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Abstract

Sparsity is a central aspect of interpretability in machine learning. Typically,1

sparsity is measured in terms of the size of a model globally, such as the number of2

variables it uses. However, this notion of sparsity is not particularly relevant for3

decision making; someone subjected to a decision does not care about variables that4

do not contribute to the decision. In this work, we dramatically expand a notion of5

decision sparsity called the Sparse Explanation Value (SEV) so that its explanations6

are more meaningful. SEV considers movement along a hypercube towards a7

reference point. By allowing flexibility in that reference and by considering how8

distances along the hypercube translate to distances in feature space, we can derive9

sparser and more meaningful explanations for various types of function classes.10

We present cluster-based SEV and its variant tree-based SEV, introduce a method11

that improves credibility of explanations, and propose algorithms that optimize12

decision sparsity in machine learning models.13

1 Introduction14

The notion of sparsity is a major focus of interpretability in machine learning and statistical modeling15

[Tibshirani, 1996, Rudin et al., 2022]. Typically, sparsity is measured globally, such as the number of16

variables in a model, or as the number of leaves in a decision tree. Global sparsity is relevant in many17

situations, but it is less relevant for individuals subject to the model’s decisions. Individuals care less18

about, and often do not even have access to, the global model. For them local sparsity, or decision19

sparsity, meaning the amount of information critical to their own decision, is more consequential.20

An important notion of decision sparsity been established in the work of Sun et al. [2024], who21

defined the Sparse Explanation Value (SEV), in the context of binary classification, as the number of22

factors that need to be changed to a reference feature value in order to change the decision. In contrast23

to SEV, counterfactual explanations tend not to be sparse since they require small changes to many24

variables in order to reach the decision boundary [Sun et al., 2024]. Instead, SEV provides sparse25

explanations: consider a loan application that is denied because the applicant has many delinquent26

trades. In that case, the decision sparsity (that is, the SEV) would be 1 because only a single factor27

was required to change the decision, overwhelming all possible mitigating factors. The framework of28

SEV thus allows us to see sparsity of models in a new light.29

Prior to this work, SEV had one basic definition: it is the minimal number of features we need to set30

to their reference values to flip the sign of the prediction. The reference values are typically defined as31

the mean of the instances in the opposite class. This calculation is easy to understand, but somewhat32

limiting because the reference could be far in feature space from the point being explained and the33

explanation could land in a low density area where explanations are not credible. As an example, for34

loan decisions, SEV could create a counterfactual such as “Changing the applicant’s 3-year credit35

history to 15 years would change the decision.” While this counterfactual is valid, faithful, and sparse,36

if the applicant is only 21 years old, it is not close because the distance between the query point37

and the counterfactual is so large (3 years to 15 years). In addition, this explanation is not credible38

because the proposed changes to the features lead to an unrealistic circumstance – 6-year-olds do not39
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typically have credit. That is, the counterfactual does not represent a typical member of the opposite40

class. Lack of credibility is a common problem for many counterfactual explanations [Mothilal et al.,41

2020, Wachter et al., 2017, Laugel et al., 2017, Joshi et al., 2019]. Therefore, in this work, we propose42

to augment the SEV framework by adding two practical considerations, closeness of the reference43

point to the query, and credibility of the explanation, while also optimizing decision sparsity.44

We propose three ways to create close, sparse and credible explanations. The first way is to create45

multiple possibilities for the reference, one at the center of each cluster of points (Section 4.1). Having46

a finite set of references keeps the references auditable, meaning that a domain expert can manually47

check the references prior to generating any explanations. By creating references spread throughout48

the negative class, queries can be assigned to closer references than before. Second, we allow the49

references to be flexible, where their position can be shifted slightly from a central location in order50

to reduce the SEV (Section 4.4). The third way pertains to decision tree classifiers, where a reference51

point is placed on each opposite-class leaf, and an efficient shortest-path algorithm is used to find the52

nearest reference (Section 4.2). Table 1 shows a query at the top, and some SEV calculations from53

our methods below, showing feature values that were changed within the explanation.

Table 1: An example for a query in the FICO Dataset with different kinds of explanations, SEV1

represents the SEV calculation with one single reference using population mean, SEV© represents
the cluster-based SEV, SEVF represents the flexible-based SEV. The columns are four features.

