0]  u(1, 1), (40)
u(0, 1)  E[u(0, Y ) | H = h0, B = b0]  u(0, 0) (41)

Moreover, since b0 � b̂h0 , the distribution of positive decisions in ⇡̂ may also increase for h0, b0673

compared to ⇡, i.e.,674

P⇡(T = 1 | H = h0, B = b0)� P⇡̂(T = 1 | H = h0, B = b0)  0

Hence, we have that675

E⇡[u(T, Y ) | H = h0, B = b0]� E⇡̂[u(T, Y ) | H = h0, B = b0]

 (�1) · (E[u(1, Y ) | H = h0, B = b0]� E[u(0, Y ) | H = h0, B = b0]),
(42)
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where the inequality follows since E[u(1, Y ) | H = h0, B = b0]�E[u(0, Y ) | H = h0, B = b0]  0676

by Lemma 2 as P (Y = 1 | H = h0, B = b0) < c.677

Finally, combining Eqs. 39, 40, 41 and 42 and using the law of total expectation, we obtain678

E⇡[u(T, Y ) | H = h0, B = b0]� E⇡̂[u(T, Y ) | H = h0, B = b0]

 (1� �(h0,b0))(E[u(0, Y ) | B = b0, Z 2 S̃h0 ]� E[u(1, Y ) | B = b0, Z 2 S̃h0 ])

+ �(h0,b0)(E[u(0, Y ) | H = h0, B = b0]� E[u(1, Y ) | H = h0, B = b0])

 (1� �(h0,b0))↵(u(1, 1)� u(1, 0) + u(0, 0)� u(0, 1)) + �(h0,b0)(u(0, 0)� u(1, 0)),
(43)

where �(h0,b0) denotes the probability of Z /2 S̃h0 given H = h0, B = b0, i.e., �(h0,b0) = P (Z /2679

S̃h0 |H = h0, B = b0).680

— Case 3: b0 < b̂h0 .681

For all h, b, with h  h0, b  b0, we have that P (Y = 1 | B = b, Z 2 S̃h) < c. In particular,682

P (Y = 1 | B = b0, Z 2 S̃h0) < c. Thus, by Lemma 2,683

E[u(1, Y ) | B = b0, Z 2 S̃h0 ] < E[u(0, Y ) | B = b0, Z 2 S̃h0 ] (44)

In this case, since b0 < b̂h0 , the distribution of positive decisions in ⇡̂ may decrease for h, b compared684

to ⇡, i.e.,685

0  P⇡(T = 1 | H = h,B = b)� P⇡̂(T = 1 | H = h,B = b)

Combining Eqs.44, 40 and 41 and using the law of total expectation, we obtain686

E⇡[u(T, Y ) | H = h0, B = b0]� E⇡̂[u(T, Y ) | H = h0, B = b0]

 (E[u(1, Y ) | H = h0, B = b0]� E[u(0, Y ) | H = h0, B = b0]) · 1

= (1� �(h0,b0))(E[u(1, Y ) | B = b0, Z 2 S̃h0 ]� E[u(0, Y ) | B = b0, Z 2 S̃h0 ])

+ �(h0,b0)(E[u(1, Y ) | H = h0, B = b0]� EY [u(0, Y ) | H = h0, B = b0])

 �(h0,b0)(u(1, 1)� u(0, 1)),
(45)

where again �(h0,b0) = P (Z /2 S̃h0 |H = h0, B = b0).687

Now, for a fixed h0
2 H, since |S̃h0 | � (1 � ↵/2)|Sh0 |, we know that 0 

P
b2B

�(h0,b)  ↵/2.688

Hence, combining Eqs. 34, 43 and 45 from the three cases above, we have that689

EB [E⇡[u(T, Y ) | H = h0, B = b0]]� EB [E⇡̂[u(T, Y ) | H = h0, B = b0]]

= EB [E⇡[u(T, Y ) | H = h0, B = b0]� E⇡̂[u(T, Y ) | H = h0, B = b0]]

 max{↵(u(1, 1)�u(1, 0)+u(0, 0)�u(0, 1))+
↵

2
· (u(0, 0)�u(1, 0)),

↵

2
· (u(1, 1)�u(0, 1))}

 ↵ · (u(1, 1)� u(0, 1) +
3

2
· (u(0, 0)� u(1, 0))).

