Supplementary Material:
Federated Split Vision Transformer for COVID-19
CXR Diagnosis using Task-Agnostic Training

Sangjoon Park'* Gwanghyun Kim'*
Jeongsol Kim! Boah Kim! Jong Chul Ye!:23

! Department of Bio and Brain Engineering
2Kim Jaechul Graduate School of Al, 3Deptartment of Mathematical Sciences
Korea Advanced Institute of Science and Technology (KAIST)
{depecher, gwang.kim, wjdthf3927, boahkim, jong.yel}@kaist.ac.kr

Abstract

This supplementary material discusses the details of implementation including
hyperparameters, network configuration, and the framework protocol in Sec. A.
It details the data-centralized and other distributed learning strategies used for
comparison in Sec. B. The additional experimental results and ablation studies are
provided in Sec. C and D. In Sec. E, details of hospital dataset are shown. Finally,
ethic committee approval and permission informations are provided in Sec. F.

A Implementation Details

Here we describe the details of the hyperparameters used and their implementation. Our experiments
were mainly implemented using Python version 3.7.5 and 3.8.8 with packages Pytorch version 1.7.1
and 1.8.1. We used a friendly federated learning framework (Flower) protocol [4] to implement the
distributed learning system, Pytorch to implement the neural network.

A.1 Hyperparameters

We have searched different hyperparameters for each chest X-ray (CXR) task. For the classification
task, we used an SGD optimizer with a warm-up cosine learning rate scheduler with a max learning
rate of 0.0005. For the segmentation task, we minimized the binary cross-entropy loss combined with
dice and focal loss using Adam [11] with a learning rate of 0.0001 and cosine annealing scheduler
with the maximum rounds of 2,000 for single-task and 1,000 for multi-task learning. Finally, the
Adam optimizer along with the warm-up constant scheduler was used with the max learning rate of
0.00002. Gradient clipping was implemented, where the max gradient norm of 1.0 was chosen to
enhance the rate of convergence, and the batch sizes per client were 2 for all tasks. We experimentally
determined the optimal hyperparameters for each task. Table |l|and Table [2| provide the detailed
hyperparameters used for each task during single-task learning and multi-task learning.

* Authors contributed equally.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Table 1: Hyperparameters used for single-task learning

Hyperparameter Classification Segmentation Detection
Learning rate (head and tail) 0.0005 0.002 0.00002
Learning rate (body) 0.0005 0.0005 0.0005
Scheduler warm-up cosine warm-up cosine annealing warm-up constant
Number of rounds 12,000 12,000 12,000
‘Warm-up rounds 500 500 500
Mini-batch size 2 per client 2 per client 2 per client
Maximum number of rounds - 2,000 -

Table 2: Hyperparameters used for multi-task learning

Hyperparameter Classification Segmentation Detection
Learning rate (head and tail) 0.0005 0.002 0.00002
Learning rate (body) 0.0005 0.0005 0.0005
Scheduler warm-up cosine ~ warm-up consine annealing warm-up constant
Number of rounds 12,000 12,000 12,000
Warm-up rounds 500 500 500
Mini-batch size 2 per client 2 per client 2 per client
Maximum number of rounds - 2,000 -

A.2 Details of network configuration

Fig. [T] depicts the details of network configurations of the proposed method for each task. For
classification, the embedded feature of dimension 16 x 16 x 768 from the head is first flattened
into the dimension of 256 x 768, and used as the input after prepending a CLS token with the same
hidden dimension to yield the input of dimension 257 x 768. The output from the Transformer body
corresponding to this CLS token embed the comprehensive feature of the entire CXR image so that it
can be used to make the final prediction (Fig. [T[a)). On the other hand, for the segmentation task,
the features at the deepest level of TransUNet of the dimension 32 x 32 x 1024 is used as the input
of the Transformer after mapping into the dimension of 16 x 16 x 768 and flattened to dimension
of 256 x 768, and the CLS token is not utilized at all though it is prepended as the same way in the
classification task to make the same feature size 257 x 768. The resulting transformed features from
the body are mapped into original shape and utilized as the same in standard TransUNet architecture
(Fig. [T[b)). Similarly, the model for the detection task doesn’t use the CLS token, and it rather uses a
similar approach to that of the segmentation task. The deepest level of the feature pyramid, which
has features of the dimension 16 x 16 x 1024, is first mapped into dimension of 16 x 16 x 768, and
is used as the input for the Transformer body after flattening and prepending CLS token to make the
same dimension of 257 x 768 to other tasks. Then, the transformed feature from the body reverts to
the original shape and position for the feature pyramid to be combined to yield the final output (Fig.

