459

460

461
462
463

464

465

466
467

469

470

471

472
473

474

475
476
477

478

479
480

481

482
483

484
485

486
487
488
489

A  Proofs

A.1 Additional Lemmas

Lemma 1 (Monotonicity). If a utility function u satisfies Eq.|1, then w is monotone with respect to
the probability that Y = 1, i.e., for any P, P' € P({0,1}) such that P(Y = 1) < P'(Y = 1), it
holds that Ey . p[u(1,Y)] < Ey.p/[u(1,Y)]

Proof. We readily have that
Ey-p[u(1,Y)] = P(Y = 1) - u(1,1) + (1 — P(Y = 1)) - u(1,0)
<P =1)ul,1)+(1—P (Y =1)) u(l,0)
=Ey.p[u(l,Y)]
where, in the above inequality, we use that (1,1) > «(1,0) and P(Y = 1) < P/(Y = 1). O

)

Lemma 2 (Trivial policies are not always optimal). If a utility function u satisfies Eq.|l| then there
exist P, P' € P({0,1}) such that the trivial policies w that either always decide T = 1 or always
decide T' = 0 are suboptimal. In particular, for any P, P' € P({0,1}) such that P(Y = 1) < c and
P (Y =1) > ¢, where

C € (071>7 (8)

~ (1, 1) — u(1,0) + u(0,0) — u(0,1)
it holds that
]EYNP[U(l, Y)] < ]EYNP[’IL(O, Y)} and Ey . pr ['U,(l, Y)] > Ey.opr [U(O, Y)] 9)

Proof. Let P be any distribution such that

u(0,0) — u(1,0)
u(1,1) — u(1,0) + u(0,0) — u(0,1)’
where ¢ € (0, 1) because, by assumption, u satisfies Eq. |1} Now, by rearranging the above inequality,
we have that
PY=1)-u(1,1)+(1-PY =1))-u(l,0) < P(Y =1)-u(0,1)+ (1 — P(Y = 1)) - u(0,0),
and, using the definition of the expectation, it immediately follows that

EYNP[’LL(]., Y)] < EY~P[U(07 Y)]

The same argument can be used to show that, for any distribution P’ such that P'(Y = 1) > ¢, it
holds that Ey-p/[u(1,Y)] > Ey.p/[u(0,Y)]. Finally, note that, since ¢ € (0,1), we know that
such distributions P and P’ exist. O

PY=1)<c=

A.2 Proof of Theorem

Before proving Theorem |3} we rewrite the expected utility with respect to the probability distribution
PM in terms of confidence H and B by using the law of total expectation,

E, [U(T7 Y)] = ]EH,BNPM(H,B) [EW[U’(Tv Y)|Ha B” .
Here, to simplify notation, we will write
En g [Ex[w(T,Y) | H,B]],

where note that, using the law of total expectation, we can write the inner expectation in the above
expression in terms of the utilities of the trivial policies, i.e.,

E [w(T,Y) | H,B]=E[u(1,Y) | H,B]-P,(T'=1| H,B)
+E[u(0,Y) | H,B]- P-(T'=0 | H,B), (10)
and we will use P to refer to probabilities induced by SCM M, e.g., P(H, B) to denote P (H, B).
Now, we restate and prove Theorem

Theorem |3} There exist (infinitely many) Al-assisted decision making processes M satisfying Egs. 2|
and with utility functions u(T,Y") satisfying Eq. |1} such that fp is perfectly calibrated and fp is
monotone but any Al-assisted decision policy 7 € II(H, B) that satisfies monotonicity is suboptimal,
e, Er[u(T,Y)] < Ex[u(T,Y)].
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Proof. To prove the above claim, we construct a monotone confidence function fz, perfectly
calibrated confidence function fp and distribution P for which any monotone Al-assisted decision
policy = € II(H, B) achieves strictly lower utility than a carefully constructed non monotone
Al-assisted decision policy 7 € II(H, B).

We will present the proof in three parts. First, we will introduce the main building block and idea
behind the proof by a small construction of fz, fz and PM with |H| = |B| = 3, where B C [0, 1]
denotes the (discrete) output space of the classifier’s confidence function. We then construct examples
of fr, fg and PM for arbitrary |H| = k and |B| = m with m,k € N, m > k > 2. Lastly, we
construct examples where B is non-discrete and |H| = k with k > 2.

Main building block and small example.

We start by presenting the main idea of the proof using an example with a small set of confidence
values H and B. Let the values of the decision maker’s confidence H be in H = {hq, ha, h3} and
the values of the classifier’s confidence B be in B = {b1, b, b3}, with order h; < (h; + 1) and
b; < (b; + 1) respectively.

Our main building block, consists of two distributions P, P+ € P({0,1}) with P~ (Y =1) < ¢
and P*(Y = 1) > ¢, where ¢ depends on utility u as described by Eq. E in Lemma |Z We use
these distributions for our constructions of fz, fz and P, so that for some realizations of H, B
distribution P(Y =1 | H, B) is either P~ or P*. Using Lemma2|and from Eq.|[10] we have that:

(I) For any h;, b; such that P(Y | H = h;, B =b;) = P, it holds that
Elu(l,Y) | H=h;,B=0;] <E[u(0,Y) | H=h; B=1¥].
Hence, decreasing P.(T =1 | H, B) increases E[u(T,Y) | H = h;, B =b;].
(I) For any h;, b; such that P(Y | H = h;, B = b;) = P, it holds that
Elu(1,Y) | H=h;,B=1"b;] > E[u(0,Y) | H=h;, B=>0].