EXTERNAL
RISKESTIMATE

NUMSATIS-
FACTORYTRADES

NETFRACTION
REVOLVINGBURDEN

PERCENTTRADES
NEVERDELQ

Query 69.00 10.00 117.01 90
SEV1 72.65 21.47 22.39 90
SEVF 78.00 10.00 9.00 90
SEV© 81.00 26.00 12.00 90
SEVT 69.00 10.00 117.01 10054

In addition to developing methods for calculating SEV, we propose two algorithms to optimize a55

machine learning model to reduce the number of points that have high SEV without sacrificing56

predictive performance in Section 5, one based on gradient optimization, and the other based on57

search. The search algorithm is exact. It uses an exhaustive enumeration of the set of accurate models58

to find one with (provably) optimal SEV.59

Our notions of decision sparsity are general and can be used for any model type, including neural60

networks and boosted decision trees. Decision sparsity can benefit any application where individuals61

are subject to decisions made from predictive models – these are cases where decision sparsity is62

more important than global sparsity.63

2 Related Work64

The concept of SEV revolves around finding models that are simple, in that the explanations for65

their predictions are sparse, while recognizing that different predictions can be simple in different66

ways (i.e., involving different features). In this way, it relates to (i) globally sparse models, (ii) local67

classification methods, which predict the outcomes of different units using local models, and (iii)68

black box explanation methods, which seek to explain predictions of complex models. We further69

comment on these below.70

Instance-wise Explanations. Prior work has developed methods to explain predictions of black71

boxes [e.g., Guidotti et al., 2018, Ribeiro et al., 2016a, 2018, Lundberg and Lee, 2017, Baehrens72

et al., 2010] for individual instances. These explanations are designed to estimate importance of73

features, are not necessarily faithful to the model, and are not associated with sparsity in decisions,74

so they are fairly distant from the purpose of the present work. Our work is on tabular data; there75

is a multitude of unrelated work on explanations for images [e.g., Apicella et al., 2019, 2020] and76

text [e.g., Lei et al., 2016, Li et al., 2016, Treviso and Martins, 2020, Bastings et al., 2019, Yu et al.,77

2019, 2021]. More closely related are counterfactual explanations, also called inverse classification78

[e.g., Mothilal et al., 2020, Wachter et al., 2017, Lash et al., 2017, Sharma et al., 2022, Virgolin79

and Fracaros, 2023, Guidotti et al., 2019, Poyiadzi et al., 2020, Russell, 2019, Boreiko et al., 2022,80

Laugel et al., 2017, Pawelczyk et al., 2020]. Counterfactual explanations are typically designed to81

find the closest instance to a query point with the opposite prediction, without considering sparsity of82

the explanation. However, extensive experiments [Delaney et al., 2023] indicate that these “closest83

counterfactuals” tend to be unnatural for humans because the decision boundary is typically in a84

region where humans have no intuition for why a point belongs to one class or the other. For SEV,85

on the other hand, reference values represent the population commons, so they are intuitive. Thus,86
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SEV has two advantages over standard counterfactuals: its references are meaningful because they87

represent population commons, and its explanations are sparse.88

Local Sparsity Optimization Models While there are numerous prior works on developing89

post-hoc explanations, limited attention has been paid to developing models that provide sparse90

explanations. We are aware of only one work on this, namely the Explanation-based Optimization91

(ExpO) algorithm of Plumb et al. [2020] that used a neighborhood-fidelity regularizer to optimize92

the model to provide sparser post-hoc LIME explanations. Experiment in Appendix K in our paper93

shows that ExpO is both slower and provides less sparse predictions than our algorithms.94

3 Preliminaries and Motivation95

The Sparse Explanation Value (SEV) is defined to measure the sparsity of individual predictions of96

binary classifiers. The point we are creating an explanation for is called the query. The SEV is the97

smallest set of feature changes from the query to a reference that can flip the prediction of the model.98

When we make a change to the query’s feature, we align it to be equal to that of the reference point.99

