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ABSTRACT

As statistical analyses become increasingly central, there is a growing need to en-
sure their results are correct. Approximate correctness can be verified by replicat-
ing the entire analysis, but can we verify without replication? We focus on distri-
bution testing problems: given samples from an unknown distribution, the goal is
verifying that the distribution is close to having a claimed property. Our main con-
tribution is an interactive protocol between a verifier and an untrusted prover who
both have sampling access to the unknown distribution. Our protocol can be used
to verify a very rich class of properties: the only requirement is that, given a full
and explicit description of a distribution, it should be possible to approximate its
distance from the property in polynomial time. For any such property, if the distri-
bution is at statistical distance ε from having the property, then the verifier rejects
with high probability. This soundness property holds against any polynomial-time
strategy that a cheating prover might follow, assuming the existence of collision-
resistant hash functions (a standard assumption in cryptography). For distributions
over a domain of size N , the protocol consists of 4 messages and the communi-
cation complexity and verifier runtime are roughly Õ

(√
N/ε2

)
. The verifier’s

sample complexity is Õ
(√

N/ε2
)

, and this is optimal up to polylog(N) factors
(for any protocol, regardless of its communication complexity). Even for simple
properties, approximately deciding whether an unknown distribution has the prop-
erty can require quasi-linear sample complexity and running time. For any such
property, our protocol provides a quadratic speedup over replicating the analysis.

1 INTRODUCTION

Statistical analyses on valuable datasets routinely guide high-stake decisions in domains as diverse as
public policy, medicine and finance, and their importance is growing rapidly. As the stakes for data
science computations grow, it is increasingly important to obtain assurances that the results of the
analyses are correct. An emerging line of work takes a novel approach to tackling these questions:
using proof-systems from the theoretical computer science literature to supply efficiently-verifiable
proofs for the correctness of data science computations.

We focus on a setting where we have i.i.d. sampling access to an unknown distribution, and we
want to learn about the properties of the distribution. We can learn by collecting samples from
the distribution and performing a sophisticated analysis, but this is expensive, both in terms of
sample complexity and the computational complexity of performing the analysis on the collected
dataset. Suppose that an untrusted data analysis firm claims to have painstakingly assembled a
large collection of samples drawn from the distribution, to have run the analysis, and arrived at some
conclusions (for a price, of course). Can the firm provide a proof that would let us verify their claims
about the distribution’s properties? If we don’t have any access to the distribution, then verification
is impossible, but can we verify using fewer samples and computational resources than we would
needed to perform the analysis ourselves (i.e. without replicating the analysis)?
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In this work, we focus on interactive and probabilistic computationally sound proof systems. The
proof is a protocol between the verifier and an untrusted prover, who both have sampling access to
the unknown distribution. The prover’s claim is that the distribution has (or is close to having) a
property, as in the distribution testing literature. If the prover’s claim is correct and it follows the
protocol, then the verifier accepts with high probability. If the claim is far from correct, i.e. the
distribution is far from the property, then no polynomial-time cheating prover can make the verifier
accept with non-negligible probability. This latter soundness property is proved under (standard)
cryptographic assumptions: in particular, assuming the existence of hash functions where it is com-
putationally hard to find collisions (collision-resistant hash function families, see Definition A.9).
Our focus on distribution properties draws inspiration from the property testing literature Goldre-
ich et al. (1998); Rubinfeld & Sudan (1996) and builds on a study of unconditionally sound proof
systems for distribution properties initiated by Chiesa and Gur Chiesa & Gur (2018) and developed
in recent works of Herman and Rothblum Herman & Rothblum (2022; 2023; 2024). Following
the cryptographic literature, we refer to computationally sound protocols as (interactive) argument
systems, whereas unconditionally sound protocols are referred to as (interactive) proofs.

We aim to construct argument systems where the verifier is as efficient as possible: the primary
resources we consider (and aim to minimize) are the verifier’s sample complexity and running time,
as well as the protocol’s communication and round complexities. In particular, the verifier’s sample
complexity should be significantly lower than the sample complexity needed to decide whether the
distribution is (close to being) in the property in the standalone setting (i.e. without a prover). On
the (honest) prover’s side, we also want the time and sample complexities needed for generating
the proof to be as small as possible. The proof system should be doubly-efficient Goldwasser et al.
(2015); Herman & Rothblum (2023): generating the proof should be possible in polynomial time
and sample complexities.

1.1 OUR RESULTS: ARGUMENT SYSTEMS FOR GENERAL DISTRIBUTION PROPERTIES

We show that essentially any reasonable property (see below) has an efficiently verifiable argument
system. Taking N to be a bound on the size of the domain, the communication and the verifier’s
sample complexity are Õ(

√
N). For many natural properties, the sample complexity needed to

decide the problem in the standalone setting (without an untrusted prover) is quasi-linear in N , so
our protocol provides a quadratic speedup over replicating the analysis.

We proceed to detail this result: a distribution property is a set of distributions (similarly to the way
a language is a set of strings), parameterized by the size N of the domain. We measure the distance
of a distribution D from a property Π by D’s total variation distance to the closest distribution
in Π. We study families of properties characterized by the computational complexity of deciding,
given the full specification of a distribution, whether it is δc-close to the property (the YES case),
or δf -far from the property (the NO case). A Turing Machine for this problem gets as its input
the parameters δc, δf and a list ((i,D[i]))i∈[N ] specifying the probability of each element in the
support (probabilities are discretized to poly(1/N) precision).1 We emphasize that this is a purely
computational problem: the distribution is fully specified, there is no need to draw samples. We say
that a distribution property can be ρ(N)-approximately decided (or “approximated”) in polynomial
time if there exists a poly-time Turing machine that decides the aforementioned decision problem
for every δc, δf s.t. (δf − δc) ≥ ρ(N). This is an incredibly rich family of distribution properties:
it captures essentially any property that can be reasoned about in poly(N)-time (see Appendix A.1
for a formal definition).2

Theorem 1.1 (Main result: computationally sound arguments for all efficient properties)
Assume the existence of a collision-resistant hash family (Definition A.9) and let κ = κ(N) be a

1One can consider different natural representations. Many of these are equivalent under polynomial-time
reductions. They are thus interchangable for polynomial-time Turing machines, and we fix the above represen-
tation.

2For examples, distribution properties that are not efficiently decidable include the property of all distribu-
tions supported only on a noncomputable set of integers. Another example is the distribution property defined
through a family of graphs parameterized by N , with [N ] vertices: consider the distribution property of being
supported over a N/2-clique of the respective graph for every N . Since this problem is NP-complete, it is
efficiently decidable only if P=NP.

2



Published as a conference paper at ICLR 2025

cryptographic security parameter. For every approximation parameter ρ = ρ(N) ∈ ((1/
√
N), 1),3

and every property that can be ρ(N)-approximately decided in poly(N) time, there is a
computationally-sound argument system as follows. The prover and the verifier get as input an
integer N and proximity parameters ϵc, ϵf ∈ [0, 1] s.t. ϵf − ϵc ≥ ρ, and sampling access to a
distribution D over [N ], where

• Completeness: if D is ϵc-close to the property and the prover follows the protocol, then the
verifier accepts with all but negligible probability (smaller than any inverse polynomial).

• Soundness: if D is ϵf -far from the property, then, for every poly(N,κ)-time non-uniform
cheating prover P̃ , the probability that the verifier accepts in its interaction with P̃ is
negligible.

• Efficient verification: the communication complexity, the verifier’s sample complexity and
runtime are all Õ(

√
N/ρ2) · poly(κ). The protocol has 4 messages.

• Doubly-efficient prover: the honest prover’s sample complexity is Õ(N) ·poly(1/ρ) and its
runtime is poly(N,κ).

For simplicity, we assume throughout that the security parameter is a small polynomial in N . We
emphasize that the protocol achieves tolerant verification Parnas et al. (2006): the verifier should
accept even if the distribution is not in the property, so long as it is close to the property. The
complexity is polynomial in the gap ρ = (ϵf − ϵc) between the distances. Tolerant verification can
be used to approximately verify the distribution’s distance to the property: if the prover claims the
distance is δ, we can verify this (up to distance ρ) by setting ϵc = δ and ϵf = δ + ρ in our proof
system, from which it is possible to conclude the distance is at most δ + ρ with high probability.
Similarly, setting ϵc = δ − ρ and ϵf = δ yields a lower bound to the distance. In the distribution
testing setting (without a prover) tolerant testing is a notoriously hard problem: many well-studied
problems require quasi-linear sample complexity (see below). For clarity of exposition, protocols are
presented as if the honest prover has perfect knowledge of the distribution, but this idealized honest
prover can implemented by an honest prover that learns a sufficiently-accurate approximation to the
distribution.

On the complexities. Our protocol’s sample complexity is nearly optimal: even non-tolerant ver-
ification of simple properties requires Ω(

√
N/ρ2) samples (indeed where ρ is the distance param-

eter). This holds regardless of the communication or round complexities Chiesa & Gur (2018);
Herman & Rothblum (2022) (their proof extends to computationally sound argument systems). As
noted above, for distribution testing without a prover, and especially for tolerant testing, many prop-
erties require linear or quasi-linear Ω(N/ log(N)) sample complexity. For example, this is true
for tolerant uniformity testing, approximating the support size or the Shannon Entropy and more
Raskhodnikova et al. (2009); Valiant & Valiant (2010). Since proving is at least as hard as testing
(running the prover and the verifier together gives a tester), any honest prover that seeks to prove
these properties will require Ω̃(N) sample complexity and runtime. Note that our prover runs in
polynomial time and achieves quasi-linear sample complexity. This sample complexity is thus opti-
mal up to polylog(N) factors and dependence on the distance parameter.