[[c)).

A.3 Implementation of our framework upon Flower protocol

From the implementation perspective of this consequential process, the major hurdle for federated
learning (FL) research is the paucity of open source frameworks that support scalable FL. on multiple
edge devices. Several studies performing FL on millions of edge devices have been published [9]],
but they are based on a closed industrial system developed by a private corporation and are not
publicly available. Meanwhile, even though several open-source frameworks including Tensorflow
federated [2], PySyft [1]] and LEAF [6] enabled the experiments on FL simulation, they do not support
heterogeneous clients, server-side orchestration and are neither scalable between multiple machines,
nor language agnostic. Recently, an open-source framework, Flower has been developed to address
this problem which supports the heterogeneous environment and scaling to multiple distributed
clients. It offers stable, language- and deep learning framework-agnostic implementation. Moreover,
it allows rapid adoption of the existing deep learning algorithm to evaluate their learning dynamics
and performances in a federated setting. Therefore, we implemented our framework upon this Flower
protocol.

Fig. [2]illustrates the core components of our framework based on Flower. Since the FL can be
considered as an interplay between global (server) and local (client) computations, we implemented

Head

(a) Classification

Probability

Head

Input

(b) Segmentation

Body
cLs
>
|:9>
==»| Transformer Transformer
2 Encoder Encoder
e g
256
(c) Detection
Input
~
Cls+box
— 7
ih Is+b
— L7 II
¥ Cls+box :
Head | &7 7 Tail
E subnets

Transformer
Encoder

Body

Tail

Figure 1: Detailed configuration for (a) classification, (b) segmentation and (c) detection tasks

Flower Clients

Flower Server Local data
Flower Task-specific -
»v R.PC [— Client [— Head / Tail — —-—t
FedAvg Federated learning Client Python 3.7 Learning loop ~
. Loop -
rategy s
k] f
= =
; g Local data
Flower Task-specific <>
[0}
— 5 = ® EPC —s Clent [— Head/Tail |—
Task-agnostic 7] (@) lient Python 3.8 Learning loop i
s T e
Body g 4
Learning loop o ™
Other = \ Local data
R Flower Task-specific
Strategies ™ S.PCt — Client [~ Head/Tail [—
ien Python 3.8 Learning loop

Figure 2: Implementation of our framework on top of Flower protocol.

the server and client-side components of our framework on top of the Flower server and clients.
In Flower clients, task-specific loops of the heads and tails are performed with local data of each
client, and the resulting features, gradients, and local parameters are passed toward the RPC client for
communication. Then, the remote procedure call (RPC) client communicates with the RPC server
in a language-agnostic manner using the bi-directional gRPC stream communication protocol [3]],
which offers an efficient binary serialization format. On the server-side, a task-agnostic body loop is
performed using the features and gradients received. In addition, the aggregation, distribution of local
parameters through a strategy such as federated averaging (FedAvg) are performed per averaging
rounds. Finally, the features, gradients, and aggregated global parameters from the server revert to
each client.

Different from previous studies that reported the result of single-device simulation [7]], our method
supports the simulation with multiple machines, which is close to real-world implementation of the
system across the edge devices.

B Data-centralized and Other Distributed Learning Methods

We perform the comparison of Federated Split Task-Agnostic (FESTA) with data-centralized and
other distributed learning methods on the COVID-19 classification task which is the main task of this
study. The details of each learning process are illustrated in Fig. [3]

(a) Data-centralized

(b) Federated learning

DataA) .
"l Transformer
LR s

Data A B C.D Client A
a , B, C,
s g Share
-
Local - = ’ a i
= = Transformer : D.?:E 3 SerEr
- - Body CI'E&BE = |2 manstormer =
[g Body T
[Loss |* [g]' Global
T parameters i
DataC (Head / Body / Tail) |
. - @ i
Client Ci E 'E] Transformer
Bod
---> Feature flows from Heads DataD I
~-> Feature flows from Body Clignt Di = Transformer EETCEEL
--> FedAvg of Head, Tail weights | i
(c) Split learning (d) FeSTA
DataA 3 DataA 3
Client A . Client A B
[l] [stare
= Setygr| =T [Seryel
ClientB | & ClientB | & 2 =
- —— -— —
|« |« =
E—:j Global
Transformer Transformer parameter
DataC - Body DataC Body (Head / Tail) |
Clientc | & . Clientc | & Ej |
- -
ClientD | = . ClientD | = . Aggregate
- -
[iLoss | [Loss |

Figure 3: Detailed description for (a) data-centralized learning, (b) federated learning, (c) split
learning, (d) FESTA learning strategies.