The reference point is a “commons,” i.e., a prototypical point of the opposite class as the query. In100

this section, we will focus on the basic definition of SEV, the selection criteria for the references, as101

well as three reference selection methods.102

3.1 Recap of Sparse Explanation Values103

Figure 1: SEV Hypercube

We define SEV following Sun et al. [2024]. For a specific104

binary classification dataset {xi, yi}ni=1, with each xi ∈ Rp,105

and the outcome of interest is yi ∈ {0, 1}. (This can be106

extended to multi-class classification by providing counter-107

factuals for every other class than the query’s class.) We108

predict the outcome using a classifier f : X → {0, 1}.109

Without loss of generality, in this paper, we are only interested in110

queries predicted as positive (class 1). We focus on providing a111

sparse explanation from the query to a reference that serves as a112

population commons, denoted r. Human studies [Delaney et al.,113

2023] have shown that contrasting an instance with prototypical114

instances from another class provides more intuitive explanations115

than comparing it with instances from the same class. Thus, we define our references in the opposite116

class (negative class in this paper). To calculate SEV, we will align (i.e., equate) features from query117

xi and reference x̃ one at a time, checking at each time whether the prediction flipped. Thinking of118

these alignment steps as binary moves, it is convenient to represent the 2p possible different alignment119

combinations as vertices on the boolean hypercube. The hypercube is defined below:120

Definition 3.1 (SEV hypercube). A SEV hypercube Lf,i,r for a model f , an instance xi with label121

f(xi) = 1, and a reference r, is a graph with 2p vertices. Here p is the number of features in xi and122

bv ∈ {0, 1}p is a Boolean vector that represents each vertex. Vertices u and v are adjacent when their123

Boolean vectors differ in one bit, ∥bu − bv∥0 = 1. 0’s in bv indicate the corresponding features are124

aligned, i.e., set to the feature values of the reference r, while 1’s indicate the true feature value of125

instance i. Thus, the actual feature values represented by the vertex v is xr,v
i , := bv⊙xi+(1−bv)⊙r,126

where ⊙ is the Hadamard product. The score of vertex v is f(xr,v
i ), also denoted as Lf,i,r(bv).127

Table 2: Calculation process for SEV− = 1

TYPE HOUSING LOAN EDUCATION Y (RISK)
(1,1,1) query Rent >10k High School High

(0,1,1) SEV−

Explanation Owning >10k High School Low

(0,0,0) reference Owning <5k Master Low

The SEV hypercube definition can also be extended128

from a hypercube to a Boolean lattice as they have129

the same geometric structure. There are two vari-130

ants of the Sparse Explanation Value: one gradually131

aligns the query to the reference (SEV−), and the132

other gradually aligns the reference to the query133

(SEV+). In this paper, we focus on SEV−:134

Definition 3.2 (SEV−). For a positively-predicted query xi (i.e., f(xi) = 1), the Sparse Explanation135

Value Minus (SEV−) is the minimum number of features in the query that must be aligned to reference136

r to elicit a negative prediction from f . It is the length of the shortest path along the hypercube to137

obtain a negative prediction,138

SEV−(f,xi, r) := min
b∈{0,1}p

∥1− b∥0 s.t. Lf,i,r(b) = 0.
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Figure 1 and Table 2 shows an example of SEV−=1 in a credit risk evaluation setting. Since p = 3,139

we construct a SEV hypercube with 23 = 8 vertices. The red vertex (1, 1, 1) corresponds to the140

query. The dark blue vertex at (0, 0, 0) represents the negatively-predicted reference value. The141

orange vertices are predicted to be positive, and the light blue vertices are predicted to be negative.142

To compute SEV−, we start at (1, 1, 1) and find the shortest path to a negatively-predicted vertex. On143

this hypercube, (0, 1, 1) is closest. Translating this to feature space, this means that if the query’s144

housing situation changes from renting to the reference value “owning,” it would be predicted as145

negative. This means that SEV− is equal to 1 in this case. The feature vector corresponding to146

this closest vertex (0, 1, 1), is called the SEV− explanation for the query, denoted by xexpl,r
i for147

reference r.148

3.2 Motivation of Our Work: Sensitivity to Reference Points149

Since SEV− is determined by the path on a SEV hypercube and each hypercube is determined by150

the reference point, the SEV− is therefore sensitive to the selection of reference points. Adjusting151

the reference point trades off between sparsity (according to SEV−) and closeness (measured by ℓ2,152