Huge domain, bounded support. The result of Theorem 1.1 can be extended to distributions
over a huge domain U , so long as the support size of the distribution is bounded by N (we need this
bound to hold in both the YES case and the NO case). The complexities all incur a poly-logarithmic
overhead in |U|. The extension follows immediately from a general domain-reduction technique of
Herman and Rothblum (Herman & Rothblum, 2024, Section 7). As argued in Herman & Rothblum
(2024), this is quite a natural setting: for example, it lets us verify properties of a distribution over
at most M individuals, even if each individual’s representation can come from a rich domain.

3The setting where ρ(N) ∈ ((1/
√
N), 1) is the main setting of interest for our problem. In addition, for

ρ < 1/
√
N our protocol’s communication complexity is at least linear, and we might as well use the protocol

where the prover sends a complete description of the distribution to the verifier (see below).
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Comparison to unconditionally sound protocols. Chiesa and Gur Chiesa & Gur (2018) pre-
sented an unconditionally sound non-interactive protocol for general distribution properties. Their
protocol, however, is not sublinear: verification requires quasi-linear communication and verifica-
tion time. The sample complexity, however, is only O(

√
N/ρ2) (similar to our protocol). Sub-

sequent work, ours included, has focused on sublinear-time verification. Herman and Rothblum
Herman & Rothblum (2022; 2023) constructed sublinear and unconditionally sound protocols for
the class of label-invariant properties with Õ(

√
N)·poly(1/ρ) sample and communication complex-

ities (see also Section 1.3). Our new protocol is only computationally sound (and assumes CRHs),
but it applies to a much richer class of distribution properties. Further, the polynomial dependence
on ρ in the communication and the sample complexities is much better (for the sample complexity
it is tight, see above). A very recent work Herman & Rothblum (2024) constructs unconditionally
sound protocols for any property that can be approximately decided in bounded-depth (and polyno-
mial size) or bounded-space (and polynomial time). Here too, our class of properties is richer (there
is no depth or space restriction on the approximate decision procedure). Their protocols also have
Õ(N1−α) ·poly(1/ρ) sample and communication complexities for a constant α < 0.1: i.e. the gaps
with the complexity in our work are even larger.

About public-coin protocols for distribution properties. The protocol behind Theorem 1.1 re-
quires the verifier to draw samples from the distribution D, and send them to the prover, thus pre-
venting it from being a public-coin protocol, in which the verifier only sends random bits to the
prover. It remains open whether this protocol can be made public-coin. We note public-coin pro-
tocols allow for the application of many powerful tools - one example of particular interest is the
Fiat-Shamir heuristic, through which a public-coin protocol can be made non-interactive, see Fiat
& Shamir (1986). For a deeper discussion on public-coin protocol for distributions as well as a
construction of such protocols for a family of distribution properties, see Herman (2024).

1.2 EXTENSIONS AND APPLICATIONS

We discuss several applications of the protocol of Theorem 1.1 and an extension to NP properties.

Tolerant verification for monotone distributions, juntas and more. The protocol of Theorem
1.1 can be used for tolerant verification of several properties that are not label-invariant, and where
known testers have prohibitive sample complexity:

1. A distribution over {0, 1}n is monotone if flipping the value of a coordinate from zero to
one can only increase the probability of an element. Distribution testing and learning prob-
lems for monotone distributions were studied in Batu et al. (2004); Rubinfeld & Servedio
(2005); Rubinfeld & Vasilyan (2020). Taking N = 2n, our protocol allows a verifier to
verify a distribution’s distance from being monotone using Õ(

√
N/ε2) samples and com-

munication. This is in contrast to the situation for distribution testing: the best tester known
for separating the case where the distribution is monotone from the case where it is ε-far
from monotone uses O(N/(log(N) · ε2)) samples Rubinfeld & Vasilyan (2020).

2. A distribution over {0, 1}n is a k-junta if there is a set of at most k features that determine
the probabilities of all elements (elements that are identical on those features have identical
probabilities). Taking N = 2n, Aliakbarpour, Blais and Rubinfeld Aliakbarpour et al.
(2016) showed a test using Õ(

√
N · k) samples. Our protocol can be used to verify a

distribution’s distance from being a k-junta (i.e. tolerant verification) using Õ(
√
N/ε2)

samples and communication. Our protocol also applies to the setting of a non-uniform
underlying distribution (see Aliakbarpour et al. (2016)). To the best of our knowledge, no
testers with less than quasi-linear sample complexity are known for these tasks.

3. Canonne et al. Canonne et al. (2018) studied several properties of discrete distributions
over [N ]. These include log-concavity, convexity, concavity, monotone hazard rate, uni-
modality and t-modality. They showed that tolerant testing for all these properties requires
quasi-linear sample complexity in N . Our protocol can be used for tolerant verification of
all these properties (and other properties, such as piecewise-polynomial) using Õ(

√
N/ε2)

samples and communication. We remark that we use the fact that for all properties men-
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tioned above, given an explicit description of a distribution, there is a poly(N)-time algo-
rithm for approximating its distance from the property.

Verifying ERM learning algorithms. Similarly to an application described by Herman & Roth-
blum (2024), our protocol can also be used in the following supervised learning setting. An untrusted
data analyst claims that a hypothesis h was produced by a polynomial-time empirical risk minimiza-
tion algorithm M on a dataset X of N labeled examples. The argument system of Theorem 1.1
can be used to verify that h is an approximate risk minimizer, where the verifier only needs to draw
Õ(
√
N/ε2) samples from the dataset X . If the size of the dataset is roughly the VC dimension of

the benchmark class H (the optimal sample complexity for agnostic learning), then the verification
is sublinear in the VC dimension: provably more efficient than learning would be! The main nov-
elty here is that our protocol extends the Herman & Rothblum (2024) result to any polynomial-time
ERM algorithm (their result applied to bounded-space or bounded-depth algorithms) and improves
the verifier’s sample and communication complexities. We rely, however, on cryptographic assump-
tions.

Properties in NP. The result of Theorem 1.1 applies to an even richer class of distribution prop-
erties. Given the full explicit description of a distribution (an input of length Õ(N)), we need the
problem of approximating the distribution’s distance to the property to be in NP (or rather in FNP,
if we view this as a search problem). The theorem holds as stated for any such property, except that
the honest prover needs to have a witness to the distance between the property and (a good approx-
imation to) the distribution. For example, this can be useful in proving properties of a distribution
over encrypted data, if the prover knows the users’ secret keys.

1.3 AN EFFICIENT VERIFIED DISTRIBUTION-ORACLE

The construction behind Theorem 1.1 utilizes a lightweight and efficient sub-protocol that is of in-
dependent interest, and can be used to obtain direct and efficient protocols for a rich subclass of
distribution properties. Informally, the verified distribution-oracle protocol is a computationally
sound protocol, where the prover commits to a distribution Q over [N ] using a succinct commit-
ment. The verifier, who has sampling access to an unknown distribution D, can repeatedly query
several functionalities for the committed distribution Q, and the protocol guarantees that the prover’s
answers are all according to a single fixed distribution Q, and that this distribution is ε-close to the
unknown distribution D (otherwise the verifier rejects w.h.p.). The functionalities that the verifier
can query include:

1. The probability of any queried element x ∈ [N ].

2. The cumulative mass (the cdf) of all elements up to and including x (according to the natual
ordering of elements in [N ]).

3. The distribution’s quantile function, which maps an input µ ∈ (0, 1] to the smallest element
x whose cdf is µ or larger.

4. Obtaining a sample drawn by Q.

The sample complexity, communication and verifier runtime in the protocol are Õ(
√
N)/ε2, where

each query can be performed using an additional poly(log(N), κ) communication (and no further
samples from D).

The verified distribution-oracle protocol lets us translate a sublinear-time algorithm that has access
to the powerful functionalities described above w.r.t. an unknown distribution and decides a property
Π, into an argument system for verifying Π. The point is that the verifier in the argument system
only has sampling access to the unknown distribution D. The protocol is lightweight and efficient
in the sense that it only uses simple distribution testing tools and cryptographic hash trees, whereas
the full protocol of Theorem 1.1 uses PCP machinery (see below). In particular, under reasonable
assumptions about the complexity of approximately deciding membership in the property, the honest
prover in the lightweight protocol runs in Õ(N) · poly(κ, 1/ρ) time.

One direct application of the verified distribution-oracle protocol is a lightweight argument sys-
tem for label-invariant distribution properties (sometimes referred to as a symmetric properties):
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properties where changing the labels of elements in the support of a distribution does not change
membership in (or distance from) the property (see Appendix A.1). A distribution’s distance from
a label-invariant property only depends on the distribution’s probability histogram: the number of
elements with probability p for each p ∈ (0, 1] (up to an appropriate discretization of probabilities).
The verifier can use the verified distribution-oracle protocol to obtain a very good approximation
for Q’s probability histogram by drawing samples from Q together with their probabilities. It can
then estimate Q’s distance from the property, and since Q is guaranteed to be close to D, this gives
a good approximation to D’s distance. Herman and Rothblum Herman & Rothblum (2022; 2023)
constructed unconditionally sound protocols for label-invariant properties, but their dependence on
the distance parameter ρ was a much larger polynomial.

1.4 FURTHER RELATED WORK

We study the verification of distribution properties via computationally sound interactive argument
systems. Unconditionally sound interactive proof systems were introduced by Goldwasser, Micali
and Rackoff Goldwasser et al. (1985) in the context of proving computational statements about an
input that is fully known to the prover and the verifier. Computationally sound arguments were in-
troduced by Brassard et al. (1988) in a similar context. In our work, the distribution can be thought
of as the input, but it is not fully known to the verifier. We aim for verification without examining the
distribution in its entirety, using minimal resources (samples, communication, runtime, etc.). Our
work builds on a line of work that studies the power of sublinear time verifiers, who have query
access to an unknown string, in unconditionally sound proof systems Ergün et al. (2004); Rothblum
et al. (2013); Gur & Rothblum (2018) and in computationally sound arguments Kalai & Rothblum
(2015). Our results are most closely related to the works on unconditionally sound protocols for
verifying properties of distributions, where the verifier has sampling access to an unknown distribu-
tion (rather than query access to a string) Chiesa & Gur (2018); Herman & Rothblum (2022; 2023;
2024), and on verifying the result of machine learning algorithms using a small number of labeled
examples Goldwasser et al. (2021); Gur et al. (2024). We differ from prior work on verifying prop-
erties of distributions in considering the relaxation to computational soundness. Recently Bell et al.
(2024), also using cryptographic assumptions and tools, considered a setting where both the verifier
and prover have full information about some distribution, and the verifier needs to be convinced that
a value (hidden inside a commitment) was indeed drawn from the known distribution. This is in
contrast to our work, where the verifier doesn’t know the distribution but can only sample from it.
Our distribution-commitments allow an untrusted prover to commit to the entire description of the
unknown distribution (rather than a single unknown sample from a known distribution).