B.1 Details of data-centralized learning

In data-centralized learning, the local data from six clients are centrally aggregated by the server and
the single model is trained on a central server as represented in Fig. [3](a). Batch size is set to 12 to
match the setting of distributed learning strategies, accounting for batch size two per every six clients.
Other settings are used as the same as FESTA for a fair comparison.

B.2 Details of federated learning

In general, the simulation of the FL can be achieved by repeatedly doing three steps, as illustrated: i)
update local parameters of the distributed model with local data on each client, ii) send the updated
local parameters back to a server for aggregation, iii) distribute the aggregated model back to the
clients for next rounds of local updates. Thus, we trained the entire network consisting of the head,
body, and the tail is trained on each client with its local data in parallel without dividing it into

1

2
3
4
5

=)

10
11

12
13

sub-networks components as in Fig. [3(b). This process can be formally written as in Algorithm|[I]
Regarding the experimental setting, the same settings to those of the proposed FESTA were used for
comparison.

Algorithm 1: Federated learning

Function ServerMain:
Initialize the global weight W and distribute to each client
for roundsi=1,2,... Rdo
for clients c € C do in parallel
| We. « ClientUpdate(c)

if 7 € UnifyingRounds then

Update W < + > W,
ceC B
Distribute the global weight to client W, <— W for each client ¢ € C

Function ClientUpdate(c):
Z¢, Ye < Current batch of input & label from client ¢
Le < 4c(Ye, Te(Be(He(2e)))) & Backprop.
Update W, < W, —1n gVL[;'F
return W, ‘

Algorithm 2: Split learning

Function ServerMain:
Initialize the body weight w(Bl) and client head/tail weights (w4, w7) in server
for roundsi =1,2,... Rdo
for clients c € C do in parallel
if i = 1 then
t Set client (w%), w%)) +— (wy, o)

hﬁ“ <+ ClientHead(c)
b B(hY)

oL
abtH

. aL®
ClientUpdate(c, aTE))

+ ClientTail(e, bg)) & Backprop.

Update body wii t!) wg) -%>
ceC

Owyy

oL
@
L B
Function ClientHead (c):
z. < Current batch of input from client ¢
return H.(x.)
Function ClientTail(c,b.):

1y < Current batch of label from client ¢
L. + .(ye, Te(be)) & Backprop.

AL,
return ;<
Function ClientUpdate (c, %) :

Backprop. & (wy,, wr,) < (wn, — na?facc’ wr, — naawLTcC)

B.3 Details of split learning

To simulate split learning (SL), we adopted the SL without label sharing as suggested in the original
paper of SL [[17]]. The detailed process of the SL method used in our experiment can be presented
as in Algorithm 2] The overall process of SL is similar to FESTA except for the fact that a step
of aggregation and distribution by the central server is absent in SL as in Fig. [3{c). The splitting

configuration of head, body, and tail on client and server sides were the same as in the proposed
FESTA. Since the local head and tail parameters of individual clients are not unified in SL, the
inference results on the external testing dataset can be different between clients. Therefore, we
calculated evaluation metrics for every six clients and averaged them to get the final score. The
other experiment settings, including batch size and learning rate, remain the same as in the proposed
FESTA.

C Additional Experiments

In this section, the results of additional experiments to further analyze the proposed FESTA learning
method are suggested.

C.1 Performances with increased number of COVID-19 cases

To provide more robust results using the larger corpus of data especially in terms of the number of
COVID-19 cases, additional experiments were performed as follows.

We first swapped the hospital 1 data (containing 6 COVID-19 cases), which was originally used
as the external test dataset, with the hospital 3 data (containing 80 COVID-19 cases), and repeated
the experiments with the same setting. As suggested in Table 3] the proposed model retained stable
performance in hospital 3 data with 80 COVID-19 cases.