Hence, increasing P.(T =1 | H, B) increases Elu(T,Y) | H = h;, B = b;].
Intuitively, suppose we now have that, for confidence values hs, by, Y ~ P7T and, for confidence
values h3, by, Y ~ P~ ie, P(Y | H=hy,B=by) =P and P(Y | H=h3,B=1by) = P".
Then, any non-monotone Al-assisted decision policy 7# with Pz(T' =1 | H = he, B = by) >
P:(T =1 | H = hsg, B = by) will have higher expected utility than any monotone Al-assisted
decision policy given confidence values ho, b and hg, by. Finally, under an appropriate choice of

distribution P(H, B), such non-monotone Al-assisted decision policies 7 will offer higher overall
utility in expectation.

We formalize this intuition with the following lemma:

Lemma 3. Let M be any Al-assisted decision making process satisfying Egs.[2 and[3, with utility
Sunction w(T,Y') satisfying Eq. |Z If fu, fg and P are such that there exists confidence values
b e B, hi,hj € H, with h; < hj, which satisfy

P(H=h;,B=b)>0, P(H=hj,B=0b)>0,

11
P(Y | H=h,B=b)=P* and P(Y | H=h;,B=b)=P", (1)
for some distributions P~, Pt with P~ (Y = 1) < cand P*(Y = 1) > ¢, where
—u(l

~ u(1,1) — u(1,0) + u(0,0) — u(0,1)’

Then, for any monotone Al-assisted decision policy m € II(H, B), there exists an Al-assisted
decision policy 7« € II(H, B) which is not monotone and achieves a stricly greater utility than , i.e.,
Ex [U’(T7 Y)] <Ez [U(T7 Y)]

Proof. Let w be a monotone Al-assisted decision policy, then it must hold that P(T' =1 | H =
hi,B=10b) < Pr(T =1 | H = h;, B =0) (see Eq.[4). Let 7 be an identical Al-assisted decision

14
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policy to 7 up to the decision for confidence values h;, b and h;,b. We distinguish between three
cases.

—Casel: P,(T'=1| H=h;,B=b)<P,(I'=1| H=h;,B=0).

Let the probability of 7' = 1 under 7 for confidence values h;, b and h;, b be switched compared to

m, Le.,

P:(T=1|H=h;,B=b=P,(T'=1| H=h;,B=10),
P:T=1|H=hj,B=b)=P,(T=1| H=h;,B=0).

Then, 7 is not monotone, as Eq. E]is not satisfied, and it holds that
P:(T'=1|H=h;,B=b)>P,(T'=1| H=h;,B=0),
P;:(T=1|H=h;,B=b<P,(I'=1| H=h;,B=0).

As we decreased P(T'=1 | H = h;, B = b) and increased P(T' =1 | H = h;, B = b), by

properties [(I) and [(ID)] it must hold that the expected utility of 7 given confidence values h;, b and
h;, b is higher than the one of 7, i.e.,

E+[u(T,Y) | H="h;,B=b] >E,[u(T,Y) | H=h;,B=b] and (13)
E+[uw(T,Y) | H="h;,B=0b>E, [u(T,Y) | H=h;,B=0]. (14)

—Case2:0< P, (I'=1|H=h;,B=b)=P,(T'=1|H=h;,B=0b)<1.

Let the probability of 7" = 1 under 7 for confidence values h;, b be strictly lower compared to 7 and

be the same as 7 for h;, b. Then, 7 is not monotone, since by case assumption
P(T=1|H=h;;B=b)=P,(T'=1|H=h;;,B=b)>P:(T'=1| H=h;,B=»)

and the inequality in Eq. [I4]holds by property

—Case3: P,(IT'=1|H=h;,B=b=PFP,(I'=1| H=h;,B=0)=0.

Let the probability of 7' = 1 under 7 for confidence values h;, b be strictly higher compared to 7 and

be the same as 7 for h;, b. Then, 7 is not monotone, since by case assumption
P:(T'=1|H=h;,B=b)=P(T=1|H=h;,B=b)<P:(T'=1| H=h;,B=0)

and the inequality in Eq. [I3]holds by property

As in all three cases at least one of the strict inequalities in Eqs. [I3]or[I4]holds and 7 is equivalent to
7 (i.e., it has the same expected conditional utility) given any other pair of confidence values h' € H,
b’ € B, we have that
Ex[u(T,Y)] = E[Ex[u(T,Y))|H, B] > E[E+[u(T,Y)|H, B] = E[u(T,Y)].
O

Before proceeding further, we would like to note that we may also state Lemma [3 using h € H,
bi, b; € B, with b; < b;, the proof would follow analogously.

Now, we construct an Al-decision making process M, with H = {h1, ho, h3} and B = {by, by, b3},
such the decision maker’s confidence fy is monotone, the classifier’s confidence fp is perfectly
calibrated, and the conditions of Lemma [3|are satisfied. First, let fz, fg and P be such that

3/6 ifj=1
oy 2/6 ifj =2
P(fp(Z) =b;) = 16 ifj =3 and

0 otherwise

= ifi>]
P(H = hi | B = bJ) = PX7\/(H = hl‘ | fB(Z) = bJ) = 0 otherwise

Then, it readily follows that P(H = h;, B = b;) = 1/6fori > jand P(H = h;, B = b;) =
otherwise. Moreover, for each pair of confidence values (h;, b;) with positive probability P(H
hi, B = bj), we set

0

P+ ifi=j=2or(i=3andj € {1,3})

P =1 H:hi’B:bJ’):{P— if (j=2andi=3)or(j=1andie€ {1,2}),

15
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Figure 4: Nonzero values of P(Y = 1|H = h;, B =b;) and P(H = h;, B = b;) forevery h;, € H
and b; € B used in the first (left) and second (right) part of the proof of Theorem E In each cell
(hi, bj) in both panels, P+ or P~ is the value of P(Y = 1|H = h;, B = b;) and lighter color
means lower value of P(H = h;, B = b;), where white means P(Y = 1|h = h;, B=1b;) =0 and
P(H, B) = 0. In both panels, the assignment of values is very stylized to facilitate the proof—the
classifier’s confidence function fp partitions the feature space in a way such that a rational decision
maker is unable to take decisions that maximize utility for almost all confidence values. However,
less stylized examples also satisfy the conditions of Lemma 3. For example, as long as there is one
triplet of confidence values by, ha, hs (or hs, by, bs in the left example) for which a rational decision
maker is unable to take decisions that maximize utility, Lemma can be applied.

as shown in Figure 4| (left). Then, it readily follows that fj; is monotone with respect to the probability
thatY = 1,ie., PY =1 | H=h;) < P(Y =1 | H = h;11)), and we have that the classifier’s
confidence values

bj:=> PH=h; | B=b;)-P(Y=1|H=h;B=1b)
12>

2/3-P~+1/3- Pt ifj=1

1/2-P~ +1/2- Pt ifj=2

Pt ifj=3

0 otherwise

are perfectly calibrated and satisfy that b; < bj41.