2 TECHNICAL OVERVIEW OF OUR PROTOCOL

Background. Our protocol builds on identity testers from the distribution testing literature Batu
et al. (2001). An identity tester is given an explicit description of a distribution Q over a domain
[N ]: e.g. a table detailing the precise probability of every element in the domain. The tester is also
given sample access to an unknown distribution D over the domain [N ]. If D ≡ Q then the tester
should accept, but if the statistical distance between D and Q is ε or larger, then the tester should
reject w.h.p. We emphasize that this problem is in the standalone distribution testing model (i.e.
there is no untrusted prover). The sample complexity of identity testing is Θ(

√
N/ε2) Valiant &

Valiant (2014).

Chiesa and Gur Chiesa & Gur (2018) suggested a natural protocol that uses identity testers to verify
general distribution properties: the untrusted prover sends a complete description of a distribution
Q, and alleges that this describes the unknown distribution D. The verifier, who doesn’t trust the
prover, uses an identity tester to verify that Q is not far from D. If this is the case, then Q can be
used as a surrogate for D in determining membership in (or distance from) the property. Further,
since Q is fully specified, the verifier can decide its membership in (or distance from) any efficiently
decidable property: this is a purely computational problem and no additional samples from D are
needed.

The issue is that sending the description of the distribution requires linear communication (to specify
the probability of each element), whereas we are interested in protocols with sublinear communica-
tion complexity and verification time. Moreover, the verifier needs to run the procedure that decides,
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given Q’s description, whether the distribution is in the property. For the general class of properties
we study, this latter test can require arbitrary polynomial runtime (even the linear time needed to
“read” the distribution description is more than we can afford).

What does the identity tester need to know about Q? Identity testers use samples drawn from
the unknown distribution D, together with information about the known distribution Q. A key ques-
tion in our work is exactly what the identity tester needs to know about Q. Focusing on an identity
tester of Goldreich (Goldreich, 2017, Section 11.2.2) with optimal O(

√
N/ε2) sample complexity,

we show it only needs access to an oracle that, for an element x ∈ [N ], provides the probability
Q[x], together with the ability to draw samples from Q.

We focus on the requirement of giving the tester access to an oracle that answers queries x ∈ [N ]
with Q[x] (we ignore the issue of sampling from Q for now). We might consider the following naive
protocol: the verifier runs the identity tester and asks the untrusted prover to specify the probability
Q assigns to elements the tester queries, and accepts iff the identity tester accepts. The problem
with this naive approach is that a cheating prover can answer the verifier’s queries in a way that is
not consistent with any global distribution Q. There are two issues: first, the cheating prover can
be adaptive, so the probability that it specifies for an element x can depend on the other elements
queried by the verifier. Second, even if the prover were non-adaptive and answered each query x
using a fixed probability determined in advance, there is no guarantee that the different probabilities
specified for each element specify a probability distribution, i.e. that they sum to 1, and this can
lead to the identity tester failing. How can we ensure that the untrusted prover answers the verifier’s
queries using a fixed and valid underlying distribution without having it send (and commit to) a
complete description of the distribution?

2.1 SUCCINCT DISTRIBUTION-COMMITMENTS WITH LOCAL OPENINGS

We use cryptographic hashing to design a scheme by which the untrusted prover first commits to the
entire distribution by sending a short digest (much shorter than the description of the entire distribu-
tion). For the honest prover, it can send a digest that allows it to verifiably open the probability of
any element x ∈ [N ]. The opening includes a proof of correctness, and it is local in the sense that
verifying its validity only requires poly(log(N), κ) communication and computation. For security,
the commitment is binding: for any polynomial-size cheating prover, once it sends a digest, it can
only successfully open the probabilities of elements according to a fixed underyling distribution Q̃.
Importantly, Q̃ is completely determined by the digest and is guaranteed to be a valid probability
distribution (the probabilities of all elements sum up to 1).

We construct such distribution-commitments using collision-resistant hash functions: families of
shrinking hash functions where, given a random function in the family, it is hard to find a pair of
inputs mapped to the same output (a collision). The verifier chooses the hash function and sends
it to the prover. The prover constructs a binary hash tree with N leaves, where for x ∈ [N ] the
x-th leaf is labeled with the probability Q[x]. We define the probability of an internal node to be
the sum of the probabilities of its children (equivalently, the probability of an internal node is the
sum of probabilities of leaves in its sub-tree). The label of each internal node in the tree includes
its probability and a hash of the labels of its children. The digest is the label of the root of the tree
(which should have probability 1). The local opening for x ∈ [N ] includes all the labels of nodes on
the path from the root to x and of their siblings. The verifier verifies consistency of the hash values
and of the probabilities (for every internal node on the path, its probability is the sum of probabilities
of its children). Collision-resistance ensures that the digest binds the prover to at most one label that
it can successfully open for each node in the tree. In particular, for each leaf x ∈ [N ] there is
(at most) only one probability Q̃[x] that the prover can open. We also show that the probabilities
of leaves that the prover can successfully open are consistent with a global distribution. This latter
security guarantee is formalized using an extraction-based definition: given the digest and black-box
access to a cheating prover, we can extract Q̃ efficiently.

We remark that the prover might refuse to open some locations in the hash tree, or open them in a
way that is not consistent with Q̃ and is immediately rejected. The point, however, is that any query
that is met with a refusal to open or an inconsistency leads to immediate rejection. Thus, when
we use the dsitribution-commitment in an argument system, the prover’s success probability can be
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upper-bounded by its probability in a mental experiment where all queries are answered using Q̃.
Thus, for simplicity and w.l.o.g., in the techincal overview we assume that the prover answers all
queries according to Q̃. See Appendix B for further details and discussion.

We note that distribution-commitments draw inspiration from the cryptographic literature on accu-
mulators Benaloh & de Mare (1993); Baric & Pfitzmann (1997) and a construction of Buldas et al.
(2000). An accumulator is a commitment to a set of values, whereas we need the commitment to
specify probabilites for the values, and for these probabilities to sum to 1.

Recovering the cdf and sampling from Q. Our protocols also need the ability to locally open, for
any x ∈ [N ], the cumulative probability of mass Q assigns to the elements up to (and including) x.
We denote this cdf by ΦQ(x). The hash tree construction supports this functionality using the same
opening: the verifier sums the probability of x with the probability of all left-siblings of internal
nodes on the path from x to the root. Access to the cdf function is important for our protocol for
general polynomial-time properties. It is also useful for supporting sampling from Q (which is used
by the identity tester, see above): to sample from Q the verifier picks a random probability µ ∈ [0, 1]
and asks the prover to open the smallest element x whose cdf is at least µ (the quantile function).
See further details in Appendix B.

2.2 VERIFIABLE DISTRIBUTION-ORACLES

In our protocol, the untrusted prover commits to Q using the distribution-commitment. The verifier
then runs an identity tester, drawing samples from the unknown distribution D, and using the local
opening to obtain all the information it needs about Q for each of its samples. The main point
about this protocol is that the communication is much smaller than the complete description of Q:
the digest is short, and each opening is of polylog(N) length. The identity tester uses O(

√
N/ε2)

samples, so the total communication and verification time are Õ(
√
N/ε2).

The identity tester guarantees that Q is close to the unknown distribution D (otherwise the verifier
rejects w.h.p.). The distribution-commitment scheme allows the verifier to recover the proability and
the cdf of any element x ∈ [N ], to answer quantile queries, and to sample form Q (see above). Thus,
it can be used towards direct and efficient protocols for a rich sub-class of distribution properties,
including label-invariant properties. See Section 1.3.

2.3 VERIFYING PROPERTIES IN P (AND BEYOND)

Our main result is an interactive argument system for verifying any efficiently-decidable distribution
property. We assume there is a poly(N)-time Turing machine M that, given as input a complete
description of a distribution Q over [N ] (say as a list of elements and their probabilities), computes
Q’s distance to the property Π, up to a τ additive approximation error.

Interactive arguments of proximity (IAP). Our construction uses IAPs Rothblum et al. (2013);
Kalai & Rothblum (2015): protocols for deciding approximate membership of an input string
X ∈ {0, 1}n in a language L. The verifier has query access to the input. It should accept if the
input is in the language. If the input is ε-far from the language in relative Hamming distance, then
no polynomial-size cheating prover should be able to get the verifier to accept (except with negligible
probability). Assuming the existence of collision-resistant hash functions, any language in P has an
IAP that proceeds in two steps: first, in the communication phase, the verifier and the prover commu-
nicate in a 4-message protocol with communication complexity and verifier time poly(log(N), κ)/ε.
The verifier does not access the input in the communication phase. In a subsequent query phase, the
verifier makes O(1/ε) queries to the input and accepts or rejects. The protocol uses the PCP the-
orem, which induces overheads for the prover. It may be possible to reduce this overhead using
recent advances from the proof-system literature Reingold et al. (2016); Ben-Sasson et al. (2016);
Ron-Zewi & Rothblum (2022). See Section A.3 for further details.