Table 3: Number of COVID-19 cases with the different external set and the classification performances
(AUCQ).

External test set COVID-19 cases Average COVID-19 Others Normal
Hospital 1 6 0.909 £0.021 0.880+0.008 0.916+0.038 0.931 +£0.021
Hospital 3 80 0913+£0.019 0.871 £0.043 0.932+0.007 0.935+0.015

Note: Experiments were performed repeatedly with three random seeds to report mean and standard deviation.

Secondly, the additional analysis was performed by holding out all four hospital data (private) from
the training set and by using them for external validation. Here, the label system had to be simplified
into two categories, COVID-19 and non-COVID-19, as public datasets do not contain any label
data for the "other infection" class. The proposed model presented stable performance even after
excluding all private CXR data from the training set, dispelling the worry of data leakage problems.
Although the performances were slightly decreased, it should be taken into consideration that the
total amount of training data decreased to less than half of the original training data by removing the
hospital 4 data (Table [).

Table 4: Classification performances (AUC) of the proposed model using all four hospital datasets as
an external testset.

External test set COVID-19 cases COVID-19
All four hospitals (hospital 1-4) 94 0.879 £ 0.043

Note: Experiments were performed repeatedly with three random seeds to report mean and standard deviation.

Finally, we gathered additional anterior-posterior (AP) view CXR data labeled by the experts and
combined them with the original posterior-anterior (PA) view data as shown in Table[5] The total
amount of COVID-19 data has doubled, and COVID-19 cases in hospital 1 increased 6 to 81 CXRs.
When adding the additional AP view CXRs and evaluating the performances in hospital 1 data, the
performances of the proposed model were not compromised and rather increased especially for the
diagnosis of COVID-19 as in Table[6}

C.2 Comparison with task-specific expert and CNN-based multi-task learning models

Table[/|shows a comparison of the performances of each task between the proposed Transformer-
based multi-task learning model trained with FESTA method and others. First, we compared the
proposed MTL model with single task experts, defined as following for each task.

Table 5: Increased dataset and sources for COVID-19 diagnosis.

CXR view Total Hospital 1 Hospital2 Hospital3 Hospital4 NIH Brixia BIMCV

AP view (added)
Normal 3662 97 - - 117 3355 - 93
Other infection 204 19 76 92 17 - - -
COVID-19 3322 75 278 213 - - 2384 372
Total AP CXRs 7188 191 354 305 134 3355 2384 465
All view (total)
Normal 17311 417 300 400 8978 7123 - 93
Other infection 1672 58 220 400 994 - - -
COVID-19 5753 81 286 293 - - 4313 780
Total CXRs 24736 556 806 1093 9972 7123 4313 873

Table 6: Number of COVID-19 cases after adding AP view CXRs and the classification performances
(AUC).

External test set COVID-19 cases Average COVID-19 Others Normal
Hospital 1 (PA data) 6 0.909 £ 0.021 0.880 £0.008 0.916+0.038 0.931 +£0.021
Hospital 1 (PA and AP data) 81 0.924 £ 0.006 0.943 £0.015 0.879 £0.007 0.949 + 0.008

Note: Experiments were performed repeatedly with three random seeds to report mean and standard deviation.

* Classification: DenseNet-121 (D121) model with Probabilistic Class Activation Map
operation Ye et al. [19]

* Segmentation: AlbuNet [14] based segmentation network (1st place model in Kaggle
SIIM-ACR pneumothorax segmentation challenge [[16]])

* Detection: RetinaNet [12]] model with SE-ResNext-50 encoder (2nd place model in Kaggle
RSNA pneumonia detection challenge [13]])

As provided in Table[7} the proposed MTL model outperformed the task-specific experts for each
specific task. Of note, when the shared Transformer body was substituted with the shared convo-
lutional neural network (CNN) layer for MTL, the performance was substantially dropped in the
detection task. Combined together, the results demonstrated the value of the Transformer architecture
leveraging global attention as well as local attention, which is suitable for MTL and cannot be
substituted by other architecture like shared CNN layers.