Finally, using Lemmawith b = by, h; = ha, hj = hs, we have that any monotone Al-assisted
decision policy is suboptimal for any M with f, fg and P™ as defined above.

Construction with arbitrary |#| = k and |B| = m, m > k > 2.

In this second part of the proof, we construct an Al-assisted decision making processes M, with
|H| = k and |B| = m such that m > k > 2, such that the decision maker’s confidence fy is
monotone, the classifier’s confidence fp is perfectly calibrated and the conditions of Lemma 3 are
satisfied.

First, let the space of confidence values be H = {h;};c(x) and B = {b; } je[m], With order h; < h;q
and b; < by 1, respectively, and f, fg and P be such that P(fp(Z) = b;) =1/m and

moIELif =

ot f =15 > k
PH=h; | B=bj):=Pxyv(H=h; | fp(Z)=10b;)=4 L2 ifi=i+1,7<k (15

=L ifi=Fkj>k

0 otherwise.
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Moreover, for each pair of confidence values (h;, b;) with positive probability P(H = h;, B = b;),
we set

P~ ifj=1

P~ ifi=1,>k
Pt ifj=i+1,j<k
Pt ifi=k,j >k,

P(Y=1|H=h;,B=b;) = (16)

as shown in FigureE](right). Further, we set the classifier’s confidence values b; to

m—j+1 j—1

bj = P41 —.PF,
m

Then, it holds that b; < b;11 and fp is perfectly calibrated as

P(H=h; | B=b;)-P~+P(H=hj_, | B=b;)-P* ifj<k
P(H=hy | B=b;)-P~+P(H=hy | B=b;)-P+ ifj>k

and thus, using the definitions of P(H | B) and P(Y | H, B), we have that P(Y | B = b;) = b,.

To show that fy is monotone with respect to the probability that Y = 1, first note that P(H =
h;, B =b;) decreases as i increases and P(H = h;, B = b;1) increases as ¢ increases. Moreover,
further note that P(Y =1 | H=h;,B=b)=P < P(Y =1 | H=h;,B=0b41)=P".
Hence, for any i € {2,...,k — 1}, it readily follows that
PY=1|H=h;)=P"-P(B=by1|H=h;))+P -P(B="b|H=h;)
<P(Y=1| H=hj),

and, fori = 1,itisevidentthat P(Y =1 | H=h;) < P(Y =1 | H = ha).

Finally, using LemmaEwith any choice of confidence values b = b;, h; = h;_1 and h; = h; with
j €42,...,k}, we have that any monotone Al-assisted decision policy 7 is suboptimal for any M
with |H| = k and |B| = m, m > k > 2, and fy, fp and PM as defined above. Here, note that,

as we do not fix the exact distributions P~ and P, the above Lemma applies to infinitely many
Al-assisted decision making processes M.

P(Y:1|B:bj):{

Construction with B C [0, 1] and |H| = k.

In this last part of the proof, we construct an Al-assisted decision making process M, with |H| = k >
2 and B C [0, 1], such that the decision maker’s confidence function f is monotone, the classifier’s
confidence function f is perfectly calibrated and the conditions of Lemma [3|are satisfied.

First, let the space of confidence values be H = {h;};c[x), With order h; < h; 1, the feature spac
X =10,1],and f~, f be two strictly monotone increasing functions with

f:00,1] = [0,¢) and fT:[0,1] = (c,1], a7

where 0.0 Lo
c= u(? )_u(? ) . (18)
u(1,1) —u(1,0) + u(0,0) — u(0,1)
Further, let Qr+1 = {0, ¢1, - - - @k, gx+1} be a set of quantiles such that P(X < ¢;) = j/(k+1) for
all j € {0,1,...,k + 1} and thus, we have that, for all j € [k + 1],

. 1
for IJ = (%—17%]7 it holds that P(X S [j) = m
Now, let fz and P be such that
12 ifie{j—1,4
Po(H=hi | X,Xel;)={1 ifi=j=1lor(i=kandj=k+1) (19)

0 otherwise,

'"For a more general feature space X', we can use a mapping ¢ of X’ to [0, 1]. The proof works analogously
by substituting X with ¢(X).

17
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Figure 5: Nonzero values of P(Y = 1| X, H = h;, X € I;) for every h; € H, with || = 3, and
I; = (gj—1,q;], with ¢; € Q4 used in the last part of the proof of Theorem Lighter color means
lower value of f~ or f7.

and let
f(X) ifj=diori=45=1)

fA(X) ifj=i+lor(i=kandj=k~+1), (20)

PW:lL&H:MXe@:{

as shown in Figure Next, we define

f7(X) ifXel
fB(Z) = f(X) = P(Y =1 | X) = ¢ [*(X) i X € Iy
(f7(X)+ ft(X))/2 otherwise,

which, by construction, is perfectly calibrated.

To show that the decision maker’s confidence function fy; is monotone with respect to the probability
that Y = 1, we first note that, using Eq.[I9] we have that

1/2 ifl<i<kandje {ii+1}and
1 ifi=j=1

1 ifi=kandj=k+1

0 otherwise.