Our protocol. At a high level, the protocol operates as follows:

• The prover commits to the distribution D via a digest d, using the scheme of Section 2.1.
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• The prover and the verifier run the verified distribution-commitment protocol of Section
2.2 to verify that the digest d commits the prover to a distribution Q̃ that is ε-close to D.
This requires Õ(

√
N)/ε2 samples from D (this is the only step where the verifier accesses

D).
• The prover and the verifier use a scheme for representing distributions as bit strings and on

a polynomial-time Turing machineM′ as follows. For any distribution D′ over [N ], let its
representation be XD′ (a bit string). If D′ is in Π,4 thenM′ accepts XD′ . If D′ is ε-far
from the property (in total-variation distance), then XD′ is Θ(ε) far in (relative) Hamming
distance from any string that M′ accepts. The prover (who knows D) can compute its
representation XD, but the verifier cannot. However, the distribution-commitment scheme
allows the verifer to query the representation XQ̃ of the distribution Q̃ that the prover
committed to using the digest d (more on this below).

• The prover and the verifier run an interactive argument of proximity (IAP) to check ifM
accepts XQ̃. We emphasize that the IAP is for languages defined over strings. This is where
the verifier needs query access to XQ̃.

Completeness follows directly: we focus on the soundness argument. Since Q̃ and D are
close, Q̃ must be far from the property. Thus, the representation guarantees that XQ̃ is
far from making M′ accept. The binding property of the commitment scheme and the
soundness of the IAP guarantee that the verifier will reject w.h.p.

String representation and consistency. For simplicity, suppose that D is η-grained for η ∈
(0, 1/N) Goldreich et al. (2023). I.e., that the probabilities of all elements in D are integer multi-
ples of η. We represent the distribution D as a string XD ∈ Σ(1/η) where the alphabet Σ is of size
poly(N). We first divide the mass of the distribution into (1/η) “grains”, each representing η of
the mass of the distribution. Each element x with probability D[x] contributes (D[x]/η) grains that
have value x. We then sort the grains and write them into the string XD. This means that

∀x ∈ [n], ∀i ∈
[
ΦD(x)−D[x]

η
, . . . ,

ΦD(x)

η

]
, XD(i) = x.

In turn, any sorted string corresponds to a distribution in the natural way. Given the string XD,
we can reconstruct the standard representation of D as a list of probabilities using a simple one-
pass procedure. The machine M′ uses this procedure to decide, given XD, whether D is in the
property. By construction, if X̃ is close to XD in Hamming distance (and is sorted), then the
distribution D̃ that it represents is close to D (the converse might not hold). The full construction
uses a high-distance error-correcting encoding of each element x to get a tight relationship between
the Hamming distance over strings and the statistical distance over the distributions they represent.

Given a digest d specifying a distribution Q̃, and an index i ∈ [(1/η)], the verifier can query the i-th
symbol of XQ̃ by asking the prover to open the digest d to reveal the smallest element whose cdf by

Q̃ is at least (η · i) (answering the quantile function, see Section 1.3).
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A NOTATIONS AND FORMAL DEFINITIONS

For an integer n ∈ N, we use [n] to denote the set {1, . . . , n}. We use the natural ordering over
integers to order the elements in any subset of [n].

Turing machines. A probabilitic polynomial-time Turing Machine (PPTM) is a Turing Machine
that has access to a tape cointaining uniformly random i.i.d. coins and runs in polynomial time. A
PPTM that participates in an interactive protocol is augmented with an interaction tape for sending
and receiving messages. A non-uniform machine also gets access to a polynomial-length advice
string (the advice string is fixed for each input length n). We sometimes refer to the running time of
a non-uniform machine as its size (drawing on equivalences between non-uniform Boolean circuits
and non-uniform Turing Machines).

An oracle machine with oracle access to a probabilistic functionality Γ has an additional oracle tape
where it can write a query z and get back a sample from Γ(z) at unit cost. The functionality might
take empty inputs, in which the machine has sampling access to a fixed distribution Γ.

Distributions. We work with distributions over discrete domains throughout this work. For a set
S, we denote the uniform distribution over S by US . For a distribution over a domain of size N , we
assume w.l.o.g. that all probabilities are taken up to precision poly(1/N), so an element’s probability
can be represented using O(log(N)) bits. For a distribution Q over [N ], we use Q[x] ∈ [0, 1] to
denote the probability of x ∈ [N ]. Similarly, we use ΦQ(x) to denote the cumulative mass of all
elements up to (and including) x, i.e. ΦQ(x) =

∑
x′∈[N ]:x′≤x Q[x].

Definition A.1 The total variation distance (alt. statistical distance) between distributions P and
Q over a finite domain X is defined as:

δTV(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|
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A.1 DISTRIBUTION PROPERTIES AND TESTING

Definition A.2 (Distribution properties) A distribution property Π = (ΠN )N∈N is an ensemble of
sets of distributions, where ΠN contains distributions over the domain [N ].

The distance of a distribution D over domain [N ] from distribution property Π is

δTV(D,Π)
∆
= inf {δTV(D,Q) : Q ∈ ΠN}

Definition A.3 (Property tester) An algorithm T that is given parameter N ∈ N, distance param-
eter ϵ ∈ (0, 1), and samples drawn from a distribution D over domain [N ] is called a tester for
distribution property Π if the following hold:

• If D ∈ Π, T accepts with probability at least 2/3.

• If δTV(D,Π) > ϵ, T rejects with probability at least 2/3.

The success probabilities can be amplified by repetition. The sample complexity is the number of
samples T draws from D (as a function of N and ϵ).

Theorem A.4 (Uniformity tester, Goldreich & Ron (2000); Paninski (2008)) The sample com-
plexity for testing the property of being uniform over the entire domain, i.e. U =

({
U[N ]

})
, is

Θ
(√

N/ϵ2
)

.

Definition A.5 (Label invariant distribution properties) We call a distribution property Π label-
invariant if for every D over [N ] and for every permutation π : [N ]→ [N ] it holds that:

D ∈ Π ⇔ π(D) ∈ Π.

The family of label-invariant distribution properties contains many well-studied and natural proper-
ties, for example: the property U of being uniform over the domain (see Theorem A.4), the property
of having entropy K(N), the property of having support of size at most S(N), the property of being
at distance at most δ(N) from a uniform distribution over a subset of the domain, etc.

Efficiently decidable properties. We define two families of distribution properties where ques-
tions like membership in or distance from the property can be decided efficiently given an appropri-
ate description of the distribution. First, we define label-invariant properties where membership can
be decided in polylogarithmic time given the approximate histogram.

Definition A.6 (polylog-time approximately decidable label-invariant properties) A label-
invariant property Π is polylog-time τ -approximately decidable if the following two conditions
hold.

• There exists an algorithm Adecide, that is given parameters τ ∈ (0, 1), N ∈ N, and a
τ -approximate probability histogram (pj)j and runs in poly(log(N), 1/τ) time. If there
exists a distribution Q over domain [N ] with τ -approximate histogram (pj)j such that
δTV(Q,ΠN ) ≤ τ , the algorithm accepts; and if every distribution consistent with the given
histogram satisfies δTV(Q,ΠN ) > 2τ , it rejects.

• There exists an algorithmAfind, that is given parameters N ∈ N and δ, ρ ∈ (0, 1), as well
as an explicit description of a distribution D over domain [N ] such that δTV(D,ΠN ) ≤
δ. Afind runs in time Õ(N)poly(δ−1, ρ−1), and outputs an explicit distribution Q over
domain [N ] such that: Q ∈ ΠN and δTV(D,Q) ≤ δ + ρ.

Remark A.7 We view the condition that a property admits the two algorithms described in Defini-
tion A.6 as mild. The decide algorithm requires that a membership of a distribution in a property
can be approximated efficiently just given its histogram. Herman and Rothblum (Herman & Roth-
blum, 2022, Section 6.2) present decide algorithms for fundamental label-invariant properties: e.g.
for approximating the Shannon entropy and the distance from uniform. The find algorithm is also
implementable for those properties and many more.
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Definition A.8 [Efficient approximately decidable properties] For ρ(N) ∈ (0, 1), a distribution Π
is poly-time (or efficiently) ρ(N)-approximately decidable if it admits a poly(N, 1/ρ)-time algo-
rithm Dist that receives as input N and an explicit description of a distribution D over domain
[N ]and outputs δ such that:

|δTV(D,ΠN )− δ| ≤ ρ(N)

A.2 CRYPTOGRAPHIC DEFINITIONS

A function f : N → N is polynomial-time if there is a poly(κ)-time Turing Machine that on input
1n outputs f(n). A function q : N → [0, 1] is negligible if for any polynomial p(n), for all but
finitely many input lengths, f(n) < 1/p(n). We denote this by q(n) = negl(n).

In the cryptographic definitions in this work we focus on non-uniform polynomial time adversaries.
In our setting, it is often the case that there is an unknown underlying distribution D over a domain
[N ], and the adversary has sampling access to D. We remark that any such adversary can be con-
verted into a non-uniform adversary with no access to D by a standard argument (plugging a “good”
collection of samples into the adversary’s non-uniform advice string). This transformation applies
even when the domain of the distribution is exponential in the adversary’s running time, but in this
work we mostly focus on adversaries whose runtime is polynomial in the domain size.

Collision-Resistant Hash Families (CRHs). CRHs are families of length-shrinking functions
where, given the description of a random function h in the family, it is hard for a PPTM adver-
sary to find a collision, i.e. x ̸= x′ in h’s domain s.t. h(x) = h(x′).

Definition A.9 (CRH) Let ℓin, ℓout : N → N be poly(κ)-time computable sequences of input and
output lengths, where ∀κ ∈ N, ℓout(κ) < ℓin(κ). A family of collision resistant hash functions
(CRHs) is defined by PPTM algorithms Gen and Eval:

• Gen(1κ) outputs key, where hkey : {0, 1}∗ → {0, 1}ℓ(κ) is a function in the family Hκ.

• Eval(key, x ∈ {0, 1}∗) outputs hkey(x).

For any polynomial-size Adv, the probability that it finds a collision is negligible:
Pr

key←Gen(1κ)
[(x, x′)← Adv(1κ, key), x ̸= x′, hkey(x) = hkey(x

′)] = negl(κ).