ℓ∞ or ℓ0 distance between the query and its assigned reference point). Note that this trade-off exists153

because SEV− tends to be small when the reference is far from the query. More detailed explanations,154

visualizations, and experiments are shown in Appendix B.155

Selecting References. The reference must represent the commons, meaning the negative population,156

and the generated explanations should represents the negative populations as well. Moreover, the157

negative population may have subpopulations; e.g., Diabetes patients may have higher blood glucose158

levels, while hypertension patients have higher blood pressure. To have meaningful coverage of159

the negative population, in this work, we consider multiple references, placed within the various160

subpopulations. This allows each point in the positive population to be closer to a reference. LetR161

denote possible placements of references. For query xi, an individual-specific reference ri ∈ R for162

xi is chosen based on three criteria: it should be nearby (i.e., close), and should provide a sparse163

and reasonable explanation. That is, we are looking to minimize the following three objectives over164

placement of the reference ri:165

∥xi − ri∥, ri ∈ R (Closeness) (1)
166

SEV−(f,xi, ri), ri ∈ R (Sparsity) (2)
167

−P (xexpl,ri

i |X−) (Negated Credibility), (3)
with the constraint that the references obey auditability, meaning that domain experts are able to check168

the references manually, or construct them manually. The function SEV−(f,xi, ri) in (2) represents169

the SEV− computed with the given function f , query xi, and the individual-specific reference ri170

for generating the hypercube, xexpl,ri

i is the sparse explanation for the sample xi, and P (·|X−) in171

the definition of credibility represents the probability density distribution of the negative population172

and P (xexpl,ri

i |X−) is the density of the negative distribution at xexpl,ri

i . If P (xexpl,ri

i |X−) is large,173

xexpl,ri

i is in a high-density region.174

4 Meaningful and Credible SEV175

We now describe cluster-SEV, which improves closeness at the expense of SEV, and its variant,176

tree-based SEV, which improves all three objectives and computational efficiency. We also present177

methods to improve the credibility and sparsity of the explanations.178

4.1 Cluster-based SEV: Improving Closeness179

Figure 2: Cluster-based SEV

This approach creates multiple references for the nega-180

tive population. A clustering algorithm is used to group181

negative samples, and the resulting cluster centroids are182

assigned as references. A query is assigned to its closest183

cluster center:184

r̃i ∈ argmin
r∈C
∥xi − r∥2

where C is the collection of centroids obtained by clustering185

the negative samples. We refer to the SEV− produced186

by the grouped samples as cluster-based SEV, denoted187

SEV©. Figure 2 illustrates the calculation of SEV© for two188
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examples located in two different centroids. A red dot represents a query, while a blue dot represents189

a reference. For each instance, it selects the closest centroid and considers the SEV hypercube, where190

each cyan point represents a negatively predicted vertex and each pink point represents a positively191

predicted vertex. We deduce by following the red lines that the SEV© for the two queries are 2 and 1,192

respectively. The cluster centroids should serve as a cover for the negative class. To ensure that the193

cluster centroids have negative predictions, we use the soft clustering method of Bezdek et al. [1984]194

to constrain the predictions of the cluster centers. Details are in Appendix C.195

4.2 Tree-based SEV: SEV© Variant with Useful Properties and Computational Benefits196

Figure 3: SEVT Preprocessing

Tree-based SEV is a special case of cluster-based SEV,197

where we consider each negative leaf as a reference198

candidate, and and find the sparsest explanation (path199

along the tree) to the nearest reference. Here, SEV−200

and ℓ0 distance (i.e., edit distance) are equivalent. That201

is, we find the minimum number of features to change202

in order to achieve a negative prediction.203

We denote SEVT as the SEV− calculated based on this204

process. Here, we assume that trees have no trivial205

splits where all child leaves make the same prediction. If so, we would collapse those leaves before206

calculating the SEVT . The first theorem below refers to decision paths that have negatively predicted207

child leaves. This is where taking one different choice at an internal split leads to a negative leaf.208

Theorem 4.1. With a single decision classifier DT and a positively-predicted query xi, define Ni209

as the leaf that captures it. If Ni has a sibling leaf, or any internal node in its decision path has a210

negatively-predicted child leaf, then SEVT is equal to 1.211

Figure 4: Efficient SEVT calculation:
Query (node 7 ) has SEVT =1, which goes
to node 10 . The path to this node is
recorded as LL at node 3 , which is along
the decision path to node 7 .