P(Xel, | H=h;) = 1)

Hence, using Eq. and the law of total probability, for any ¢ € {2,...,k — 2}, we have that

1
PY=1|H=h)==[P(Y=1|H=h,X€L)+P(Y =1| H=h;,X € 4]
<

(@) + f(gir)]

[f7 (inf Lpy) + f7 (inf 1i40)]

NI =N ==

IN

[P(Y: 1 | thi+1,X€Ii+1)+P(Y=1 ‘ HZhH_l,X EIH_Q)]
—P(Y =1]| H=hi1),

where the inequalities follow from the fact that f~ and f7 are strictly monotone increasing. Corner
cases for ¢ = 1 and i = k — 1 can be shown analogously by further using that f~(X) < ¢ < f1(X)
for all X.
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Finally, using Lemma/3|with any choice of confidence values h; = hj_1 hj = h;,j € {2,-- ,k—1}
and b = fp(X) with X € I;, we have that any monotone Al-assisted decision policy = is suboptimal
for any M with |B| C [0,1] and |H| = k, k > 2 and fy, f5 and P™M as defined above. O

A.3 Proof of Theorem

We prove the statement by contraposition. Let M be an Al-assisted decision making process
satisfying Eqs.[2 and[3] with a utility function u(7, Y") satisfying Eq. P and let M be such that fp
satisfies c-alignment with respect to fy and fp has output space B C [0, 1]. Assume there exists no
(near-)optimal monotone Al-assisted decision policy for utility u. Thus, there must exist an optimal
Al-assisted decision policy = € II(H, B) which is not monotone and has strictly greater expected
utility than any monotone policy. However, we show that we can modify 7 to a monotone Al-assisted
decision policy 7 € II(H, B) with near-optimal expected utility.

As 7 is not monotone, there must exist confidence values hy, ho € H, h1 < hs, and by, by € B,
b1 < bs, such that

w(hy,b1,w) > w(he,by,w) forsome we W, (22)
where WV denotes the space of noise values. In what follows, let VN\/,(J’Zf’bQ) C W denote the set
containing any such w and let W(™h2:b2) =, , . o W,S?l;hmbz).

For any confidence value b/’ € H x [0, 1], we modify policy 7 to a policy 7 as follows. Let
{Sh }nen denote the sets satisfying the a-alignment condition for fp with respect to fy and, given
confidence h’, let by, denotg the smallest confidence value of fg, such that there exist h < h' with
P(Y: 1 | B:bh/,ZGSh) >c, e,

by c=min{fbe B | P(Y =1 | B=b,Z€8),) >cforh <h'}. (23)

Now, we define a new Al-assisted policy 7 from 7 as follows,
1 if b > by, and w € Unzn sefp o] W
#(W, b, w) =<0 if b < by and w € Unsnbepr i) W (.hb) (24)
w(h', V' w) otherwise.
Next, we show that # is monotone and E; [u(T,Y)] > E [u(T,Y)] + « - a for some constant a.

Proof 7 is a monotone assisted policy.

To prove that # € II(H, B) is a monotone Al-assisted decision policy, we show that, for all
W R e H,V, b € B,with b/ < h”, b <b”, it holds that W}(Li’lﬁ”’b“) = (). We distinguish between
three cases.

— Case 1: b/ > by and b > by

Since ' < h”, ' < V'’ and, by definition, by < by since ' < h", we have that

U W(mhb) U W hib)
h<h’,b€ by, b R<h! bE by b
Hence, we can conclude that
(W0 w) <1 =#R", b w)forallw e U W(mh), (25)
h<h' b€ [by,1,b"]

Further, for any other w € W — Uhgh”,be[éh,/,b”] W(mh.b) cC W - Wff_yif”’b”), we have that
AWV, w) = (b, w) and #(h", b, w) = m(h",b",w) and, by definition of Wi "), it
follows that
(A, b, w) < 7(h", b w) forallw € W — U Wmhb), (26)
h<h" bE by ,b"
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From Egs. and it follows that W;(f,’b}f”’b”) =0.

— Case 2: b < by and b > bpr.

By definition of 7, we have that

(W0, w) < 1=#(R" b w)forallw e U Wim:hib) (27)
h<h! bE by b
and _
(W0 w) =0 < #&(h", b w) forall w € U Wimhib) (28)
h>h' b [V by )
Analogously to case 1, since the values of w below are also in WW — W(?’b}f”’b”) and 7 is equivalent
to 7 for these values, we have that
(W0 w) < &(h", 0", w) forallw e W — U Wmhb) _ U wimh:b)
h<h" bE by, ,b" h>h! bE[V by, )
(29)
From Egs. and it follows that W,(fbff R )
— Case3: b/ < by and b < by».
Since b/ < h”, b < b and, by definition, by < by since ' < ", we have that
U Wimhb) ¢ U Wm:hib)
h>h'",bE[b" by, ) h>h' bE[b by )
Hence, we can conclude that
7,0 w) =0 < 7(h", b, w) forall w € U Wmht) (30)
h>h bE[b by )
Again analogously to case 1, since the values of w below are also in W — V~V(7,T’b}f”’b”) and 7 is
equivalent to 7 for these values, we have that
(W0 w) < #(h", 0", w) forall w € W — U Wimhb) (31)

h>h! ,bE[b by )

From Egs. and it follows that W(i’b}f”’b”) = 0.

Note that, we cannot have a case where &’ > by, and b’ < by, as this would imply " < ¥'. Since,

in all three possible cases, we have shown that W}(fb]f ) (), we can conclude that 7 € TI(H, B)
1S monotone.

Proof 7 is near optimal.

First, we rewrite the inner expectation in Eq.[I0|as

E,[w(T,Y) | H,B] =E[u(0,Y) | H,B]+ (E[u(1,Y) | H, B]
—-E[u(0,Y) | H,B])- P,(T'=1 | H,B).