Recall that we allow Adv to be non-uniform. Namely, we assume that the CRHs are secure against
non-uniform adversaries. Note also that the existence of CRHs where ℓout < ℓin is equivalent to the
existence of CRHs with arbitrary polynomial shrinkage. Finally, we note that throughout this work
we typically assume that the security parameter is (at least) a small polynomial in the domain size
N of the unknown distribution.

A.3 INTERACTIVE ARGUMENTS OF PROXIMITY (IAPS)

IAPs were informally described in Rothblum et al. (2013) and formally studied by Kalai and Roth-
blum Kalai & Rothblum (2015). They are computationally-sound variants of Interactive Proofs of
Proximity (IPPs), which were defined and studied in Ergün et al. (2004); Rothblum et al. (2013).
These are interactive protocols for proving membership of an input string in a language. The verifier
has query access to the input, and should run in sublinear time in the input length. In an IAP, no
polynomial-time cheating prover should be able to get the verifier to accept any input that is far from
the language (except with negligible probability). The main difference from arguments for distribu-
tion properties (our focus in this work, see Section A.4), is that the input to the proof-system is a
string, rather than a distribution, and the verifier has query access to this string, rather than sampling
access in the distribution case.

For our definition, we consider an IAP that proceeds in two phases: a communication phase, where
the prover and the verifier exchange messages, but the verifier does not query the input, and a
subsequent query phase, where the verifier queries the input. The verifier then applies a decision
predicate to its views in the communication phase and the query phase (including any random coins
it tossed), and rejects or accepts. See Goldreich et al. (2023) for a more thorough structural study of
sublinear-time verifiers in proofs of proximity for strings.
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Definition A.10 (Interactive Argument of Proximity (IAP) Rothblum et al. (2013); Kalai & Rothblum (2015))
An IAP for a language L is an interactive protocol with two parties: a prover P and a verifier V .
Both parties get an input length n, a proximity parameter ϵ ∈ (0, 1) and a secruity parameter 1κ.
The verifier also gets oracle access to an input x ∈ {0, 1}n, whereas the prover has full access to x.

The protocol is divided into two phases. In the interaction phase the two parties interact, but the
verifier does not access the implicit input. The interaction produces a communication transcript τ .
In the subsequent query phase, the verifier makes its queries Q into the implicit input (based on
the explicit input, the transcript τ , and its random coins r). The verifier then applies a decision
predicate ϕV to its views from both phases and accepts or rejects.

1. Completeness: For every input x ∈ L and ϵ > 0 it holds that

Pr
(r,τ,Q)←

(
P(x),Vx

)
(|x|,ϵ,1κ)

[
ϕV(r, τ, (x|Q)) = 1

]
= 1.

2. Soundness: For every ϵ > 0 and x that is ϵ-far from the language L, and for every
poly(κ, |x|)-time non-uniform cheating prover P̃ it holds that

Pr
(r,τ,Q)←

(
P∗(x),Vx

)
(|x|,ϵ,1κ)

[
ϕV(r, τ, (x|Q)) = 1

]
= negl(κ).

We typically measure the complexity of an IAP in terms of the verifier’s query complexity, the
communication complexity, the number of rounds, and the prover’s and the verfier’s runtimes (the
verifier’s runtime is taken over both phases). We note that the division of the protocol into commu-
nication and query phases is (to a large extent) without loss of generality: even if the verifier needs
to know values of the input on-the-fly during the communication phase, it can ask the prover for
the values the input takes on those queries, and then check the prover’s answers in the query phase.
As we do throughout this work, we typically assume that the security parameter is at least a small
polynomial in the input length n.

Theorem A.11 (IAPs for NP Rothblum et al. (2013)) Let L be an NP language, ε = ε(n) a prox-
imity parameter and κ = κ(n) a security parameter. Assuming the existence of collision-resistant
hash functions (see Definition A.9), L has a public-coin 4-message IAP for ε-proximity with query
complexity O(1/ε). The communication complexity and verifier runtime are (poly(log(n), κ)/ε).
The honest prover, given a witness to the input x’s membership in L, runs in poly(n, κ) time.

The protocol also applies to languages in P , where the witness for membership is empty: the honest
prover runs in polynomial time given only the input, with no additional auxiliary information. The
construction builds on Kilian’s 4-message argument system for NP languages. The idea is for the
prover to commit to a locally testable and locally decodable encoding of the input, as well as PCP
of proximity Ben-Sasson et al. (2006) for the input’s membership in the language. The commitment
should be a succinct and locally-openable string commitment, which can be based on any CRH
family (e.g. using a hash tree). The verifier in the argument system gets the commitment, runs the
PCPP verifier, and asks the prover to open its queries into the proof and the input encoding. It also
checks that the committed input encoding is (close to) a valid encoding of a string x′ that is ε-close
to the input x. This can be done by locally testing the committed encoding and locally decoding
O(1/ε) random locations in the message inside the encoding (the local testing and decoding use the
local opening of the commitment scheme). The values of the decoded locations in the committed
message are compared to the actual input. This latter check is the only place where the argument’s
verifier accesses the input, and is performed during the query phase.

Finally, we note that Rothblum et al. (2013) suggested that the protocol could be made non-
interactive using the Fiat-Shamir heuristic Fiat & Shamir (1986), as proposed by Micali Micali
(1994). Soundness would be heuristic, or could be proved in the random oracle model. Kalai and
Rothblum Kalai & Rothblum (2015) showed a 2-message protocol for languages in P based on a
stronger cryptographic assumption.
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A.4 INTERACTIVE ARGUMENTS FOR DISTRIBUTION PROPERTIES

We consider interactive protocols consisting of a prover and a verifier (P,V), where the parties send
messages back and forth (in our protocol the first message is sent by the verifier). In an argument
system for a distribution property, the prover and the verifier both get black-box sampling access
to an unknown distribution D. The protocol’s prover and verifier sample complexities are the total
number of samples drawn by each of the parties. The protocol’s communication complexity (the
total number of bits sent), round complexity (the total number of messages sent by both parties), and
the total runtimes of both parties are defined in the natural way.

Definition A.12 (Interactive argument system for tolerant distribution testing) A tolerant in-
teractive argument system for a distribution property Π is an interactive protocol (P,V) where
the prover and the verifier both get as explicit input the domain size N , the (unary encoding of
the) security parameter 1κ, and proximity parameters ϵc ≤ ϵf . The prover and the verifier also
both get black-box (oracle) sampling access to a known distribution D. For every N,κ ∈ N and
ϵc ≤ ϵf ∈ (0, 1), for every distribution D over the domain [N ]:

• Completeness: if δTV(D,ΠN ) ≤ ϵc, the verifier V , interacting with the prover P , accepts
with all but negl(κ) probability.

• Soundness: if δTV(D,ΠN ) ≥ ϵf , then for every polynomial-size non-uniform cheating
prover strategy P̃ , the verifier V , interacting with P̃ , rejects with all but negl(κ) probabil-
ity.

We typically measure the runtime of the verifier and the (honest) prover as a function of N,κ, ρ =
(ϵf − ϵc). We aim for the honest prover to be (at most) polynomial in these parameters. The verifier
is typically required to be sublinear in N . Throughout this work we allow the cheating prover to run
in poly(N,κ, 1/ρ) non-uniform time.5

For simplicity, we assume throughout this manuscript that N and κ are polynomially related.

B SUCCINCT DISTRIBUTION-COMMITMENTS

A distribution-commitment allows sender to commit to a distribution Q over a domain [N ] using
a succinct digest d. The digest can later be used by a receiver (or verifier) to “locally” open the
probability that Q assigns to any element x ∈ [N ] in a verifiable way (see below). Moreover, the
commitment scheme we construct also supports opening the cumulative mass ΦQ(x) of elements
up to (and including) x using the natural lexicographic ordering over elements in [N ]. We refer to
these probabilities as the pdf and the cdf of x (respectively). For security, we require that no PPTM
adversary can produce a digest that allows it to locally open the probabilities of an element in two
different ways. Moreover, successful openings are always consistent with a (unique) distribution
that is specified by the digest. Of course, an adversary might send a digest and then later refuse to
open the probability of a particular element (or a set of elements), but we require that once a digest
d has been sent, there is a unique and well-defined distribution Q̃ s.t. the adversary can only get
the receiver to accept probabilities according to Q̃. We emphasize that this is the case even though
the digest is short (its size depends only on the security parameter, independent of N ), whereas
explicitly describing the distribution could require communicating Õ(N) bits.

Efficient extraction. An adversarially produced digest induces a distribution Q̃. We require that,
once the digest is specified, the distribution Q̃ can “extracted” in polynomial time by an extrac-
tion algorithm. The extractor gets black-box access to an adversary who produces a sequence of
elements and opens their probabilities. Given any such PPTM adversary, the extractor produces a
full description of a well-specified distribution Q̃, and the adversary cannot successfully open the
probabilities (the pdf and the cdf) of any element x except to Q̃[x] and ΦQ̃(x) (respectively).

5More generally, it is also interesting to consider huge domains, i.e. much larger than poly(κ). In this case,
one can consider poly(κ)-time adversaries, whose running time is sublinear in the domain size.
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Definition B.1 (Distribution-Commitment) A distribution-commitment scheme has PPTMs Gen,
Dig, Open, VCommit and Ext as follows.

• Gen(1κ, N) outputs key.

• Dig(key, Q) gets as input a key generated by Gen and a description of a distribution Q
over [N ]. It outputs a short digest d of length poly(κ) and auxiliary information aux to be
used in generating proofs (aux can be of length poly(κ,N)).

• Open(x, key, d, aux), on input x ∈ [N ], a digest and auxiliary information produced by
Dig, outputs Q[x],ΦQ(x) ∈ [0, 1] and a proof π of length poly(κ, log(N)).

