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A ADDITIONAL RELATED WORKS

Personalized FL: Personalized FL has received much attention. The existing literature could be
categorized based on how personalization is brought in.

Model interpolation: |Hanzely & Richtarik (2020) also study a mixed model (local and global
model) with a tuning parameter. In their model, as the mixing parameter decreases, it relaxes the
local model to be similar to the global model, which can be more personalized. Mansour et al.
(2020) propose an idea to combine the global and local model with weight «, and |Deng et al.
(2020) adaptively find the optimal a* as a trade-off at each round for the best performance. Zec
et al.| (2020); |Peterson et al. (2019) both consider using a gating model as a mixing parameter
between local and global models. However, |Peterson et al. (2019) consider a linear gating model
and differentially private FL under domain adaptation, while Zec et al. (2020) split data into two
parts used for local and global learning, and they further consider a dropout scenario and the same
gating model structure as local and global models.

Data interpolation: As also suggested in Mansour et al.| (2020), in addition to the model interpo-
lation, it is possible to combine the local and global data and train a model on their combination.
Zhao et al.[ (2018) create a subset of data that is globally shared across all clients. However, this
method is facing the risk of information leaking.

FL with Fairness. The fairness in FL also gets lots of attention to ensure clients are treated fairly.
Based on the type of fairness illustrated in the survey [Shi et al. (2023); [Rafi et al.| (2023), it could
also be categorized as follows:

Good-Intent fairness: The good-intent fairness aims to minimize the maximum loss for the pro-
tected group. [Mohri et al.| (2019) propose a new framework of agnostic FL to mitigate the bias in
the training procedure via minimax optimization. Similarly,|Cui et al. (2021) consider a constrained
multi-objective optimization problem to enforce the fairness constraint on all clients. They then
maximize the worst client with fairness constraints through a gradient-based procedure. Papadaki
et al.|(2021)) show that a model that is minimax fair w.r.t. clients is equivalent to a relaxed minimax
fair model w.r.t. demographic group. They also show their proposed algorithm leads to the same
minimax group fairness performance guarantee as the centralized approaches.

Other types of fairness: There are also other types of fairness considered in the FL literature. For
instance, Huang et al.| (2020) studied the unfairness caused by the heterogeneous nature of FL,
which leads to the possibility of preference for certain clients in the training process. They propose
an optimization algorithm combined with a double momentum gradient and weighting strategy to
create a fairer and more accurate model. |Chu et al.| (2021) measure fairness as the absolute loss
difference between protected groups and labels, a variant of equal opportunity fairness constraint.
They propose an estimation method to accurately measure fairness without violating data privacy
and incorporate fairness as a constraint to achieve a fairer model with high accuracy performance.
Similarly, Zhang et al.| (2022) study a new notion of fairness, proportional fairness, in FL, which is
based on the relative change of each client’s performance. They connect with the Nash bargaining
solution in the cooperative gaming theory and maximize the product of client utilities, where the
total relative utility cannot be improved. Similarly, |[Lyu et al.| (2020) study collaborative fairness,
meaning that a client who has a higher contribution to learning should be rewarded with a better-
performing local model. They introduce a collaborative fair FL framework that incorporates with
reputation mechanism to enforce clients with different contributions converge to different models.
Their approach could also be viewed as a variant of clustering that separates clients based on their
contributions.

B DATASET AND MODELS

In this section, we detail our data and model used in the experiments.

Retiring adult. We use the pre-processed dataset provided by the folktables Python package (Ding
et al.,[2021), which provides access to datasets derived from the US Census. In this package, it con-
tains three tasks: ACSEmployment, ACSIncome, and ACSPublicCoverage. In this study, we focus
on real-world experiments on the tasks of ACSEmployment and ACSIncome. For the ACSEm-
ployemnt task, the goal is to predict whether the person is employed based on its multi-dimensional
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features. For the ACSIncome task, the goal is to predict whether the person could earn more than
$50,000 annually.