Further, recall that |S,| > (1 — «/2)|Sy| for all h € H and, for all b/, h” € H, ' < b and all
b v €10,1], b < b”, we have that

PY=1]|f(2)=V,Z2€Sy)-PY =1| fp(2)=b'2Z¢cSw)<a (32)

Now, for any h/ € H,b' € B, we show an upper bound on E.[u(T,Y) | H = b/, B = V] —
E:[u(T,Y) | H=h',B =1']. We distinguish between three cases.

—Casel: v/ > by and P(Y =1 | H=H ,B=1V)>c.
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Using Lemma|[2] we have that
(Elw(1,Y) | H=h ,B=V]-E[u0,Y) | H=1W,B=10])>0 (33)
Moreover, as b’ > l;h/, the distribution of positive decisions in 7 may also increases for h', '
compared to 7 (see Eq.[24), i.e.,
P(T=1|H=hWB=V)-P:(T=1|H=h,B=b)<0
Hence, it follows that
E [u(T,Y) | H=h,B=0V]—-E:[u(T,Y) | H=1 B=1V]
= (Eu(1,Y) | H=1,B=¥]-E[u0,Y) | H=1,B=1%)) (34)
X(P(T=1|H=h,B=0V)-P;(T=1|H=H/,B=1V))<0.

—Case2: Y/ >byandP(Y =1 | H=W,B=V)<c

Since b’ > by, there exists h,be H xB,withh <h,b<V,suchthat P(Y =1 | B=bZ €

Sh) > c¢. Moreover, using the definition of a-alignment, we have that
PY=1|B=b2Zc8,)<PY=1|B=V,Z¢8)+a (35)

Then, we can use this to lower bound the expected utility of 7 = 1 given B = I/ and Z € S as
follows:

Eu(1,Y) | B=b,Z€ Sy —Eu(1,Y) | B=V,Z € S

u(1,1) - (P(Y=1|B=bZ€8,)~PY =1| B=V,Z¢cSp)
+u(l,0)-(P(Y=1|B=V,ZeSy)-P(Y=1|B=b27Z¢cS8))
< (u(1,1) —u(1,0) - o,

where the last inequality due to Eq.[35]and the assumption that u(1,1) — u(1,0) > 0. Analogously,
we can also upper bound the expected utility of 7' = 0 given H = b/, B =1/ and Z € Sy as follows:

(36)

E[u(0,Y) | B=b,Z €Sy —E[u(0,Y) | B=1V,Z € S
=u(0,1)-(PY=1|B=0b0Z¢c8,)-PY =1 |B=V,Z¢cSy)
+u(0,0)-(P(Y=1|B=V,Z€Sy)-P(Y =1|B=b27ZcS8))
Z (u(0,1) = u(0,0)) - a,

where the last inequality holds due to Eq. and the assumption that ©(0,1) — u(0,0) < 0.
Now,as P(Y =1 | B=b,Z € (S:h) > ¢, by Lemma we have that
E[u(1,Y) | B=0b,7Z € 8] > E[u(0,Y) | B=10b,7Z € S} (38)
Combining Egs. [36} [37]and [38] we obtain
E[u(1,Y) | B=V,Z € Sp] + a(u(1,1) — u(1,0))
> E[u(0,Y) | B=V,Z e S|+ a(u(0,1) — u(0,0))

(37

(39)

In addition, note that we have following trivial bound for the expectation when H = h’ but Z ¢ Sh
w(1,0) <E[u(1,Y) | H=W,B="¥b]<u(l1,1), (40)
u(0,1) <E[u(0,Y) | H="1",B=1V]<u(0,0) (41)
Moreover, since b’ > l;hl, the distribution of positive decisions in 7« may also increase for h', b’
compared to T, i.e.,
P.(T=1|H=W,B=V)-P:(T=1|H=h,B=V)<0
Hence, we have that
E [u(T,Y) | H=h,B=V]—-E:[u(T,Y) | H=1,B=1V] 42)
<(-1)-(Eu(1,Y) | H=h,B=0V]-E[u(0,Y) | H="1W,B=1V]),
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where the inequality follows since E[u(1,Y) | H =1, B=V]-E[u(0,Y) | H=h,B=V]<0
by LemmaPlas P(Y =1 | H=1,B=V)<c

Finally, combining Eqgs. [39} 40} A1) and [#2] and using the law of total expectation, we obtain
E.[u(T,Y) | H=h,B=0]-E:[u(T,Y) | H=1, B=1]
< (1 - B ) EmO,Y) | B=V,ZeSp]-Eul,Y) | B=V,Z e Sy))
+ By (Bu(0,Y) | H=1,B=V]—-Eu(1,Y) | H="H,B="1))
< (1= Buwpry)a(u(1, 1) = u(1,0) + u(0,0) — u(0, 1)) + Bia ) (u(0,0) — u(1,0)),
(43)
where (3, ;) denotes the probability of Z ¢ Spogiven H=W,B =1V, ie., B yy = P(Z ¢
Sw|H="1,B=1V).
— Case3: b/ < by.
For all h, b, with h < h’,~b <V,wehavethat P(Y =1 | B=b,Z € Sh) < c. In particular,
P(Y=1| B=V,Z € Sy) < c. Thus, by Lemma
Eu(1,Y) | B=V,ZcSy] <Eu(0,Y) | B=V,Z € Sy (44)

In this case, since &' < by, the distribution of positive decisions in 7 may decrease for h, b compared
tom, ie.,

0<Pu(T=1|H=hB=b)—Py(T=1| H=h,B=b)
Combining Eqs[44] 0] and [fT] and using the law of total expectation, we obtain
E [u(T,Y) | H=h,B=0b]-E;[u(T,Y) | H=h,B=1V]
< (Blu(1,Y) | H=K B =V]—Eu(0,Y) | H=K,B="¥])-1
= (1= B Eu(LY) | B=V,ZeSy]—Eu(0,Y) | B=V,Z € Sy))
+ By (Bu(LY) | H =1, B = V)~ Ey[u(0,Y) | H =B =V

< ﬂ(h’,b/)(u(lv 1) - U(O, 1))7
(45)

where again (3, ) = P(Z ¢ Sw|H="hn,B=10).