• VCommit(x, p, q, key, d, π), gets as input an element x ∈ [N ] and its alleged pdf and cdf
p, q ∈ [0, 1] and a proof π. Accepts or rejects the proof and runs in poly(κ, log(N)) time.

• ExtAdv(key, 1N , d, 1ρ) gets black-box access to an adversary algorithm Adv with alleged
(polynomial) success probability ρ ∈ (0, 1) and outputs a description Q̃ of a distribution
over [N ].

An honest sender who commits to a distribution Q using Dig can open the probabilities p =
Q[x], q = ΦQ(x) of any element x ∈ [N ], producing a proof that will (always) be accepted by
VCommit.

For security, we consider a PPTM adversary Adv = (Adv1,Adv2) that operates in two steps (the
first step outputs a state that is used by the adversary in the second step). In the first step,Adv1 gets
a key and produces a digest d. In the second step, Adv2 produces a sequence of elements and their
openings. The adversary’s goal is producing a digest where it can open probabilities that are not
consistent with a single distribution Q̃. We require that for every PPTM Adv = (Adv1,Adv2), for
every (poly-time constructible) polynomial η : N→ N

Pr

[
key← Gen(1κ, N),

(d, state)← Adv1(key),
Q̃← ExtAdv2(state)(key, 1n, d, 1η(κ)),

((x1, p̃1, q̃1, π̃1), . . . , (xm, p̃m, q̃m, π̃m))← Adv2(state),

∃i∗ ∈ [m] s.t.
(
(p̃i∗ ̸= Q̃[xi∗ ])

∨
(q̃i∗ ̸= ΦQ̃(xi∗))

)
,

VCommit(xi∗ , p̃i∗ , q̃i∗ , key, d, π̃i∗) = accept
]
<

1

η(κ)
.

We remark that the extractor needs to know an explicit bound η(κ) on the success probability of
the adversary, because the adversary can refuse to produce openings with all but η probability. The
extractor needs to run it enough times to see the low-probability opening event. The construction of
distribution-commitments from CRHs is in Theorem B.4.

Sampling from Q. Any distribution-commitment scheme also allows for sampling from the com-
mitted distribution Q as follows. The receiver chooses a random mass µ ∈ (0, 1] and the sender
opens the smallest x s.t. ΦQ[x] ≥ α (using the commitment scheme’s Open procedure).

Definition B.2 (Quantile function) For a distribution-commitment scheme,
Quantile(µ, key, d, aux) gets as input a (cumulative) mass µ ∈ (0, 1]. It outputs the small-
est x ∈ [N ] s.t. ΦQ(x) ≥ µ and opens x’s probabilities (i.e. the output of Open(x, key, d, aux)).
We say that Quantile’s output is valid if µ ∈ [(ΦQ(x) − Q(x)),ΦQ(x)] and VCommit accepts the
probabilities and the proof.

Remark B.3 (Sampling from Q) By construction, for an honest sender and a uniformly random
µ ∈ (0, 1], running Quantile on input µ produces random sample x ∼ Q and the output is always
valid. We sometimes refer to this as the distribution commitment’s sampling procedure.
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For security, the binding property of the commitment scheme means that a cheating sender can either
fail the Quantile procedure, or produce the appropriate element by Q̃. In particular, consider
a receiver who runs the sampling procedure, immediately rejects invalid outputs and runs some
additional tests on x’s where the output was valid. The success probability of the cheating sender
in passing whatever tests the receiver runs can be upper bounded (up to negligible terms) by the
success probability of a sender who always produces outputs by Q̃.

Theorem B.4 (Distribution-commitment from CRH) Assuming the existence of a CRH family
(see Definition A.9) there exists a distribution-commitment scheme as per Definition B.1.

The runtime for producing the digest is N ·poly(κ, log(N)). The runtime for theOpen functionality
is poly(κ, log(N)) in the RAM model.

See the construction overview in Section 2.1. The details of the proof for Theorem B.4 follow.

Committing. The receiver chooses a hash function h from a CRH family (as per Definition A.9),
and the sender commits to the distribution Q over [N ] by constructing a full binary tree with N
leaves (w.l.o.g. we assume N is a power of 2, otherwise we use padding). Each node v in the tree
has a probability pv and a label ℓv as follows.

1. for i ∈ [N ], taking v to be the i-th leaf in the tree, its probability and its label equal Q[i].
2. for each internal node v with children u and w, its probability pv is defined to be the sum

of the probabilities of its children. Its label includes its probability and a hash of the labels
of its children, i.e. ℓv = (pv, h(ℓu, ℓw)).
Note that the probability of each internal node is the sum of probabilities of leaves in its
sub-tree, and thus the probability of the root should be 1.

The digest d is the label of the root of the binary tree. The receiver checks that its probability is 1
(otherwise it rejects immediately). The auxiliary information (to be used in opening) is the entire
binary tree (the probabilities and labels of all nodes).

Opening and verifying. To open the probability of a leaf i ∈ [N ], let Sv be the set of all nodes on
the path from the root to the i-th leaf and their siblings. The revealed pdf probability is the probability
of the i-th leaf itself. The cdf is the sum of the i-th leaf’s probability, and the probabilities of all
internal nodes in Sv that are left-children of their parent. The proof π includes the labels of all nodes
in Sv .

Verification proceeds as follows: for each internal node v in Sv with revealed label (pv, y) and
children u and w, the verifier checks that pv = (pu + pw) and that y = h(ℓu, ℓw). It also checks
that the revealed pdf is the probability of the i-th leaf and that the revealed cdf is the sum of its
probabilities and the probabilities of nodes in Sv that are left-children

The extractor. The extractor runs the given adversary Adv2 poly((1/η(κ)), N) times. It sees a
polynomial collection of opened elements xi ∈ [N ] (across all the runs), and in each opening it sees
labels for internal nodes of the tree. Let V be the collection of nodes (internal nodes and leaves)
whose labels passed the consistency test (at least once over all the executions of Adv): namely,
all nodes on the path from them to the root (and their siblings) passed the probability-consistency
test and the label-consistency test. If there are nodes in V whose labels were opened differently
in different executions, then the extractor fails (say it outputs a canonical distribution Q̃). Looking
ahead, this shouldn’t happen because it means that Adv2 found a hash collision. Otherwise, the
extractor assigns to each node in V the (unique) probability that was opened for it. Observe that
since these probabilities are all unique (across executions of Adv2) and they pass the probability-
consistency test, they are consistent with a global distribution Q̃ as follows:

• for each leaf v ∈ V corresponding to the element i ∈ [N ], Q̃[i] is set to the (unique)
probability that was opened for v.

• for each internal node in V whose children (and thus also its entire subtree) are both not in
V , let pv be the (unique) probability that was assigned to v. Let Lv be the set of leaves in
v’s subtree. Then for each leaf in Lv , corresponding to an element i ∈ [N ], Q̃[i] = pv/|Lv|.
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By construction, the extractor’s output Q̃ is a distribution over [N ] (the probabilities sum to 1).

Proof of binding. The collision-resistance of h guarantees that in all the runs of Adv2, including
the runs of the extractor and the subsequent “critical” run, there is no node whose label is opened in
two different ways (except with negligible probability). Thus, so long as the openings in the critical
run are only for nodes for which the extractor also saw a successful opening, then the distribution
Q̃ is well defined and consistent with all of Adv2’s answers. The only freedom the adversary has is
refusing to open certain nodes in the extractor’s oracle calls, but then successfully opening them in
the “critical” run in the security game. Of course, the adversary operates identically in the extractor’s
runs and in the critical run. Fixing the output of Adv1 (and conditioning on no collisions), for any
node v where there is at least a (η/poly(N)) probability that Adv2 opens it correctly, the extractor
will observe a correct opening w.h.p. over its poly(1/η,N) runs. Taking a union bound over the
adversary’s m ≤ N openings in its critical run, the probability that it opens a node that wasn’t seen
by the extractor is smaller than η. Security follows.

C INTERACTIVE ARGUMENT FOR DISTRIBUTION PROPERTIES

C.1 THE VERIFIED DISTRIBUTION ORACLE PROTOCOL

Proposition C.1 [Verified distribution oracle protocol] Assuming the existence of a CRH family
(see Definition A.9), given domain size parameter N ∈ N, distance parameter ϵ ∈ (0, 1), black-box
sample access to a distribution D over domain [N ], and a randomized t(N)-time Turing Machine
with oracle sample access to D, called query generator machine GD(N, ϵ), there exists a protocol
between an honest verifier and a prover such that the following holds:

• Completeness. If the prover is honest, then at the end of the interaction qx = Q(x) for all
x ∈ SA = GD(N, ϵ), and the verifier accepts with all but negligible probability.

• Soundness. For every poly-time prover strategy P ∗, with all but negligible probabil-
ity: either the verifier rejects; or there exists some distribution Q̃ over [N ] such that
δTV(D, Q̃) ≤ ϵ and qx = Q̃(x) for all x ∈ SA.

The verifier runtime, D-sample complexity, and the communication complexity of the protocol are
all Õ

(√
N/ϵ2 + ϵ−4 + t(N)

)
. Honest prover runs in time Õ(N)poly(ϵ−1).

Consider the following protocols:

Verified Distribution Oracle Protocol

Input:

• Domain size parameter N ∈ N, security parameter κ ∈ N, distance parameter ϵ ∈ (0, 1).

• Black-box sample access to a distribution D over domain [N ], and a query generator ma-
chine, a randomized t(N)-time Turing Machine GD(N, ϵ) with oracle sample access to D,
that outputs SA ⊆ [N ].

• The honest prover also gets as input an explicit description of a distribution Q over [N ]
such that δTV(D,Q) ≤ ϵ.

Goal: for every x ∈ SA, obtain qx such there exists a distribution Q̃ over domain [N ] that satisfies
δTV(D, Q̃) ≤ ϵ, and qx = Q̃(x).
Notations: Let Gen,Dig,Open,VCommit be parts of a commitment scheme, as defined in Defini-
tion B.1.