Table 7: Comparison of performances with task-specific experts and CNN-based MTL models

Tasks Metrics Task-specific experts CNN-based MTL Transformer-based MTL
Classification AUC 0.898 + 0.004 0.907 £ 0.011 0.931 + 0.004
Segmentation Dice 0.736 £ 0.014 0.797 £ 0.018 0.821 + 0.003

Detection mAP 0.190 £ 0.006 0.159 £ 0.035 0.204 £ 0.002

Note: Experiments were performed repeatedly with three random seeds to report mean and standard deviation.

In addition, when compared with Kaggle’s winning solutions available for the segmentation [[16]
and detection tasks [13], the proposed MTL model showed comparable performances as shown in
Table 8] suggesting that the Transformer body do not deface the performances of the individual tasks.

Table 8: Comparison with Kaggle winning solutions for segmentation and detection tasks

Segmentation Dice Detection mAP

1st place solution (description) 0.764 +0.007 2nd place solution (SE-ResNext-50) 0.211 = 0.003
4th place solution (descrption) 0.841 + 0.004 2nd place solution (SE-ResNext-101) 0.199 + 0.003
Proposed MTL model 0.821 +0.003 Proposed MTL model 0.204 + 0.002

Note: Experiments were performed repeatedly with three random seeds to report mean and standard deviation.

C.3 Estimates of communication costs

With the intrinsic property of FESTA learning, a high computational burden is imposed on the
server-side device, and this configuration is what we intended. Suppose, if most of the computation is
performed on client-sides, all participating hospitals should have devices with high computational
capacity. Forcing to prepare high computational resources for participants will obviously hinder the
widespread adoption in a real-world application, and preparing a powerful server-side device with
better security is rather practical. Nevertheless, there still remains a problem of computational costs
between the server and clients. The communication costs between the server as the client can be
estimated as follow.

When the period between averaging is k and transmission of features, gradients, and network
parameters are F', G and P respectively, total transmission from Server to Client T" can be represented
as follows:

T=kx(F+G)+P, ey

When parameter numbers of head, body, and tail are P, P, and P; respectively and k is 100, T for
each distributed learning strategy can be formulated as follows:

Ter = Pr + Py + Py, 2
TSL =100 x (F + G), (3)
Tresta = 100 X (F + G) + (P, + Py), €]

If the transmission from Server to Client 7" and that from Client to Server T¢_,s are assumed to be
equal (Tc_,s = T), total transmission T is as follows:

T =2T. ®)

We then calculated the communication costs for feature/gradient transmission and parameter trans-
mission per 1 averaging (=100 rounds) for each task as shown in Table 9] Despite the fact that
the communication cost of the proposed FESTA framework was larger than that of SL, it was
substantially lower than that of FL.

Table 9: Communication costs of the distributed learning methods during training per 1 averaging
(=100 rounds)

Total Feature and gradient Network parameter

transmission transmission transmission
Classification
Federated learning 159.365M - 159.365M
Split learning 78.950M 78.950M -
FESTA 105.580M 78.950M 26.630M
Segmentation
Federated learning 177.592M - 177.592M
Split learning 78.950M 78.950M -
FESTA 123.808M 78.950M 44.858M
Detection
Federated learning 226.450M - 226.450M
Split learning 78.950M 78.950M -
FESTA 172.665M 78.950M 93.715M

C4 Statistical analysis

We also performed whether or not the performance gains with the Transformer architecture are
statistically significant. As provided in Table|10} the proposed MTL model outperformed the model
without the Transformer body with statistical significance, and the performance increase was more
prominent in the MTL model.

Table 10: Statistical comparison of performances between the model with and without the transformer.

COVID-19 Others Normal
AUC (95% CI) p-value AUC (95% CI) p-value AUC (95% CI) p-value
w/o Transformer 0.867 (0.696 - 1.000) - 0.883 (0.817 - 0.948) - 0.889 (0.837 - 0.941) -

w Transformer (STL) 0.868 (0.749-0.987) 0.988 0.905 (0.852-0.958) 0.498 0.927 (0.889-0.965) 0.019
w Transformer (MTL) 0.945 (0.896 - 0.995) 0.266 0.893 (0.833-0.954) 0.768 0.938 (0.903 - 0.974) 0.010

Note: For statistical comparison, p-values and Confidence Intervals (Cls) were calculated using DeLong’s test.
Note: To evaluate the statistical significance, the models with medium performance were compared.

D Additional Ablation Studies in Multi-Task Learning Setting.