Finally, since by assumption ⇡ is optimal, i.e., E⇡[u(T, Y )] = E⇡⇤ [u(T, Y )] =690

max⇡02⇧(H,B) E⇡0 [u(T, Y )], we can conclude by the law of total expectation that691

E⇡⇤ [u(T, Y )] = EHEB [EY, T |⇡[u(T, Y ) | H,B]]

 E⇡̂[u(T, Y )] + ↵ · (u(1, 1)� u(0, 1) +
3

2
· (u(0, 0)� u(1, 0))) .

This concludes the proof.692

A.4 Proof of Theorem 8693

If fB is ↵/2-multicalibrated with respect to {Sh}h2H, then, by definition, for any h 2 H, there exists694

S̃h ⇢ Sh with |S| � (1� ↵/2)|Sh| such that, for any b 2 [0, 1], it holds that695

|P (Y = 1 | fB(Z) = b, Z 2 S̃h)� b|  ↵/2.
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This directly implies that, for any h0, h00
2 H and b0, b00 2 [0, 1], we have that696

P (Y = 1 | fB(Z) = b0, Z 2 S̃h0)� b0 � P (Y = 1 | fB(Z) = b00, Z 2 S̃h00)� b00  ↵ (46)

and, using linearity of expectation, we further have that697

P (Y = 1 | fB(Z) = b0, Z 2 S̃h0)� P (Y = 1 | fB(Z) = b00, Z 2 S̃h00)  ↵+ b0 � b00, (47)

showing that, whenever b0  b00, the ↵-alignment condition is met. This proves that fB is ↵-aligned698

with respect to fH .699

Finally, if fB is ↵/2-multicalibrated with respect to {Sh}h2H, then, it is ↵/2-calibrated with respect700

to any of the sets Sh. Since Z = [h2HSh, this implies that fB is ↵/2-calibrated with respect to Z .701

This concludes the proof.702

A.5 Proof of Proposition 1703

Given a discretization parameter �, Algorithm 1 works with a discretized notion of ↵-multicalibration,704

namely (↵,�)-multicalibration:705

Definition 10. Let C ✓ 2Z be a collection of subsets of Z . For any ↵,� > 0, confidence function706

fB : Z ! [0, 1] is (↵,�)-multicalibrated with respect to C if, for all S 2 C, b 2 ⇤[0, 1], and all707

Sh,�(b)(g) such that |Sh,�(b)| � ↵�|Sh|, it holds that708

|E[fB(X,H)� P (Y = 1 | X,H) | (X,H) 2 Sh,�(b)]|  ↵ . (48)

Here, we can analogously define a discretized notion of ↵-alignment, namely (↵,�)-alignment.709

Definition 11. For ↵,� > 0, a confidence function fB : Z ! [0, 1] is (↵,�)-aligned with respect to710

fH if, for all h0, h00
2 H, h0

 h00
, and all b0, b00 2 ⇤[0, 1], b0  b00, with |Sh0,�(b0)| > ↵/2 · �|Sh0 |711

and |Sh00,�(b00)| > ↵/2 · �|Sh00 |, we have712

P (Y = 1 | (X,H) 2 Sh0,�(b0))� P (Y = 1 | (X,H) 2 Sh00,�(b00))  ↵ . (49)

In what follows, we first show that (↵,�)-multicalibration with respect to {Sh}h2H implies (2↵+713

�,�)-alignment with respect to fH .714

Theorem 12. For ↵,� > 0, if fB is (↵,�)-multicalibrated with respect to {Sh}h2H, then fB is715