1. Establishing verified query access to a distribution Q̃, close to D:
(a) V: generate key = Gen (1κ, N), and send key to the prover.
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(b) P: run Dig(key, Q), and obtain digest d and auxiliary information aux. Send d to the
verifier.

(c) V-P: the verifier draws O(ϵ−4) samples according to the process described Remark
B.3. For every x drawn by this process, the prover provides px = Φ(x), qx = Q(x)
and proof πx. The verifier rejects unless VCommit(x, px, qx, key, d, πx) accepts for all
the samples.

(d) V-P: interactively run the identity tester from Corollary D.4 over d in the follow-
ing sense: use the samples and their probability acquired in the previous step; and
whenever the tester queries Q[x], the verifier sends x to the prover, that replies with
qx = Q[x] and px = Φ(x), obtained from Open(x, key, d, aux). The verifier runs
VCommit(x, px, qx, key, d, πx), and rejects if the algorithm rejects. Reject if the tester
rejected.

2. Querying Q̃:
(a) V: SA = GD(N, ϵ), and send it to the prover.
(b) P: for every x ∈ SA, run Open(x, key, d, aux), and send px, qx and πx to V.
(c) V: If for all x ∈ SA, VCommit(x, px, qx, key, d, πx) didn’t reject, the verifier accepts

and outputs {(x, qx) : x ∈ SA}.

We argue that the protocol above satisfies the conditions of Proposition C.1, and then continue to
show how this protocol can be levaraged to verify label-invariant distribution properties and lan-
guages that admit an IAP.

Proof: the protocol is complete. By Theorem B.4, the commitment scheme used in Protocol C.1
satisfies the conditions of Definition B.1. Thus, assuming the prover is honest, with probability at
least 1 − 1

η(κ) for every (polytime constructible) polynomial η : N → N, for all x queried be
the verifier it holds that qx = Q(x). Since by assumption δTV(Q,D) ≤ ϵ, with all by negligible
probability the tester accepts.

Proof: the protocol is Sound. By Theorem B.4, the commitment scheme used in Protocol C.1
satisfies the condition that with all but probability 1

η(κ) for any (polytime constructible) polynomial

η : N→ N, it holds that either the verifier rejects, or there exists a distribution Q̃ over domain [N ]

such that all the verifier queries in Protocol C.1 satisfy qx = Q̃(x).

By Corollary D.4, if δTV(D, Q̃) > ϵ, the tester that the verifier ran in Step (4) of Protocol C.1 fails
with all but negligible probability. And so, with overwhelming probability, either the verifier rejects,
or outputs qx for all x ∈ SA such that qx = Q̃(x) for some distribution Q̃ over domain [N ] that
satisfies δTV(D, Q̃) ≤ ϵ. Which concludes the soundness proof.

The following sections show how to leverage this protocol to verify the family of polylog(N)
τ -approximately decidable label-invariant distribution properties (see Definition A.6), and ρ(N)-
approximately decided properties (see Definition A.8).

C.1.1 VERIFICATION OF GENERAL DISTRIBUTION PROPERTIES THROUGH IAPS

For a distribution Q over domain [N ], we formally describe the representation of Q as follows:

Construction C.2 [String representation of Q] Fix parameters N ∈ N, granularity parameter
η ∈ Θ

(
1

N2

)
, and a distribution Q over domain [N ] that is η-granular. Let C : [N ] → {0, 1}m

be an error correcting code of constant rate and relative distance 1
10 . Define the representation

Xη,C
Q ∈ {0, 1}m·(N/η) as follows: for every x ∈ [N ], denote by set tx = Q(x)

η , and define Xη,C
Q,x ∈

{0, 1}m·tx the string defined by concatenating tx the string C(x) ∈ {0, 1}m. Set:

Xη,C
Q = Xη,C

Q,1 ◦X
η,C
Q,2 ◦X

η,C
Q,3 ◦ · · · ◦X

η,C
Q,N

We claim that this representation satisfies the following properties:
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Claim C.3 (Properties of Construction C.2) Let Q be a η-granular distribution over [N ], and
Xη,C

Q be its representation as defined in Construction C.2 for η = Θ(N−2), and a constant-rate
error-correcting code C with relative distance at least 0.1. The following hold:

• Each query to Xη,C
Q can be simulated by one query to Q’s quantile function and one query

to Q’s cdf .

• For every distance parameter ϵ ∈ (0, 1) and distribution Q′ over domain [N ] with repre-

sentation Xη,C
Q′ , if δTV(Q,Q′) > ϵ, then Ham

(
Xη,C

Q , Xη,C
Q′

)
> ϵ/10

Proof. Fix query i ∈ [m/η]. LetQuantileQ : [0, 1]→ [N ] be the function that for every p ∈ [0, 1]
outputs the smallest x ∈ [N ] such that the cdf of Q, ΦQ(x) = Q ({y ∈ [N ] : y ≤ x}) satisfies
Φ(x) ≥ p. Denote qi = Quantile(i · η). By construction, this implies that i is somewhere inside
the string Xη,C

Q,qi
, as defined in Construction C.2. Next, we need to know where i falls inside a copy

of C(qi). Again, by construction, this location is iinner = (i− Φ(qi − 1)/η) mod m. Finally,
Xη,C

Q (i) = C(qi)iinner . Observe that in order to output the i’th query, we required one query to
QuantileQ and one query to the cdf of Q. This concludes te first item in the claim.

Moving to the second item, let Q′ be as described in the claim statement. Consider the strings
Xη,C

Q , Xη,C
Q′ ∈ {0, 1}m/η to be naturally associated with strings in the space {0, 1}[1/η]×[m], we

abuse the notation and for every iouter ∈ [1/η], iinner ∈ [m], write Xη,C
Q [iouter, iinner] = Xη,C

Q [(iouter ·
η−1) + iinner], and define also Xη,C

Q [iouter,−] ∈ {0, 1}m to be defined the substring of length m

starting at location (iouter · η−1).
Since Q and Q′ are of distance ϵ, it must be that at least ϵ-fraction j ∈ [1/η] satisfy:

Xη,C
Q [j,−] ̸= Xη,C

Q′ [j,−]
Since otherwise, it means that the distributions agree on all units of mass, besides a fraction smaller
than ϵ, which implies that the distributions are ϵ-close in δTV-distance. Since Xη,C

Q [j,−], Xη,C
Q′ [j,−]

are both code words in C, they are at constant Hamming at least 1
10 . We thus conclude that

Ham
(
η,C
Q , Xη,C

Q′

)
≥ ϵ/10. □

Definition C.4 (The δc-tolerant language of distribution property Π) Let Π be some distribution
property, and let η(N) = Θ(N−2) be a granularity function. Fix a constant rate and distance
1
10 ECC family, such that CN : [N ] → [m(N)]. We define the δc-tolerant language of Π to be
LΠ = (LΠ,N )N such that:

Lδc
Π,N =

{
X

η(N),CN

Q : δTV(Q,ΠN ) ≤ δc

}
Claim C.5 (Representation Decision Algorithm) For every N ∈ N, let m(N) and η(N) be as
defined in Construction C.2. Every distribution property Π that is ρ(N)-approximately decided in
poly(N) time admits a poly-time algorithm T estΠ that takes as input N , a string X ∈ {0, 1}m/η ,
and distance parameter δc, such that the following hold:

• If there exists a distribution Q such that X = X
η(N),CN

Q , and δTV(Q,ΠN ) ≤ δc, then
T estΠ accepts.

• If X doesn’t encode a distribution over domain [N ], or there exists a distribution Q such
that X = X

η(N),CN

Q , but δTV(Q,ΠN ) ≥ δc + ρ(N), then T estΠ rejects.

Proof. We define the algorithm:

• T estΠ checks that X ∈ {0, 1}m/η encodes a valid distribution Q, and rejects otherwise.
This is done by considering X as a string over the space {0, 1}[1/η]×[m], and that for every
i ∈ [1/η], X(i,−) is a codeword in C. Denote the decoding of X(i,−) as xi. It then
checks that for all i, xi ≤ xi+1, and rejects otherwise.
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• Let DistΠ be as defined in Definition A.8. If the first test passed, T estΠ reconstructs the
distribution Q that satisfies X = X

η(N),CN

Q from the decoded string, and runs the DistΠ
over Q with accuracy parameter ρ(N). If the output δ of DistΠ satisfies δ ≤ δc + ρ(N), it
accepts, and otherwise, it rejects.

This concludes the proof. □

This immediately implies the following:

Corollary C.6 For every distribution property Π that is ρ(N)-approximately decided in poly(N),
for any distance parameters δc ∈ (0, 1), the promise problem of being in Lδc

Π,N , or ρ(N)-far from
it, is in P.

We thus provide the protocol behind Theorem 1.1. Given ρ-approximately decided property Π, and
distance parameters δc, δf ∈ (0, 1). Run Protocol C.1 with parameters N , ϵ = δf−δc

10 > ρ(N), and:

1. The prover sets Q = D.

2. After running Step (1) of the protocol, run the communication phase of the IAP described
in Theorem A.11 with distance parameter

(
δf−δc
20

)
, and with respect to the languageLδc

Π,N ,

and the string Xη,Q
C . Obtain the queries to the string Xη,Q

C through the IAP.

3. Set the query set for Q to be the elements in Q relevant to the locations queried by the
protocol by the IAP in the representation Xη,Q

C , as explained in Claim C.3 (recall that
that each such query to the representation can be simulated by queries provided by the
distribution commitment scheme). Obtain verified openings from the prover,

4. Check that the IAP predicate accepts the queries, and reject otherwise.

We argue that this protocol satisfies the conditions of Theorem 1.1:

• Assume δTV(D,ΠN ) ≤ δc. Since and D = Q, and the prover is honest, the first stage
of Protocol C.1 doesn’t result in rejection with overwhelming probability. Then, Since
δTV(D,ΠN ) ≤ δc, and the queries to the representation string are correct according to D,
from the completeness of the IAP, the verifier accepts with high probability.