Model. We train a fully connected two-layer neural network model for both tasks, where the hidden
layer has 32 and 64 neurons for the Income and Employment tasks, respectively. For both tasks, we
use the RELU activation function and a batch size of 32. Furthermore, we utilize the SGD optimizer
for the training with a learning rate of 0.001 for both FedAvg and MAML algorithms and 0.05 for
the clustered FL algorithm. In FL, each client updates the global model for 10 epochs in the FedAvg
and MAML algorithms and sends it back to the server, while the clustered FL algorithm that has a
larger learning rate updates the global model for 1 epoch. We also follow the encoding procedure for
categorical features provided by the folktables Python package. The input feature size is 54 and 109
for the Income and Employment tasks respectively. Throughout the experiments, we consider both
gender (e.g., male and female) and race (e.g., White and Non-White) as the protected attributes.

ACSEmployment dataset with different protected attributes.

Employment: Race(label)
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Figure 5: Fraction of samples over all states for ACSEmployment

We could see from Figure [5] and [f] that by choosing different protected attributes: race (left) and
gender (right), the group rates are significantly different even using the same ACSEmployment
dataset. For the protected attribute gender, the amounts of samples are nearly even across groups and
labels. However, for the protected attribute race, White groups has much more samples compared to
Non-White groups in both labels {0, 1}.

ACSIncome dataset with gender as protected attributes.

We could see from Figurd7]and [§] that the fraction of samples is similar across groups for label 0
data, but differs significantly for label 1 data.
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(b) Protected attribute: Gender

Figure 6: Normalized frequency of fraction of samples for ACSEmployment
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Figure 7: Normalized frequency of fraction of samples for ACSIncome

C PROOFS

C.1 PROOF OF PROPOSITION[I]

Proof. Let ®(0) be the cluster-wise statistical parity fairness gap at the given decision threshold 6.
According to its definition, it could be written as

2(6) = o /9 " @)+ al /9 " @) — o} /9 " fHa)de - of /9 " ().

According to the Leibniz integral rule 2003), we can find the derivative of ®(6) w.r.t. 6
as following:

’

© (0) = oy f (0) + £ (0) — aq fa (0) — i f3(0)
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Figure 8: Fraction of samples over all states for ACSIncome

Based on our Gaussian distribution assumption with equal variance and equalized label participation
rate oy, we can write the above expression in the following closed form with a = o) Vy, g

_ ., 1)2 _0)\2 12 o
(GXp(_%)—}—exp(—%)_exp(_%)_exp(_ (9 20-!"2(1) ))

—

o' (0) =

2ro

We start with the analysis where the gr, = gry, it can be easily verified that at the scenario where
the label participation rates are balanced, the optimal decision threshold #* obtained by solving
could be written in the closed form such that

g0 _ Hat My _ My + g

2 2

At the optimal solution %<, P’ (6*¢) = 0. To investigate the impact of FedAvg solution ¥4 on the

statistical parity fairness gag, it is equivalent to check how the P’ (6*°) change in the neighborhood
of the optimal solution §*%. At extreme cases where § — oo or —oo, we can easily find that the
value of statistical parity fairness gap ®(c0) = ®(—o0c) = 0. Therefore, if ® (0*) > 0, then
we can conclude that the FedAvg solution #7'4 would lead to a larger fairness gap (worse fairness
1y2 042
performance) compared to the optimal solution 0. Let 1/, (6) = exp(— % )—exp(— %)

_ (0—py)? (0—pp)* . & K
and ¢ (0) = exp(—-554~) — exp(—-524—). At the solution §**, we can find that ¢, (0*) =

P2(07) = 0.

Hence, to investigate how the ® (6*®) change, we can find the rate of change for both 11 (6) =
12() in the neighborhood of §*¢ such that

’ 9% _,0)2 9O 0 9% 0 _ )2 g+ 1 9= _
91(079) = exp(gheh) St — exp () S = Zexp(bh ) (g — i)
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By setting 1//1(9*70) > 1/};(9*70), it means the increment of 1, is larger than the decrement of
1. Since ¢ < %5, the FedAvg solution 74, the weighted average of two clusters’ optimal
solutions, would be greater than #*<. Therefore, there exists a cluster size weight p such that
6F4 > 9. According to our analysis, we could also find that ®(#¥"4) > ®(6*°). By plugging

the closed form of 6 into 1} (6*%) > 1 (%), it yields the required conditions.