The second theorem states that SEV− and minimum212

edit distance from the query to negative leaves are equiv-213

alent.214

Theorem 4.2. With a single decision tree classifier DT215

and a positively-predicted query xi, with the set of all216

negatively predicted leaves as reference points, both217

SEV− and the ℓ0 distance (edit distance) between the218

query and the SEV− explanation are minimized.219

The proofs of those two theorems are shown in Ap-220

pendix L and M. The structure of tree models yields221

an extremely efficient way to calculate SEV−. We per-222

form an important preprocessing step before any SEV−223

calculations are done, which will make SEV− easier to calculate for all queries at runtime. At each224

internal node, we record all paths to negative leaves anywhere below it in the tree. This is described225

in Algorithm 2 in Appendix E. E.g., if the tree has binary splits, a path from an internal node to a leaf226

node might require us to go left, then right, then left. In that case, we store LRL on this internal node227

to record this path. Then, when a query arrives at runtime (in a positive leaf, since it has a positive228

prediction), we traverse directly up its decision path all the way to the root node. For all internal229

nodes in the decision path, we observe distances to each negative leaf, which were stored during230

preprocessing. We traverse each of these, and the minimum distance among these is the SEV−. This231

is described in Algorithm 3 in Appendix E and illustrated in Figure 4. Note that we actually would232

traverse to each negative node because some internal decisions might not need to be changed along233

the path. In the example in Figure 4, we change the split at node 3 , and use the value that the query234

already has for the split at node 6 , landing in node 10 , so SEV− is 1 not 2.235

Table 3: Illustration of SEVT calculation.

ACTION
HYPER-
TENSION

DIABETES
HYPER-

LIPIDEMIA
OBESITY

HAVE
STROKE

# OF CHANGED
CONDITION

(SEV)
Instance

1 → 3 → 7
Check

node 1 & 3 No Yes No Yes Yes 7

Flip at
node 3 Check LL No Yes Yes No 10 1

3 → 6 → 10 Flip at 3 (Unchanged)
Flip at

node 1 Check LR Yes No No 5 2

2 → 5 Flip at 1 Flip at 2
Check LLR Yes Yes No No 9 2
2 → 4 → 9 Flip at 1 (Unchanged) Flip at 4

Table 3 walks through the calcula-236

tion again, using the names of the237

features (hypertension, diabetes,238

etc.). On the first action line,239

the decision path to the query is240

3 → 6 → 10 . That means we241

check 1 and 3 for negative242

paths, yielding path LL. We flip243

node 3 (change Hyperlipidemia244
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to ‘yes’) and follow the LL path. We do not change Obesity to get to the negative node, so we245

record the SEVT as 1 in that row. In our implementation, we simply stop when we reach an SEVT =1246

solution, but we will continue in order to illustrate how the calculation works. We go up to node 1247

and repeat the process for the LR and LLR paths. Those both have SEVT =2.248

4.3 Improving Credibility for All SEV Calculations249

As we mentioned in Section 3.2, the credibility objective encourages explanations to be located in250

high-density region of the negative population. Previous SEV− definitions focus on sparsity and251

closeness objectives, but did not consider credibility. It is possible to increase credibility easily while252

constructing an explanation: if the explanation veers out of the high-density region, we continue253

walking along the SEV hypercube during SEV calculations. Specifically, we continue moving254

towards the reference until the vertex is in a high-density region. Since the reference is in a high-255

density region, walking towards it will eventually lead to a high-density point. The tree-based SEV256

explanations automatically satisfy high credibility:257

Theorem 4.3. With a single sparse decision tree classifier DT with support at least S in each258

negative leaf, the SEVT explanation for query xi always satisfies credibility at least S
N− , where N−259

is the total number of negative samples.260

This theorem can be easily proved because SEV− explanations generated by SEVT are always the261

negative leaf nodes (which are the references), and the references are located in regions with support262

at least S by assumption.263

4.4 Flexible Reference SEV: Improving Sparsity264

From Section 3.2, we know that queries further from the decision boundary tend to have lower SEV−.265

Based on this, we introduce Flexible Reference SEV (denoted SEVF ), which moves the reference266

value slightly in order to achieve a lower value of the model output f(r̃), which, in turn, is likely267

to lead to lower SEV−. Consider a given reference r̃, and the decision function for classification268

f(·), the optimization for finding the optimal reference is: r∗ ∈ argminr f(r) s.t∥r − r̃∥∞ ≤ ϵF269

where the argmin is over reference candidates that are near the original reference value r̃. The270

flexibility threshold ϵF represents the flexibility allowed for moving the reference within a ball. We271

limit flexibility so the explanation stays meaningful. Since it is impractical to explore all potential272

combinations of feature-value candidates, we address this problem by marginalizing. Specifically,273

we optimize the reference over each feature independently. The detailed algorithm for calculating274