• Assume δTV(D,ΠN ) ≥ δf , then, assuming that Step (1) of Protocol C.1 passed, then
with overwhelming probability there exists a distribution Q̃ such that δTV(Q̃,D) ≤ δf−δc

10

and all the prover’s openings are according to Q̃. Then, since δTV(D,ΠN ) ≥ δf , by the
triangle inequality, it holds that δTV(Q̃,ΠN ) ≥ δf − δf−δc

10 . By Claim C.3, this implies

that Ham
(
Xη,Q̃

C , Xη,Q
C

)
> 1

10 ·
9(δf−δc)

10 >
δf−δc
20 for any Q that is δc close to ΠN , and

so, by the soundness condition of the IAP, the predicate associated with it rejects with high
probability.

D THE IDENTITY TESTER

Theorem D.1 (Optimal Identity Tester Valiant & Valiant (2014); Goldreich (2020)) For every
fixed distribution Q over [N ], there exists an algorithm that given N , oracle access to Q, and
black box sample access to a distribution D over domain [N ], draws O(

√
Nϵ−2) samples from D,

and:

• If D = Q, the algorithm accepts with high probability.

• If δTV(D,Q) > ϵ, the algorithm rejects with high probability.

We give a short review of the algorithm behind Theorem D.1, and then explain how it is adapted to
the setting of our result. We follow the algorithm described in Goldreich (2020).

First, we describe the algorithm under the following assumptions, that we later remove:
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• For some m = O(N), assume Q is 1
m -granular, i.e. for all x ∈ [N ], Q(x) = mx · 1

m ,
where mx ∈ {0, 1, . . . ,m}.

• Assume Q has full support, Supp(Q) = [N ].

Consider the set S = {⟨x, j⟩ : x ∈ [N ], j ∈ [mx]}, and for every x ∈ [N ] define the random variable
FQ(x0) to be a uniformly chosen tuple from Sx0

= {⟨x0, j⟩ : j ∈ [mx]}.
Observe that the distribution over S obtained by first drawing x ∼ Q, and then selecting ⟨x, j⟩
through FQ(x) is the uniform distribution over S, since every ⟨x, j⟩ ∈ S is sampled with probability
Q(x) · 1

|Sx| =
mx

m ·
1

mx
= 1

m . In other words, if D is distributed according to Q, then FQ(D) =

US . In fact, this transformation preserves the total variation distance in the following sense: if
δTV(D,Q) = δ, then δTV (FQ(D), US) = δ, since:

δTV (FQ(D), US) =
1

2

∑
x∈[N ]

∑
j∈mx

∣∣∣∣FQ(D) (⟨x, j⟩)− 1

m

∣∣∣∣ (1)

=
1

2

∑
x∈[N ]

∑
j∈[mx]

∣∣∣∣D(x) · 1

mx
− mx

m
· 1

mx

∣∣∣∣ (2)

=
1

2

∑
x∈[N ]

∑
j∈[mx]

1

mx

∣∣∣D(x)− mx

m

∣∣∣ (3)

=
1

2

∑
x∈[N ]

∑
j∈[mx]

1

mx
|D(x)−Q(x)| (4)

=
1

2

∑
x∈[N ]

|D(x)−Q(x)| (5)

= δTV(D,Q) (6)

Note that we used the assumption that Q has full support on the second inequality when dividing by
mx, and that it is 1

m -granular on the fourth inequality to argue that Q(x) = mx

m for all x.

And so, testing that D = Q is reduced to testing that FQ(D) is uniform. Testing that a samplable dis-
tribution over domain of size m is uniform over the entire domain or ϵ-far from it in δTV-distance is
a fundamental well-researched problem in distribution testing, that is known to require Θ(

√
mϵ−2)

samples (see Theorem A.4). Observe that FQ(D) as a distribution over S is indeed samplable by
first sampling x ∼ D, querying Q(x), computing mx from it, and then sampling j uniformly from
[mx].

Removing assumptions over Q. We explain how to overcome the two assumptions given above:

• Accounting for Q with partial support. Consider the distributions Q′ = 1
2Q+ 1

2U[N ] (the
distribution that assign x ∈ [N ] the probability 1

2Q(x)+ 1
2N ), and D′ = 1

2D+ 1
2U[N ]. These

two distributions are of full support, and satisfy δTV(D
′, Q′) = 1

2δTV(D,Q). Moreover,
D′ is samplable given that D is samplable, and Q′ can be queried given oracle access
to Q. Thus, assuming that Q′ is 1

m -granular for some m = O(N), in order to test
whether D = Q or δTV(D,Q) > ϵ, suffice to test that D′ = Q′ or δTV(D

′, Q′) > ϵ/2,
by sampling FQ′(D′) and running the uniformity test as explained above, incurring only
constant overhead in the sample complexity.

• Accounting for non-granular Q. Assume that Q′ as described above isn’t 1
m -granular

for m = O(N). Set m = 6N , and for every x ∈ [N ] define θx =
⌊Q′(x)/(1/m)⌋·(1/m)

Q′(x) . We
now define the distributions D′′ and Q′′ over [N + 1]:

– For every x ∈ [N ], Q′′(x) = θx ·Q′(x), and Q′′(N + 1) = 1−
∑

x∈[N ] θx ·Q′(x).

– For every x ∈ [N ], D′′(x) = θx ·D′(x), and D′′(x) = 1−
∑

x∈[N ] θx ·D′(x)
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Note that if D′ = Q′, then D′′ = Q′′, and if δTV(D
′, Q′) > ϵ/2, then:

δTV (D′′, Q′′) =
1

2

∑
x∈[N+1]

|D′′(x)−Q′′(x)| (7)

=
1

2

 ∑
x∈[N ]

θx |D′(x)−Q′(x)|+ |D′′(N + 1)−Q′′(N + 1)|

 (8)

≥ 1

2

 ∑
x∈[N ]

θx |D′(x)−Q′(x)|

 (9)

≥ 2

3
· ϵ
2

(10)

≥ ϵ

3
(11)

Where the second to last inequality is justified by the fact that Q′(x) ≥ 1
2N for all x ∈ [N ],

and thus, θx ≥ 1− 1/6N
Q′(x) ≥

2
3 . We conclude that in order to determine that D = Q or D is

ϵ-far from Q, suffice to to determine if D′′ = Q′′ or D′′ is ϵ/3-far from Q′′. Observe that
given oracle access to Q, θx can be computed for every x ∈ [N ], so both oracle access to
Q′′ and sample access to D′′ can be simulated. Lastly, assuming without loss of generality
that N is divisible by 6, Q′′ is 1

m -granular for m = 6N .

Let Q′′ and D′′ be as defined in the above proof. For every x ∈ [N ], querying Q′′(x) can be be done
by querying Q(x) and computing Q′(x) and θx from it. However, in order to query Q′′(N + 1),
the tester needs to compute

∑
x∈[N ] (1− θx)Q

′(x), which involves querying N locations in Q,
increasing the tester’s runtime significantly. The original setting for this tester was concerned with
matching the D-sample complexity of the tester with the lower bound of Ω

(√
Nϵ−2

)
, regardless of

the runtime of the tester. Since we want the runtime of the tester to also be of the same magnitude,
we circumvent this obstacle by estimating Q′′(N + 1) up to a very small error. This can be done
with samples drawn according to Q, alongside the query access to Q. Concretely:

Claim D.2 Fix a distribution Q over domain [N ], and let Q′′ be as defined in the proof of Theorem
D.1. There exists an algorithm with oracle access to Q that upon obtaining O(ϵ−4) samples from
Q, approximates Q′′(N + 1) up to additive error of O(ϵ2) with high probability.

We prove Claim D.2:

Consider the following algorithm: it draws s = O(ϵ−4) samples according to Q, and for every
sample xi drawn, it queries Q(xi), computes Q′(xi) =

1
2Q(xi)+

1
2N , and then, computes 1−θxi

=

1− ⌊Q
′(x)/(γ/N)⌋·(γ/N)

Q′(xi)
. It then outputs

∑
i∈[s] (1− θxi

)Q′(xi).

Observe that Q′′(N + 1) =
∑

x∈[N ] (1− θx)Q
′(x) = Ex∼Q′ [1− θx]. Since the random variable

(1− θxi
) can only obtain values in the interval (0, 1), by Hoeffding’s Inequality:

Pr

∣∣∣∣∣∣1s
∑
i∈[s]

(1− θxi
)−Q′′(N + 1)

∣∣∣∣∣∣ ≥ 1

ϵ2

 ≤ 2e−2s/ϵ
4

And so, since we took s = O(ϵ−4) the algorithm described above provides an approximation of
Q′′(N + 1) up to additive error ϵ2 with high probability.

Remark D.3 An ϵ2 additive approximation of Q′′(N + 1) suffices for the purpose of the algorithm
described in the proof of Theorem D.1, since it only effects the estimated size of the set S by a
multiplicative factor of ϵ2. However, this doesn’t effect the uniformity tester. The reader is reffered
to Cannone Canonne (2015) for further detail.

Therefore, using samples from Q to estimate Q′′(N + 1), we conclude the following:
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Corollary D.4 For every fixed distribution Q over [N ], there exists an algorithm that given pa-
rameter N , oracle access to Q, as well as sample access to Q, and black box sample access to a
distribution D over domain [N ], draws O(

√
Nϵ−2) samples from D, O

(
ϵ−4

)
samples from Q, and:

• If D = Q, the algorithm accepts with high probability.

• If δTV(D,Q) > ϵ, the algorithm rejects with high probability.

The runtime of the algorithm is O
(
ϵ−4 +

√
Nϵ−2

)
Remark D.5 We only consider ϵ such that ϵ = ω(N−1/4), since every smaller value provable
required super linear sample complexity, and so O(ϵ−4 +

√
Nϵ−2) = O(

√
Nϵ−2). Also note that

the completeness and soundness error can be made negligibly by amplification through repetition
polylog(N) times.
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