Besides, for the scenario of gr, # grp, we can find that the change of gr, does not affect the sta-
tistical parity fairness gap ®(#), but it will affect the location of §*¥. According to our distribution
assumption, when gr, > (resp. <)grs, the optimal solution #*< will be in favor of the label 1 (resp.
0) distribution, leading to a right (resp. left) shift compared to the optimal solution when gr, = grp.

However, when gr, — 1 (resp. 0), ¢ — £ 2;” 2 (resp. & g;“ ; ), which is limited within the
0, .0 1,1 1,1 ,
range of (Lette Matho) When § = “atls e can easily find that &' (0) ~ 0 especially when o

is small. In other words, we can conclude that ®(0) > ®(6*°) for any "¢ € (“‘”L’Lb, “";”“)
Therefore, we are still able to draw the conclusion that there exists a p such that FedAVg solution

674 would lead to a worse fairness performance compared to the optimal decision threshold §* < if

D1 (679) = 9y (6°°).

O

C.2 PROOF OF PROPOSITION 2]

Proof. The proof technique is the same as the proof of Proposition[T] It is worth noting that when the
label participation rates are balanced, the fairness ®(6) has two equal-height peaks (e.g., ®'(6) = 0)
by symmetricity of the Gaussian distribution when 6 ~ £ i;r# : and £ g';r# : , especially when o is
small. However, when the majority of samples are labeled as 1, we observe a shift in the decision
threshold *¢ < @ towards the left to account for label imbalance. In this case, since 6F4 >
6%, the FedAvg solution pulls 6% upwards, favoring label 1, which results in both accuracy and
fairness deteriorating. Moreover, when the majority of samples are different between the two groups,
the cluster experiences a worse accuracy-fairness trade-off. When gry, > gr, and the majority of
samples are labeled 1 in one group where the other group has a better balance in the label, 8¢ < @
holds true. Under the specified conditions, ®(#) will increase initially and then decrease. According
to the assumption that #*¢ < %[, there exist a cluster size weight p such that the FedAvg solution

6F 4 .= ph*< + (1 — p)#*5 will make the cluster <) unfairer. O

D ADDITIONAL NUMERICAL EXPERIMENTS

D.1 ADDITIONAL EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED GAP
AND BALANCED RATE

The following experiments compared to the experiments in Table [I|consider different group rates in
the cluster >, while we still assume the optimal decision threshold 6% to be 8, remains unchanged.
In the following experiments, we only release the equalized group rate assumptions while the other
assumptions (e.g., equalized gap and label rate) still hold.

In Table |4} we can see that under the assumptions of the equalized gap and label rate, the changes
in the group rate do not affect the fairness performance in the cluster <». There exists a cluster size
weight p such that the FedAvg solution would lead to a worse fairness performance compared to the
clustered FL solutions. This observation is also consistent with our findings in the Proposition|[T}

D.2 ADDITIONAL EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED GAP

The following experiments compared to the experiments in Table [2| consider different group rates in
the cluster {», while we still assume the optimal decision threshold 6% to be 8, remains unchanged.
In the following experiments, we release both the equalized group rate and label rate assumptions
while the other assumptions (e.g., equalized gap) still hold.
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Table 4: Cluster < fairness performance under Gaussian distribution with equalized gap and label
rate, but not group rate

0 0 . FA
1Dls(§rlbll.lt100n Group rate SPDy(6%9) A_SI;DQ (0 _)1
(,LLa, Has Ky Ky 0) (gravgrb) p= 3 b= 2
(0.5,0.5) 0.1359 0.1814 1t 0.1945 1
(0.7,0.3) 0.1388 0.1881 1 0.1927 1
(7,4,6,3, 1) (0.9,0.1) 0.1465 0.19251 0.1895 1
(0.2,0.8) 0.1421 0.1691 1t 0.1939 1
(0.4,0.6) 0.1367 0.1773 1 0.1947 1

Table 5: Cluster { fairness performance under Gaussian distribution with equalized gap, but not
label rate and group rate