Flexible Reference SEV, denoted SEVF , is shown in Algorithm 1 in Appendix D. In Section 6.2, we275

show that moving the reference slightly can sometimes reduce the SEV, improving sparsity.276

5 Optimizing Models for SEV−
277

Above, we showed how to calculate SEV− for a fixed model. In this section, we describe how to train278

classifiers that optimize the average SEV− without loss in predictive performance. We propose two279

methods: minimizing an easy-to-optimize surrogate objective (Section 5.1) and searching for models280

with the smallest SEV from a “Rashomon set” of equally-good models (Section 5.2). In what follows,281

we assume that SEV− was calculated prior to optimization, that reference points were assigned to282

each query, and that these assignments do not change throughout the calculation.283

5.1 Gradient-based SEV Optimization284

Since we want to minimize expected test SEV−, the most obvious approach would be to choose our285

model f to minimize average training SEV−. However, since SEV calculations are not differentiable286

and they are combinatorial in the number of features and data points, this would be intractable.287

Following Sun et al. [2024], we instead design the optimization objective to penalize each sample288

where SEV− is more than 1. Thus, we propose the loss term:289

ℓSEV_All_Opt−(f) :=
1

n+

n+∑
i=1

max

(
min

j=1,...,p
f((1− ej)⊙ xi + ej ⊙ r̃i), 0.5

)
,

where ej is the vector with a 1 in the jth coordinate and 0’s elsewhere, n+ is the number of290

queries, and the reference point r̃i is specific to query xi and chosen beforehand. Intuitively,291

f((1− ej)⊙ xi + ej ⊙ r̃i) is the function value of query xi where its feature j has been replaced292

with the reference’s feature j. minj=1,...,p f((1−ej)⊙xi+ej ⊙ r̃i) chooses the variable to replace293
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that most reduces the function value. If the SEV− is 1, then when this replacement is made, the point294

now is on the negative side of the decision boundary and f is less than 0.5, in which case the max295

chooses 0.5. If SEV− is more than 1, then after replacement, f will still predict positive and be more296

than 0.5, in which case, its value will contribute to the loss. This loss is differentiable with respect to297

model parameters except at the “corners” and not difficult to optimize.298

To put these into an algorithm, we optimize a linear combination of different loss terms,299

min
f∈F

ℓBCE(f) + C1ℓSEV_All_Opt−(f) (4)

where ℓBCE is the Binary Cross Entropy Loss to control the accuracy of the training model and F300

is a class of classification models that estimate the probability of belonging to the positive class.301

ℓSEV_All_Opt− is the loss term that we have just introduced above. C1 can be chosen using cross-302

validation. We define All-Opt− as the method that optimizes (4). Our experiments show that this303

method is not only effective in shrinking the average SEV− but often attains the minimum possible304

SEV− value of 1 for most or all queries.305

5.2 Search-based SEV Optimization306

As defined in Section 4.2, our goal is to find a model with the lowest average SEV− among classifica-307

tion models with the best performance.308

The Rashomon set [Semenova et al., 2022, Fisher et al., 2019] is defined as the set of all models from309

a given class with performance approximately that of the best-performing model. The first method310

that stores the entire Rashomon set of any nontrivial function class is called TreeFARMS [Xin et al.,311

2022], which stores all good sparse decision trees in a data structure. TreeFARMS allows us to312

optimize multiple objectives over the space of sparse trees easily by enumeration of the Rashomon313

set to find all accurate models, and a loop through the Rashomon set to optimize secondary objectives.314

We use TreeFARMS and search through the Rashomon set for a model with the lowest average315

SEV−:316

min
f∈Rset

1

n+

n+∑
i=1

SEVT (f,xi),

where the Rashomon set is Rset, and where we use SEVT as the SEV− for each sparse tree in the317