Now, for a fixed b’ € #, since |Sp/| > (1 — a/2)|Sp|, we know that 0 < Y oven By < af2.
Hence, combining Eqs. [34} 3] and 3] from the three cases above, we have that

EplE.[u(T,Y) | H=h,B=V] - Eg[E:[u(T,Y) | H="H,B=1V]
=Ep[E [u(T,Y) | H=10,B=V]-E:[u(T,Y) | H=1,B="V]
< max{a(u(1,1) —u(1,0) +«(0,0) —u(0,1)) + % - (u(0,0) —u(1,0)), % ~(u(1,1) —u(0,1))}

<a-(u(1,1) —u(0,1) + g - (u(0,0) — u(1,0))).

Finally, since by assumption 7 is optimal, ie, E [u(T,Y)] = E;[u(T,Y) =
max,er(g,8) Ba [u(T,Y)], we can conclude by the law of total expectation that

Er«[u(T,Y)] = EgEB[Ey, 7| [u(T,Y) | H, B]]
<E:[u(T,Y)]+a- (u(1,1) —u(0,1) + g - (u(0,0) — u(1,0))).
This concludes the proof.

A.4 Proof of Theorem

If fp is v/ 2-multicalibrated with respect to {Sy, } e, then, by definition, for any h € H, there exists
Sp C Sy, with [S| > (1 — «/2)|S| such that, for any b € [0, 1], it holds that

P(Y =1 f8(2) =b,Z € &) —b] < a/2.
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This directly implies that, for any A/, h”" € H and ¥, 0" € [0, 1], we have that
PY=1|fp(2)=V,Z2€Sy)—b —PY =1| fp(2)=V,Z2c8w)-b"<a (46)
and, using linearity of expectation, we further have that
PY=1]|fp(2)=V,Z2€8y)-P(Y =1| fg(Z)=V",Z€Sw)<a+b -V &)

showing that, whenever b’ < b”, the a-alignment condition is met. This proves that f5 is a-aligned
with respect to fy.

Finally, if f5 is a/2-multicalibrated with respect to {Sp, }re, then, it is «e/2-calibrated with respect
to any of the sets Sj,. Since Z = Uy Sh, this implies that f5 is «/2-calibrated with respect to Z.
This concludes the proof.

A.5 Proof of Proposition

Given a discretization parameter ), Algorithm[l]works with a discretized notion of a-multicalibration,
namely (o, \)-multicalibration:

Definition 10. Let C C 2% be a collection of subsets of Z. For any o, A > 0, confidence function
fB+ Z2 = [0,1] is (o, A)-multicalibrated with respect to C if, for all S € C, b € A0, 1], and all
Shoaw) (9) such that |Sp )| > aX|Sy|, it holds that

E[fp(X,H) - P(Y =1] X, H) | (X,H) € Spwll <. (48)

Here, we can analogously define a discretized notion of a-alignment, namely (o, A)-alignment.

Definition 11. For a, A\ > 0, a confidence function fg : Z — [0,1] is («, A)-aligned with respect to
fu if forall W' 1" € #, b/ <1, and all b/, b" € A[0,1], V' <", with |Sp x| > /2 A|Sp|
and |Spy \y| > /2 - XSk, we have

P(Y =1 | (X, H) S Sh’,)\(b’)) - P(Y =1 | (X, H) S Sh”,)\(b”)) S Q. (49)

In what follows, we first show that (o, A)-multicalibration with respect to {Sp, } e implies (2a +
A, A)-alignment with respect to fx.

Theorem 12. For o, A\ > 0, if fp is («, \)-multicalibrated with respect to {Sy}nen, then [p is
(20 + A, A)-aligned with respect to fir .

Proof. If fp is (a, A)-multicalibrated with respect to {.S }nec#, then, by definition, for all h € H,
b € A0, 1], and all S, 5 such that |S;, yp)| > c - A|Sp|, it holds that
E[fp(X,H) = P(Y =1| X,H) | (X,H) € Spp)| < (50)

This directly implies that, for all 2/, " € H,V',0" € A0, 1] with [Sp/ \@)| > - A|Sp/| and
|Sh”,)\(b”)| Z (7 A‘Sh'/ ‘, it holds that

E[fB(X7H)_P(Y:1 | X7H) | (XaH) 6'S"h”,)\(b”)]

(5D
—E[fs(X,H)-PY =1| X,H) | (X,H) € Sy )] <2
and, using the linearity of expectation, we have that
PY=1|(X,H) €Sy w)) —PY =11 (X,H) € Sprp)) (52)

<20+ E[fp(X,H) | (X, H) € Sp e — Elfs(X, H) | (X, H) € Spram)-
Whenever b’ < b”, due to the \-discretization, we have that

Elfp(X,H) | (X,H) € Sp o] —Elf(X, H) | (X, H) € Sprawn] <A (53)

Hence, we have shown that if fp is a-multicalibrated, then for all b’, b € H, b, b € A[0, 1] with
|Sh’,)\(b’)‘ > - )\|Sh/| and |8h”,)\(b”)| > - )\|Sh” |, we have

P(Y = 1 | (AXV7 H) S Shly)\(b/)) — P(Y = 1 | (X, H) (S Sh”,)\(b”)) S 2a+ )\ (54)
Further, note that (2a + A)/2- A > « - A as A > 0. This concludes the proof. O
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Next, we show that, if fp is (o, A)-aligned, then fp  is a-aligned with respect to fz.