Distribution Label rate Group rate ASPD(6F4)
ASPD (0% ©

(pas 0, piy, 11, 0) (b, 0d al,af)  (gra,gmy) o072 i p=3
(0.5,0.5) 0.2062 028324 0.3041 1
(0.7,0.3,0.6,04)  (0.3,0.7) 0.2024 0.2740 1 03043 4
(0.7,0.3) 0.2136 029214 0.3021 )
(7,4,6,3, 1) (0.5,0.5) 0.0453 0.14331  0.1961 ¢
0.6,0.4,0.7,0.3)  (0.3,0.7) 0.0460 0.1236 1+ 0.1886 1
(0.7,0.3) 0.0535 0.1627+ 0.2012 1
(0.5,0.5) 0.3797 039621 03676
(0.7,0.3,0.4,0.6)  (0.3,0.7) 0.3780 03969+ 0.3734 |
(0.7,0.3) 0.3821 0.39451 03607 |

_ 999 _2

=100 P=3
(0.7,0.3) 0.1005 0.1003, 0.0205
(0.9,0.1) 0.0725 00722 0.0462 ]
7,4.6,3, 1) (04,06,07.03) 37 0.1013 010151 00367 |
(0.1, 0.9) 0.0767 00771+ 0.0632 ]

From Table[5] we can observe that under the assumptions of the equalized gap, when the majority of
samples are labeled 1 (rows 1-6), the changes in the group rate do not affect the fairness performance
in the cluster {». There exists a cluster size weight p such that the FedAvg solution would lead
to a worse fairness performance compared to the clustered FL solutions. When the majority of
samples are labeled differently (rows 7-13), we can find that there always exists a p such that the
FedAvg solution would lead to a worse fairness performance when gr, < gr,. However, when
the gr, > grp, the FedAvg could lead to a worse fairness performance (row 9) or a better fairness
performance (rows 11-12) for certain cluster size weight p. This observation is also consistent with
our findings in the Proposition 2|

D.3 ADDITIONAL EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION

The following experiments compared to the experiments in Table 2] consider different group rates in
the cluster ¢», while we still assume the optimal decision threshold #*F to be 8, remains unchanged.
In the following experiments, we release all the assumptions of equalized group rate, label rate, and

&ap.

From Table [6] we can observe that when the majority of samples are labeled 1 (rows 1-3 and 7-9),
there exists a cluster size weight p such that the FedAvg solution would lead to a worse fairness
performance compared to the clustered FL solutions under the unequalized gap scenario (e.g., j12 —
pQ # pi — u). This observation also experimentally extends our findings in the Proposition
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Table 6: Cluster { fairness performance under Gaussian distribution with equalized gap, but not
label rate and group rate

Distribution Label rate Group rate ASPD(0F4)
ASPDy (6 ¢
(pl, pl, i, pwd, o) (@l al al,ad)  (gra,gm) o(0%) p=2%2 p=1

0.5, 0.5) 0.2598 030371 0.3094 1

(0.7,0.3,0.6,0.4)  (0.3,0.7) 0.2589 0.29611 0.3120 1

(7.45.6.3. 1) (0.7,0.3) 0.2646 0.3098 + 0.3037 1
(0.5,0.5) 0.4263 0.4079 | 0.3667 |

(0.7,0.3,0.4,0.6)  (0.3,0.7) 0.4288 0.4124 ] 0.3765

(0.7,0.3) 0.4240 0.4013 | 0.3550 |

0.5,0.5) 0.1871 0.2860 1 0.3026 1

(0.7,0.3,0.6,0.4)  (0.3,0.7) 0.1785 0.27951 0.3035 1

(7.4.6.35. 1) (0.7,0.3) 0.1984 0.29251 0.3006 1
(0.5,0.5) 0.3576 0.3916 +  0.3595 1

(0.7,0.3,0.4,0.6)  (0.3,0.7) 0.3538 039221 0.3627 1

(0.7,0.3) 0.3620 039051 0.3554 |

to the case of an unequalized gap. However, when the majority of samples are labeled differently
(rows 4-6 and 10-12), we could find that when p} — 18 > u} — pf, there exists a p such that the
FedAvg solution would lead to a worse fairness performance, and a distinct outcome occurs when
pt — pd < pi — pd. One reason for the distinct behaviors is that the corresponding condition is
not satisfied for the experiments in rows 4-6. Additionally, we find that as p enlarges in row 12, the
fairness gap decreases, and it could have better fairness performance than using the clustered FL
solution. This observation is also consistent with the previous finding that the fairness gap would
increase initially and then decrease. As we described earlier, it is clearly that p = 1/2 is not in the

range of (pl?)w,pgigh).
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