Rashomon set. Recall that Algorithms 2 and 3 show how to calculate SEVT . We call this search-based318

optimization as TOpt.319

6 Experiments320

Training Datasets To evaluate whether our proposed methods would achieve sparser, more credible321

and closer explanations, we present experiments on seven datasets: (i) UCI Adult Income dataset322

for predicting income levels [Dua and Graff, 2017], (ii) FICO Home Equity Line of Credit Dataset323

for assessing credit risk, used for the Explainable Machine Learning Challenge [FICO, 2018], (iii)324

UCI German Credit dataset for determining creditworthiness [Dua and Graff, 2017], (iv) MIMIC-III325

dataset for predicting patient outcomes in intensive care units [Johnson et al., 2016a,b], (v) COMPAS326

dataset [Jeff Larson and Angwin, 2016, Wang et al., 2022a] for predicting recidivism, (vi) Diabetes327

dataset [Strack et al., 2014] for predicting whether patients will be re-admitted within two years, and328

(vii) Headline dataset for predicting whether the headline is likely to be shared by readers [Chen329

et al., 2023a]. Additional details on data and preprocessing are in Appendix A.330

Training Models For SEV©, we trained four baseline binary classifiers: (i, ii) logistic regression331

classifiers with ℓ1 (L1LR) and ℓ2 (L2LR) penalties, (iii) a gradient boosting decision tree classifier332

(GBDT), and (iv) a 2-layer multi-layer perceptron (MLP), and tested its performance with SEVF333

added, and the credibility rules added. In addition, we trained All-Opt− variants of these models in334

which the SEV penalties described in the previous sections are implemented. For SEVT methods, we335

compared tree-based models from CART, C4.5, and GOSDT [Lin et al., 2020] with the TOpt method336

proposed in Section 5.2. Details on training the methods is in Appendix F.337

Evaluation Metrics To evaluate whether good references are selected for the queries, we evaluate338

sparsity and closeness (i.e., similarity of query to reference). For sparsity, we use the average339

number of feature changes (which is the same as ℓ0 norm) between the query and the explanation; for340

closeness, we use the median ℓ∞ norm between the generated explanation and the original query as341

the metric for SEV©. For tree-based models, we use only SEVT as the metric since SEVT and ℓ0342

norm are equivalent; for credibility, we trained a Gaussian mixture model on the negative samples of343

each dataset, and used the mean log-likelihood of the generated explanations as the metric.344
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6.1 Cluster-based SEV shows improvement in credibility and closeness345

Let us show that SEV© provides improved explanations. Here, we calculated the metric for different346

SEV© variants, SEV© and SEV©+F (SEV© with flexible reference), and compared to the original347

SEV1, where SEV1 is defined as the SEV− calculation with single reference generated by the mean348

value of each numerical feature and mode value of each categorical feature of the negative population,349

as done in the original SEV paper [Sun et al., 2024] under various datasets and models.350

(a) Sparsity (SEV−) and Closeness (L∞) (b) Sparsity (SEV−) and Credibility (log-likelihood)

Figure 5: Explanation performance under different models and metrics. We desire lower SEV− for
sparsity, lower ℓ∞ for closeness and higher log likelihood for credibility (shaded regions)

Figure 5a shows the relationship between spasity and variants, the scatter plot between mean SEV−351

and mean ℓ∞ for each explanation generated by different variants. We find that SEV© improves352

closeness, which was expected since the references were designed to be closer to the queries.353

Interestingly, SEV© sometimes has lower decision sparsity than SEV1. SEV© was designed to trade354

off SEV− for closeness, so it is surprising that it sometimes performs strictly better on both metrics,355

particularly for the COMPAS, Diabetes, and German Credit datasets.356

Interestingly, we also find that even though we do not optimize credibility for our model, Figure 5b357

shows that SEV© improves credibility, particularly for the Adult, German, and Diabetes datasets by358

plotting the relationship between mean SEV− and mean log-likelihood of the generated explanations.359

It is reasonable since the references are the cluster centroids for the negative samples, so the expla-360

nations are more likely to be located in the same high-density area. More detailed values for those361

methods and metrics are shown in Appendix H.362

6.2 Flexible Reference SEV can improve sparsity without losing credibility363

In Section 4.4, we proposed the flexible reference method for sparsifying SEV− explanations, which364

moves the reference slightly away from the decision boundary. The blue points in Figure 5a and 5b365

have already shown that with small modification of the reference, the credibility of the explanations366

is not affected. Figure 6a shows how SEV− and credibility change as we increase flexibility; SEV−367

sometimes substantially decreases while credibility is maintained.368

(a) SEV−/Credibility change rate for varying flexibility (b) Median Log likelihood and # of features changed

Figure 6: (a) Sparsity and Credibility as a function of the change of flexibility level (0 to 5%/10%/20%)
under different models and datasets (b) The median log-likelihood and number of features within
different counterfactual explanations. Points at the upper left corner are desired.