Theorem 13. For a, A > 0, if fp is (a, X)-aligned with respect to fy, then fp x is a-aligned with
respect to fy.

Proof. The proof is similar to the proof of Lemma 1 in Hébert-Johnson et al. [11]. Consider all
Sha(v) such that Sy, yp)| < @A[Sk|. By the A-discretization, there are at most 1/ such sets, thus,
the cardinality of their union is at most 1/ AaA|Sy| = «|Sy|. Hence, for all h € H, there exists
a subset S, C S, with |Sp,| > (1 — «)|Sy| such that, for all b/, " € H, with b’ < h”, and all
b6 € A[0, 1], with b’ < b, it holds that

PY =1|(X.H) €Sy pyNSw)—PY =1| (X, H) € SprrpyNSpr) <. (55)

The A-discretization sets all values of (z, h) € Sy a0 fea(z,h) =E[fp(X,H) | fp(X,H) €
)\(b/)]. Note that, for (x, h) S Sh’,)\(b’)7 fB’)\(l‘, h) S )\(b') and for (x, h) € Sh”,)\(b”), fB,A(L h) S
A(B"), so it still holds that E[f5 (X, H) | fs(X,H) € AV)] < Elfs(X,H) | fs(X,H) €
A(b")]. Thus, using Eq.[55] we have that

P(Y =1 fp(X,H)=E[fs(X,H) | (X,H) e \V)],(X,H) cSy)
—P(Y =1 fp(X,H) =E[fp(X,H) | (X,H) € \V")],(X,H) € Sp) <
This concludes the proof. O

(56)

Finally, using Theorems [E and [E, it readily follows that, given a parameter o, the discretized
confidence function fp  returned by Algorithm satisfies (2a’ + A)-aligned calibration with respect

to fu.

A.6 Proof Theorem[9]

We structure the proof in three parts. We first explain the calibration guarantee that UMD provides
and how it relates to human-aligned calibration. Then, we derive a lower bound on the size of the
subsets D N Sy, so that the discretized confidence function fg y satisfies a-aligned calibration with
respect to fz with high probability. Finally, building on this result, we derive an upper bound on |D|
so that fp ) satisfies c-aligned calibration with high probability as long as there exists v > 0 so that
P((X,H)e Sp) >~ forallh € H.

Conditional Calibration implies Human-Aligned Calibration. Running UMD on a dataset
D € (£ x V)™, where each datapoint is sampled from M, guarantees (a, £)-conditional calibration,
a PAC-style calibration guarantee [12]. Given a dataset D, a confidence function fp satisfies (¢, £)-
conditional calibration if, with probability at least 1 — & over the randomness in D,

Voe[0,1], [P(Y =1[fp(X,H)=0b)-b<a.
This stands in contrast to the definition of «a-calibration, which requires only that the confidence
fB(X, H) is at most « away from the true probability for 1 — « fraction of Z.

Similarly, using an union bound over all h € H, («/2,£/|H|)-conditional calibration of fp on each
Sh, h € H, implies that, with probability at least 1 — £ over the randomness in D, fp satisfies that

VheH, Vvbel0,1], |P(Y=1fp(X,H)=bH=h)—>b<a/2. (57)
Hence, analogously to the proof of Theorem|8] this implies that, with probability at least 1 — £ over
the randomness in D, fp also satisfies that

Vh,h' € H,h <K', Vb0 € G, b <V,
PY =1|fp(X,H)=bH=h)-P(Y =1|fg(X,H) =V ,H=1) < «a.

In summary, from Egs.[57]and[58] we can conclude that (v/2, £/|H|)-conditional calibration of f5
on each Sy, h € H, implies that, with probability at least 1 — £, fp satisfies a-aligned calibration,
where, for all h € H, we have that S}, = S,.

(58)

Lower bound on |D N S| to achieve conditional calibration with UMD. Running UMD on each
partition D N Sy, of D induced by h € H achieves («/2, £/|H|)-conditional calibration as long as
each subset D N Sy, of the data is large enough. More specifically, the following lower bound on the
size of the subsets D N &}, readily follows from Theorem 3 in Gupta et al. [12]].
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Lemma 4. The discretized confidence function fp y returned by |H| instances of UMD, one per Sp,
is (a/2,&/|H|)-conditional calibrated on Sy, for any € € (0,1) if

2log 2[H| 1L
|D N Sh' 2 Noin 2= ( 52 [A—‘) + 2 : ’71-‘ (59)
@ A

Proof. Let B denote the number of bins in UMD. Theorem 3 in Gupta et al. [12] states that, if
fB(X, H) is absolutely continuous with respect to the Lebesgue measur and |D N Sy| > 2B,
then the discretized confidence function output by UMD is (e, £’)-conditionally calibrated for any

¢ €(0,1)and
_ log(2B/¢")
- \/Q(HD NSy|/Bl —1)° (60)

Then, for a given «, setting € = «/2, B = [1/A] and £’ = /||, we can solve Eq.[60]for the lower
bound on |D N Sp,| > nuin With 1y, as defined in Eq. O

Upper bound on | D| to achieve conditional calibration with UMD. Suppose P((X, H) € Si) >~
for all h € H. When |H| > 2, we give an upper bound on |D| so that with high probability
|D N Sk| > nuin forall b € H.

In the process of sampling D € (Z x Y)" from PM, let REh) = 1 denote the event that the i-th
datapoint (z;, h;, y;) has confidence value h, i.e., h; = h. Then, we can express |D N Sy | in terms of
random variable R(") defined as

ID|
RM =3~ R". 61)
=1

Since Rgh) is a Bernoulli-distributed variable with P (Rgh)) = P((X, H) € Sp), the expected value
of R is u(h) := E[RM] = P((X, H) € Sp) - |D| = v - |D|.