(2↵+ �,�)-aligned with respect to fH .716

Proof. If fB is (↵,�)-multicalibrated with respect to {Sh}h2H, then, by definition, for all h 2 H,717

b 2 ⇤[0, 1], and all Sh,�(b) such that |Sh,�(b)| � ↵ · �|Sh|, it holds that718

|E[fB(X,H)� P (Y = 1 | X,H) | (X,H) 2 Sh,�(b)]|  ↵. (50)

This directly implies that, for all h0, h00
2 H, b0, b00 2 ⇤[0, 1] with |Sh0,�(b0)| � ↵ · �|Sh0 | and719

|Sh00,�(b00)| � ↵ · �|Sh00 |, it holds that720

E[fB(X,H)� P (Y = 1 | X,H) | (X,H) 2 Sh00,�(b00)]

� E[fB(X,H)� P (Y = 1 | X,H) | (X,H) 2 Sh0,�(b0)]  2↵
(51)

and, using the linearity of expectation, we have that721

P (Y = 1 | (X,H) 2 Sh0,�(b0))� P (Y = 1 | (X,H) 2 Sh00,�(b00))

2↵+ E[fB(X,H) | (X,H) 2 Sh0,�(b0)]� E[fB(X,H) | (X,H) 2 Sh00,�(b00)].
(52)

Whenever b0  b00, due to the �-discretization, we have that722

E[fB(X,H) | (X,H) 2 Sh0,�(b0)]� E[fB(X,H) | (X,H) 2 Sh00,�(b00)]  � (53)

Hence, we have shown that if fB is ↵-multicalibrated, then for all h0, h00
2 H, b0, b00 2 ⇤[0, 1] with723

|Sh0,�(b0)| � ↵ · �|Sh0 | and |Sh00,�(b00)| � ↵ · �|Sh00 |, we have724

P (Y = 1 | (X,H) 2 Sh0,�(b0))� P (Y = 1 | (X,H) 2 Sh00,�(b00))  2↵+ � . (54)

Further, note that (2↵+ �)/2 · � > ↵ · � as � > 0. This concludes the proof.725
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Next, we show that, if fB is (↵,�)-aligned, then fB,� is ↵-aligned with respect to fH .726

Theorem 13. For ↵,� > 0, if fB is (↵,�)-aligned with respect to fH , then fB,� is ↵-aligned with727

respect to fH .728

Proof. The proof is similar to the proof of Lemma 1 in Hébert-Johnson et al. [11]. Consider all729

Sh,�(b) such that |Sh,�(b)| < ↵�|Sh|. By the �-discretization, there are at most 1/� such sets, thus,730

the cardinality of their union is at most 1/�↵�|Sh| = ↵|Sh|. Hence, for all h 2 H, there exists731

a subset S̃h ⇢ Sh with |S̃h| � (1 � ↵)|Sh| such that, for all h0, h00
2 H, with h0

 h00, and all732

b0, b00 2 ⇤[0, 1], with b0  b00, it holds that733

P (Y = 1 | (X,H) 2 Sh0,�(b0) \ S̃h0)� P (Y = 1 | (X,H) 2 Sh00,�(b00) \ S̃h00)  ↵ . (55)

The �-discretization sets all values of (x, h) 2 Sh0,�(b0) to fB,�(x, h) = E[fB(X,H) | fB(X,H) 2734

�(b0)]. Note that, for (x, h) 2 Sh0,�(b0), fB,�(x, h) 2 �(b0) and for (x, h) 2 Sh00,�(b00), fB,�(x, h) 2735

�(b00), so it still holds that E[fB(X,H) | fB(X,H) 2 �(b0)]  E[fB(X,H) | fB(X,H) 2736

�(b00)]. Thus, using Eq. 55, we have that737

P (Y = 1 | fB(X,H) = E[fB(X,H) | (X,H) 2 �(b0)], (X,H) 2 S̃h0)

� P (Y = 1 | fB(X,H) = E[fB(X,H) | (X,H) 2 �(b00)], (X,H) 2 S̃h00)  ↵
(56)