Additional ablation studies have been performed to examine the effect of Transformer body capacity
and different training schemes, as shown in Table[T1]

Effect of Transformer body capacity We first evaluated the effect of the network capacity of the
task-agnostic body model on the performances of individual tasks. Since the Transformer processes
the task-agnostic modeling between features in a multi-task setting, there exists a possibility that the
performance can further increase with the use of a dedicated server system with higher computational
resources, once the model shows the performance proportional to the capacity of the Transformer
body. As suggested in Table [T} the model equipped with a smaller body showed lower performance
than that of a standard Transformer body equipped with 12 heads and 12 layers, suggesting the
possibility of further improvement in performance with a Transformer with higher capacity.

Training scheme Since our framework consists of the server-side and client-side sub-networks, it
is possible to train only part of these sub-networks or train this sub-network after fixing the others.
Thus, we experimented with various training schemes to evaluate their effect on the performance
in multi-task settings. For the one-step learning approach, we trained the model after having all
sub-networks, namely head, body, and tail, learnable for the entire training round. For the alternating
approach, we alternately fixed and unfixed the parameters of the body and head/tail per 100 rounds.
As shown in Table |1 1} both of these approaches show lower performance than the proposed two-step
learning approach. This suggests that the simultaneous or alternating approach to train these sub-
network components makes training unstable. Fixing the body for multi-task processing after certain
rounds and fine-tuning the task-specific components may help to reach the better local minimum for
the head and tail for each task, resulting in better generalization performance.

Table 11: Additional ablations in multi-task setting

Classification Segmentation Detection
Tasks AUC Dice mAP
Effect of Transformer body capacity
H =4,L =4, Dpiggen = 256 0.916 = 0.011 0.809 + 0.030 0.200 +£ 0.007
H =8,L =8, Dhidden = 512 0916 +0.013 0.826+0.001 0.191 £ 0.016
H =12,L = 12, Dp;idden, = 768 0931 + 0.004 0.821 + 0.003 0.204 + 0.002
Effect of training strategy
One-step approach 0.930 £0.022 0.801 £0.024 0.188 £ 0.020
Alternating approach 0915 £0.011 0.799 £ 0.021 0.179 £ 0.003
Two-step approach 0.931 £+ 0.004 0.821 + 0.003 0.204 + 0.002

Note: Experiments were performed repeatedly with three random seeds to report mean and standard deviation.

E Details of Hospital Dataset

Table [T2] describes the details about the CXR and clinical characteristics of four hospital data
deliberately collected for this study.

Table 12: Details of CXR and patient characteristics of hospital datasets.

Data Hospital 1 Hospital 2
CXR image details
Number of CXRs 365 452
Modality CR (93.7%), N/A (6.3%) CR (99.8%), N/A (0.2%)
Exposure time (msec) 6.7+34 16.5+7.7
Tube current (mA) 473.3 £ 198.1 307.8 +36.4
Bits 12 (12-14) 12 (12-12)
Clinical details
Age 458 +15.9 509 +17.7
Sex M (47.7%), F (45.2%), N/A (7.1%) M (50.2%), F (48.8%)
COVID-19 severity 1(1-3) 5.5 (1-6)
CT positive cases N/A (100%) N/A (100%)
Country South Korea South Korea
Data Hospital 3 Hospital 4
CXR image details
Number of CXRs 788 9838
Modality CR (100%) CR (3.8%), DX (96.2%)
Exposure time (msec) 11.6 £8.0 89+39
Tube current (mA) 317.8 £30.7 298.9 +43.6
Bits 12 (12-14) 14 (10-15)
Clinical details
Age 46.9 £ 16.6 46.3 £ 14.4
Sex M (26.9%), F (34.0%), N/A (39.1%) M (49.1%), F (47.0%), N/A (3.9%)
COVID-19 severity 5(1-6) -
CT positive cases Positive (3.8%), N/A (96.3%) -
Country South Korea South Korea

Abbreviations: CXR, chest X-ray; CR, computed radiography; DX, digital x-ray; M, male; F, female.
Note: Values are presented as mean + standard deviation or median (range).

F Ethic Committee Approval and Permission Information.