Let |D| =2 |H|-log(2/£) - 1/ - numin, Observe that in this case

P(R™ < p :P<R(h) < T . D).
(B < i) < AT Tog2/e) T

For |H| > 2 and £ € (0, 1), we have 1/(2|H| - log(2/£)) € (0,1) and we can use a variation of the
Chernoff bound to show

P(R™ < npyin) < P (R = 2H| - log(2/€) M(h)>

2% log(2/6)~112 1
< oMM (e ) 3

1 1 1
— ef“(h)'?(lf THTTog(278) T <2m|-log<2/s>>2)

(1_ 1 1
< § . e_‘H"n""" (2 2\H\'log(2/£)+2(2m|~1og(2/§))2)’

where the first and last inequality results from using p(h) > «y - |D|. We can now use a union bound
to obtain a lower bound on the probability that for any h € H, |D N S| < nmin, i-€.,

P(E3heH: IDNSL] < Nimin) < g | H] 'eimlhn‘“‘“'(%7Q\Hl’lég@‘/@+2(2|H\-1:g<2/5>>2) (62)

One can verify that for || > 2 and nyi, > 1, we have P(3h € H : |D N Sp| < nin) < % Hence,
if | D| =2-|H]|-1log(2/£) -1/ - Numin, then, for all h € H, |D N Sp| < nmin With probability 1 — £/2.

"If £ is not continuous with respect to the Lebesgue measure (or equivalently put, f5 does not have a
probability density function), a randomization trick can be used to ensure that the results of the theorem hold.
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Combining this result and Lemma we have that the discretized confidence function fp ) returned
by |H| instances of UMD, one per S, is (a/2,£/(2|H]))-conditional calibrated on each Sy, with
probability at least 1 — £/2 for any £ € (0,1) if

|D2~|H|'log(j/£>~ 21°g<#'m)+2 H 63)

a?

A

Finally, using a union bound, we can conclude that fg ) achieves a-aligned calibration with respect
to fy with probability at least 1 — £ from

Dl =0 (jw- PN

samples. This concludes the proof.
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B Multicalibration Algorithm

In this section, we give a high-level description of the post-processing algorithm for multicalibration
introduced by Hébert-Johnson et al. [[L1]]. The algorithm works with a discretization of [0, 1] into
uniform sized bins of size A, for a A > 0. Formally the A-discretization of [0, 1], is defined as
Definition 14 (\-discretization [L1]). Let A > 0. The A-discretization of [0, 1], denoted by A[0,1] =
2,32 ..., 1 — 3}, is the set of 1/ evenly spaced real values over [0, 1). For b € A[0, 1], let

29 9 s
AD)=[b—=A/2,v+A/2) (64)
be the \-interval centered around b (except for the final interval, which will be [1 — X, 1]).

It starts by partitioning each subspace S}, into 1/A groups Sy, ) = {(z,h) € Su | fp(x,h) €
A(b)}, with b € A[0,1]. Then, it repeatedly looks for a large enough group Sy, () such that the
absolute difference between the average confidence value E[fp (X, H) | (X,H) € Sj z)] and
the probability P(Y =1 | (X, H) € Sj z)) is larger than « and, if it finds it, it updates the
confidence value fg(z,h) of each (x,h) € Sy z) by this difference. Once the algorithm cannot
find any more such a group, it returns a discretized confidence function fz x(x, h) = E[fp(X, H) |
fe(X,H) € A(b)], with b € A0, 1] such that fg(x,h) € A(b), which is guaranteed to satisfy
(o + A\)-multicalibration.

Algorithm [T provides a pseudocode implementation of the overall algorithm. Within the implementa-
tion, it is worth noting that the expectations and probabilities can be estimated with fresh samples
from the distribution or from a fixed dataset using tools from differential privacy and adaptive data
analysis, as discussed in Hébert-Johnson et al. [[L1].

Algorithm 1 Post-processing algorithm for (o + A)-multicalibration

1: Input: confidence function fp, parameters o, A > 0
2: Output: confidence function fp )

3: repeat

4:  updated < false

5: forS, eC&be Al0,1]do

6: Spaw) ¢ SnN{(z,h) € Z | fp(x,h) € A(D)}

7: ifP((X,H)ESh)\(b))<Ot/\~P((X,H)€S},,) then
8: _ continue

9: bhaw) < Elfp(X, H) | (X, H) € Shaw))

10: ThA(b) %PQY:1 | (X,H) GSh)\(b))

11 if [ A(b) — bn,a@p)| > a then

12: updated < true

13: for (J), h) S Sh,)\(b) do

14: IB(x,h) < fB(x,h) + (rhA®) — bnaw)) {Projectinto [0, 1] if necessary}

15: until updated = false

16: for b € A[0,1] do

17: b/\(b) %]E[fB(X, H)‘fB(X, H) S )\(b)]
18:  for (z,h) € Z : fp(x,h) € A\(b) do
19: fea(@, h) < by

20: return fp
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C Additional Details about the Experiments

Transformation of confidence values. The confidence values in the Human-AlI Interactions dataset
were originally recorded on a scale of [—1, 1], where 1 means complete certainty on the correct
true label and —1 means complete certainty on the incorrect label. To better match our theoretical
framework, we transform all confidence values to a scale of [0, 1], where 1 means complete certainty
that the true label y = 1 and 0 means complete certainty that the true label is y # 1. More formally,
let b, h, hoar € [—1, 1] be the original confidence values in the dataset, then we obtain b € [0, 1] via
the following transformation:

(b+1)/2 ify=1
T 1—(b+1)/2 ify=0,

and analogously for h and h,aj.

Comparing decision policies 75, 7 and 7, ,,. Figure[6 shows the ROC curves for the decision
policies mg, g and 7y, ,, in each of the four tasks in the Human-AlI Interactions dataset.
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Figure 6: ROC curves for the decision policies 7, 7y and g, ,,.
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