This concludes the proof.738

Finally, using Theorems 12 and 13, it readily follows that, given a parameter ↵0, the discretized739

confidence function fB,� returned by Algorithm 1 satisfies (2↵0 + �)-aligned calibration with respect740

to fH .741

A.6 Proof Theorem 9742

We structure the proof in three parts. We first explain the calibration guarantee that UMD provides743

and how it relates to human-aligned calibration. Then, we derive a lower bound on the size of the744

subsets D \ Sh so that the discretized confidence function fB,� satisfies ↵-aligned calibration with745

respect to fH with high probability. Finally, building on this result, we derive an upper bound on |D|746

so that fB,� satisfies ↵-aligned calibration with high probability as long as there exists � > 0 so that747

P ((X,H) 2 Sh) � � for all h 2 H.748

Conditional Calibration implies Human-Aligned Calibration. Running UMD on a dataset749

D 2 (Z⇥Y)n, where each datapoint is sampled from PM, guarantees (↵, ⇠)-conditional calibration,750

a PAC-style calibration guarantee [12]. Given a dataset D, a confidence function fB satisfies (↵, ⇠)-751

conditional calibration if, with probability at least 1� ⇠ over the randomness in D,752

8b 2 [0, 1], |P (Y = 1|fB(X,H) = b)� b|  ↵ .

This stands in contrast to the definition of ↵-calibration, which requires only that the confidence753

fB(X,H) is at most ↵ away from the true probability for 1� ↵ fraction of Z .754

Similarly, using an union bound over all h 2 H, (↵/2, ⇠/|H|)-conditional calibration of fB on each755

Sh, h 2 H, implies that, with probability at least 1� ⇠ over the randomness in D, fB satisfies that756

8h 2 H, 8b 2 [0, 1], |P (Y = 1|fB(X,H) = b,H = h)� b|  ↵/2 . (57)
Hence, analogously to the proof of Theorem 8, this implies that, with probability at least 1� ⇠ over757

the randomness in D, fB also satisfies that758

8h, h0
2 H,h  h0, 8b, b0 2 G, b  b0,

P (Y = 1|fB(X,H) = b,H = h)� P (Y = 1|fB(X,H) = b0, H = h0)  ↵ .
(58)

In summary, from Eqs. 57 and 58, we can conclude that (↵/2, ⇠/|H|)-conditional calibration of fB759

on each Sh, h 2 H, implies that, with probability at least 1� ⇠, fB satisfies ↵-aligned calibration,760

where, for all h 2 H, we have that S̃h = Sh.761

Lower bound on |D \ Sh| to achieve conditional calibration with UMD. Running UMD on each762

partition D \ Sh of D induced by h 2 H achieves (↵/2, ⇠/|H|)-conditional calibration as long as763

each subset D \ Sh of the data is large enough. More specifically, the following lower bound on the764

size of the subsets D \ Sh readily follows from Theorem 3 in Gupta et al. [12].765
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Lemma 4. The discretized confidence function fB,� returned by |H| instances of UMD, one per Sh,766

is (↵/2, ⇠/|H|)-conditional calibrated on Sh for any ⇠ 2 (0, 1) if767

|D \ Sh| � nmin :=

0

@
2 log

⇣
2|H|

⇠
·
⌃
1
�

⌥⌘

↵2
+ 2

1

A ·

⇠
1

�

⇡
(59)

Proof. Let B denote the number of bins in UMD. Theorem 3 in Gupta et al. [12] states that, if768

fB(X,H) is absolutely continuous with respect to the Lebesgue measure11 and |D \ Sh| � 2B,769

then the discretized confidence function output by UMD is (✏, ⇠0)-conditionally calibrated for any770

⇠0 2 (0, 1) and771

✏ =

s
log(2B/⇠0)

2(b|D \ Sh|/Bc � 1)
. (60)