Ethic Committee Approval and Permission Information The four hospital data deliberately
collected for COVID-19 classification were ethically approved by the Institutional Review Board of
each hospital. According to their terms of use, the public datasets for the classification task (CheXpert
[LO]], Valencian Region Medical Image Bank [BIMCV] [8]], Brixia [[15} 5], National Institutes of
Health [NIH] [18]]) can be used for research purposes. Likewise, the datasets for the segmentation
tasks (SIIM-ACR pneumothorax segmentation challenge [16]) and the detection (RSNA pneumonia
detection challenge [13]]) can be used for academic research according to the terms of use.

References

[1] Openmined/pysyft: A library for answering questions using data you cannot see. https:
//github.com/0OpenMined/PySyft. (Accessed on 06/03/2021).

[2] Tensorflow federated. https://www.tensorflow.org/federated. (Accessed on
06/03/2021).

[3] grpc. https://grpc.io/l (Accessed on 06/03/2021).

[4] D.J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P. de Gusmio, and N. D. Lane. Flower:
A friendly federated learning research framework. arXiv preprint arXiv:2007.14390, 2020.

[5] A. Borghesi and R. Maroldi. Covid-19 outbreak in italy: experimental chest x-ray scoring
system for quantifying and monitoring disease progression. La radiologia medica, 125:509-513,
2020.

[6] S.Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan, V. Smith, and A. Talwalkar.
Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097, 2018.

10

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://grpc.io/

[7] L. Corinzia, A. Beuret, and J. M. Buhmann. Variational federated multi-task learning. arXiv
preprint arXiv:1906.06268, 2019.

[8] M. De La Iglesia Vaya, J. M. Saborit, J. A. Montell, A. Pertusa, A. Bustos, M. Cazorla, J. Galant,
X. Barber, D. Orozco-Beltran, F. Garcia-Garcia, et al. Bimcv COVID-19+: a large annotated
dataset of rx and ct images from COVID-19 patients. arXiv preprint arXiv:2006.01174, 2020.

[9] A.Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner, C. Kid-
don, and D. Ramage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[10] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo,
R. Ball, K. Shpanskaya, et al. Chexpert: A large chest radiograph dataset with uncertainty
labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 590-597, 2019.

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollér. Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision, pages 2980-2988, 2017.

[13] RSNA. RSNA Pneumonia Detection Challenge. https://www.kaggle.com/c/
rsna-pneumonia-detection-challenge, 2018.

[14] A. A. Shvets, A. Rakhlin, A. A. Kalinin, and V. I. Iglovikov. Automatic instrument segmentation
in robot-assisted surgery using deep learning. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 624—628. IEEE, 2018.

[15] A. Signoroni, M. Savardi, S. Benini, N. Adami, R. Leonardi, P. Gibellini, F. Vaccher,
M. Ravanelli, A. Borghesi, R. Maroldi, and D. Farina. Bs-net: learning covid-19 pneu-
monia severity on a large chest x-ray dataset. Medical Image Analysis, page 102046,
2021. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.2021.102046. URL https!
//www.sciencedirect.com/science/article/pii/S136184152100092X.

[16] SIIM-ACR. SIIM-ACR Pneumothorax Segmentation. https://www.kaggle.com/c/
siim-acr-pneumothorax-segmentation, 2019.

[17] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar. Split learning for health: Distributed deep
learning without sharing raw patient data. arXiv preprint arXiv:1812.00564, 2018.

[18] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. Chestx-ray8: Hospital-scale
chest x-ray database and benchmarks on weakly-supervised classification and localization of
common thorax diseases. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2097-2106, 2017.

[19] W. Ye, J. Yao, H. Xue, and Y. Li. Weakly supervised lesion localization with probabilistic-cam
pooling. arXiv preprint arXiv:2005.14480, 2020.

11

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.sciencedirect.com/science/article/pii/S136184152100092X
https://www.sciencedirect.com/science/article/pii/S136184152100092X
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation

	Implementation Details
	Hyperparameters
	Details of network configuration
	Implementation of our framework upon Flower protocol

	Data-centralized and Other Distributed Learning Methods
	Details of data-centralized learning
	Details of federated learning
	Details of split learning

	Additional Experiments
	Performances with increased number of COVID-19 cases
	Comparison with task-specific expert and CNN-based multi-task learning models
	Estimates of communication costs
	Statistical analysis

	Additional Ablation Studies in Multi-Task Learning Setting.
	Details of Hospital Dataset
	Ethic Committee Approval and Permission Information.
	References