6.3 SEV− provides the sparsest explanation compared to other counterfactual explanations369

Recall that SEV− flips features of the query to values of the population commons. This can be viewed370

as a type of counterfactual explanation, though typically, counterfactual explanations aim to find the371
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minimal distance from one class to another. In this experiment, we compare the sparsity of SEV−372

calculations to that of baseline methods from the literature on counterfactual explanations, namely373

Watcher [Wachter et al., 2017], REVISE [Joshi et al., 2019], Growing Sphere [Laugel et al., 2017],374

and DiCE [Mothilal et al., 2020].375

6.4 All-Opt− and TOpt optimize SEV−, preserving model performance, explanation376

closeness and credibility377

Even without optimization, our SEV− variants improve decision sparsity and/or closeness. If we378

are willing to retrain the prediction model as discussed in Section 5, we can improve these metrics379

further, creating accurate models with higher decision sparsity. Figure 7a shows that gradient-based380

SEV optimization can reduce the SEV without harming the closeness metric (ℓ∞) and the credibility381

metrics (log-likelihood). The slashed bars represents the SEV− and ℓ∞ metrics before optimization382

using different models, while the colored bars are the results after optimizing with All-Opt−. We383

have also compared our results with ExpO [Plumb et al., 2020], which is a optimization method that384

maximizes the mean neighborhood fidelity of the queries, but we have found that explanations are385

not sparse, and it requires long training times; the detailed results are shown in Appendix K.386

Figure 6b shows sparsity and credibility performance of all counterfactual explanation methods on387

different datasets under ℓ2 logistic regression (other information, including ℓ∞ norms for counterfac-388

tual explanation methods, is in Appendix G). All SEV variants are in warm colors, while competitors389

are in cool colors. SEV− methods have the sparest explanations, followed by DiCE. (A comparison390

of SEV− to DiCE is provided by Sun et al. [2024].) We point out that this comparison was made on391

methods that were not designed to optimize explanation sparsity. Importantly, sparsity is essential for392

human understanding [Rudin et al., 2022]. Moreover, it has been shown that SEV (especially SEV©)393

would have more credible explanations than competitors, while explanations remain sparse.

(a) All-Opt− Performance

TRAIN ACC TEST ACC MEAN SEVT

CART 0.71± 0.01 0.71± 0.01 1.10± 0.03
C4.5 0.71± 0.01 0.71± 0.01 1.13± 0.05

GOSDT 0.70± 0.01 0.70± 0.01 1.08± 0.02
TOpt 0.70± 0.01 0.70± 0.01 1.00± 0.02

(b) SEVT performance on different tree-based models

Figure 7: (a) SEV− and ℓ∞ before and after All-Opt− on the FICO Dataset. Slashed bars are before,
solid color is after. (b) All tree-based models with similar accuracy have low SEVT .

394 For the Tree-based SEV, we have applied the efficient computation procedure to different kinds of395

tree-based models, and compared them with the search-based optimization method (TOpt) for trees in396

Section 5. The search-based algorithm works perfectly in finding a good model without performance397

loss. It achieves a perfect average SEV score of 1.00.398

Conclusion399

Decision sparsity can be more useful than global model sparsity for individuals, as individuals care400

less about, and often do not even have access to, the global model. We presented approaches to401

achieving high decision sparsity, closeness and credibility, while being faithful to the model. One402

limitation of our method is that causal relationships may exist among features, invalidating certain403

transitions across the SEV hypercube. This can be addressed by searching across vertices that do not404

satisfy the causal relationship, though it requires knowledge of the causal graph. Another limitation405

is that to make the explanation more credible, the threshold to stop searching the SEV hypercube406

is not easy to determine. Future studies could focus on on these topics. Overall, our work has the407

potential to enhance a wide range of applications, including but not limited to loan approvals and408

employment hiring processes. Improved SEV translates directly into explanations that simply make409

more sense to those subjected to the decisions of models.410
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