Then, for a given ↵, setting ✏ = ↵/2, B = d1/�e and ⇠0 = ⇠/|H|, we can solve Eq. 60 for the lower772

bound on |D \ Sh| � nmin with nmin as defined in Eq. 59.773

Upper bound on |D| to achieve conditional calibration with UMD. Suppose P ((X,H) 2 Sh) � �774

for all h 2 H. When |H| � 2, we give an upper bound on |D| so that with high probability775

|D \ Sh| � nmin for all h 2 H.776

In the process of sampling D 2 (Z ⇥ Y)n from PM, let R(h)
i

= 1 denote the event that the i-th777

datapoint (xi, hi, yi) has confidence value h, i.e., hi = h. Then, we can express |D \ Sh| in terms of778

random variable R(h), defined as779

R(h) =

|D|X

i=1

R(h)
i

. (61)

Since R(h)
i

is a Bernoulli-distributed variable with P (R(h)
i

) = P ((X,H) 2 Sh), the expected value780

of R(h) is µ(h) := E[R(h)] = P ((X,H) 2 Sh) · |D| � � · |D|.781

Let |D| = 2 · |H| · log(2/⇠) · 1/� · nmin, observe that in this case782

P (R(h)
 nmin) = P

✓
R(h)


�

2|H| · log(2/⇠)
· |D|

◆
.

For |H| � 2 and ⇠ 2 (0, 1), we have 1/(2|H| · log(2/⇠)) 2 (0, 1) and we can use a variation of the783

Chernoff bound to show784

P (R(h)
 nmin)  P

✓
R(h)


1

2|H| · log(2/⇠)
· µ(h)

◆

 e�µ(h)( 2|H|·log(2/⇠)�1
2|H|·log(2/⇠) )

2
·
1
2

= e
�µ(h)· 12 ·

⇣
1� 1

|H|·log(2/⇠)+
1

(2|H|·log(2/⇠))2

⌘


⇠

2
· e

�|H|·nmin·
⇣

1
2�

1
2|H|·log(2/⇠)+

1
2(2|H|·log(2/⇠))2

⌘

,

where the first and last inequality results from using µ(h) > � · |D|. We can now use a union bound785

to obtain a lower bound on the probability that for any h 2 H, |D \ Sh|  nmin, i.e.,786

P (9h 2 H : |D \ Sh|  nmin) 
⇠

2
· |H| · e

�|H|·nmin·
⇣

1
2�

1
2|H|·log(2/⇠)+

1
2(2|H|·log(2/⇠))2

⌘

(62)

One can verify that for |H| � 2 and nmin � 1, we have P (9h 2 H : |D \ Sh|  nmin) 
⇠

2 . Hence,787

if |D| = 2 · |H| · log(2/⇠) · 1/� ·nmin, then, for all h 2 H, |D \Sh|  nmin with probability 1� ⇠/2.788

11If fB is not continuous with respect to the Lebesgue measure (or equivalently put, fB does not have a
probability density function), a randomization trick can be used to ensure that the results of the theorem hold.
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Combining this result and Lemma 4, we have that the discretized confidence function fB,� returned789

by |H| instances of UMD, one per Sh, is (↵/2, ⇠/(2|H|))-conditional calibrated on each Sh with790

probability at least 1� ⇠/2 for any ⇠ 2 (0, 1) if791

|D| = 2 · |H| ·
log(2/⇠)

�
·

0

@
2 log

⇣
4|H|

⇠
·
⌃
1
�

⌥⌘

↵2
+ 2

1

A ·

⇠
1

�

⇡
(63)

Finally, using a union bound, we can conclude that fB,� achieves ↵-aligned calibration with respect
to fH with probability at least 1� ⇠ from

|D| = O

✓
|H| ·

log(|H|/⇠�)

↵2 · � · �

◆

samples. This concludes the proof.792
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B Multicalibration Algorithm793

In this section, we give a high-level description of the post-processing algorithm for multicalibration794

introduced by Hébert-Johnson et al. [11]. The algorithm works with a discretization of [0, 1] into795

uniform sized bins of size �, for a � > 0. Formally the �-discretization of [0, 1], is defined as796

Definition 14 (�-discretization [11]). Let � > 0. The �-discretization of [0, 1], denoted by ⇤[0, 1] =797

{
�

2 ,
3�
2 , . . . , 1� �

2 }, is the set of 1/� evenly spaced real values over [0, 1]. For b 2 ⇤[0, 1], let798

�(b) = [b� �/2, v + �/2) (64)

be the �-interval centered around b (except for the final interval, which will be [1� �, 1]).799

It starts by partitioning each subspace Sh into 1/� groups Sh,�(b) = {(x, h) 2 Sh | fB(x, h) 2800

�(b)}, with b 2 ⇤[0, 1]. Then, it repeatedly looks for a large enough group Sh,�(b) such that the801

absolute difference between the average confidence value E[fB(X,H) | (X,H) 2 Sh,�(b)] and802

the probability P (Y = 1 | (X,H) 2 Sh,�(b)) is larger than ↵ and, if it finds it, it updates the803

confidence value fB(x, h) of each (x, h) 2 Sh,�(b) by this difference. Once the algorithm cannot804

find any more such a group, it returns a discretized confidence function fB,�(x, h) = E[fB(X,H) |805

fB(X,H) 2 �(b)], with b 2 ⇤[0, 1] such that fB(x, h) 2 �(b), which is guaranteed to satisfy806

(↵+ �)-multicalibration.807

Algorithm 1 provides a pseudocode implementation of the overall algorithm. Within the implementa-808

tion, it is worth noting that the expectations and probabilities can be estimated with fresh samples809

from the distribution or from a fixed dataset using tools from differential privacy and adaptive data810

analysis, as discussed in Hébert-Johnson et al. [11].811

Algorithm 1 Post-processing algorithm for (↵+ �)-multicalibration

1: Input: confidence function fB , parameters ↵,� > 0
2: Output: confidence function fB,�

3: repeat
4: updated false
5: for Sh 2 C & b 2 ⇤[0, 1] do
6: Sh,�(b)  Sh \ {(x, h) 2 Z | fB(x, h) 2 �(b)}
7: if P ((X,H) 2 Sh,�(b)) < ↵� · P ((X,H) 2 Sh) then
8: continue
9: b̄h,�(b)  E[fB(X,H) | (X,H) 2 Sh,�(b)]

10: rh,�(b)  P (Y = 1 | (X,H) 2 Sh,�(b))
11: if |rh,�(b) � b̄h,�(b)| > ↵ then
12: updated true
13: for (x, h) 2 Sh,�(b) do
14: fB(x, h) fB(x, h) + (rh,�(b) � b̄h,�(b)) {project into [0, 1] if necessary}
15: until updated = false
16: for b 2 ⇤[0, 1] do
17: b̄�(b)  E[fB(X,H)|fB(X,H) 2 �(b)]
18: for (x, h) 2 Z : fB(x, h) 2 �(b) do
19: fB,�(x, h) b̄�(b)
20: return fB,�
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C Additional Details about the Experiments812

Transformation of confidence values. The confidence values in the Human-AI Interactions dataset813

were originally recorded on a scale of [�1, 1], where 1 means complete certainty on the correct814

true label and �1 means complete certainty on the incorrect label. To better match our theoretical815

framework, we transform all confidence values to a scale of [0, 1], where 1 means complete certainty816

that the true label y = 1 and 0 means complete certainty that the true label is y 6= 1. More formally,817

let b̂, ĥ, ĥ+AI 2 [�1, 1] be the original confidence values in the dataset, then we obtain b 2 [0, 1] via818

the following transformation:819

b =

(
(b̂+ 1)/2 if y = 1

1� (b̂+ 1)/2 if y = 0,

and analogously for h and h+AI.820

Comparing decision policies ⇡B , ⇡H and ⇡H+AI . Figure 6 shows the ROC curves for the decision821

policies ⇡B , ⇡H and ⇡H+AI in each of the four tasks in the Human-AI Interactions dataset.822

(a) Art (b) Sarcasm

(c) Cities (d) Census

Figure 6: ROC curves for the decision policies ⇡B , ⇡H and ⇡H+AI .
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