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Abstract

Sparsity is a central aspect of interpretability in machine learning. Typically,1

sparsity is measured in terms of the size of a model globally, such as the number of2

variables it uses. However, this notion of sparsity is not particularly relevant for3

decision making; someone subjected to a decision does not care about variables that4

do not contribute to the decision. In this work, we dramatically expand a notion of5

decision sparsity called the Sparse Explanation Value (SEV) so that its explanations6

are more meaningful. SEV considers movement along a hypercube towards a7

reference point. By allowing flexibility in that reference and by considering how8

distances along the hypercube translate to distances in feature space, we can derive9

sparser and more meaningful explanations for various types of function classes.10

We present cluster-based SEV and its variant tree-based SEV, introduce a method11

that improves credibility of explanations, and propose algorithms that optimize12

decision sparsity in machine learning models.13

1 Introduction14

The notion of sparsity is a major focus of interpretability in machine learning and statistical modeling15

[Tibshirani, 1996, Rudin et al., 2022]. Typically, sparsity is measured globally, such as the number of16

variables in a model, or as the number of leaves in a decision tree. Global sparsity is relevant in many17

situations, but it is less relevant for individuals subject to the model’s decisions. Individuals care less18

about, and often do not even have access to, the global model. For them local sparsity, or decision19

sparsity, meaning the amount of information critical to their own decision, is more consequential.20

An important notion of decision sparsity been established in the work of Sun et al. [2024], who21

defined the Sparse Explanation Value (SEV), in the context of binary classification, as the number of22

factors that need to be changed to a reference feature value in order to change the decision. In contrast23

to SEV, counterfactual explanations tend not to be sparse since they require small changes to many24

variables in order to reach the decision boundary [Sun et al., 2024]. Instead, SEV provides sparse25

explanations: consider a loan application that is denied because the applicant has many delinquent26

trades. In that case, the decision sparsity (that is, the SEV) would be 1 because only a single factor27

was required to change the decision, overwhelming all possible mitigating factors. The framework of28

SEV thus allows us to see sparsity of models in a new light.29

Prior to this work, SEV had one basic definition: it is the minimal number of features we need to set30

to their reference values to flip the sign of the prediction. The reference values are typically defined as31

the mean of the instances in the opposite class. This calculation is easy to understand, but somewhat32

limiting because the reference could be far in feature space from the point being explained and the33

explanation could land in a low density area where explanations are not credible. As an example, for34

loan decisions, SEV could create a counterfactual such as “Changing the applicant’s 3-year credit35

history to 15 years would change the decision.” While this counterfactual is valid, faithful, and sparse,36

if the applicant is only 21 years old, it is not close because the distance between the query point37

and the counterfactual is so large (3 years to 15 years). In addition, this explanation is not credible38

because the proposed changes to the features lead to an unrealistic circumstance – 6-year-olds do not39
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typically have credit. That is, the counterfactual does not represent a typical member of the opposite40

class. Lack of credibility is a common problem for many counterfactual explanations [Mothilal et al.,41

2020, Wachter et al., 2017, Laugel et al., 2017, Joshi et al., 2019]. Therefore, in this work, we propose42

to augment the SEV framework by adding two practical considerations, closeness of the reference43

point to the query, and credibility of the explanation, while also optimizing decision sparsity.44

We propose three ways to create close, sparse and credible explanations. The first way is to create45

multiple possibilities for the reference, one at the center of each cluster of points (Section 4.1). Having46

a finite set of references keeps the references auditable, meaning that a domain expert can manually47

check the references prior to generating any explanations. By creating references spread throughout48

the negative class, queries can be assigned to closer references than before. Second, we allow the49

references to be flexible, where their position can be shifted slightly from a central location in order50

to reduce the SEV (Section 4.4). The third way pertains to decision tree classifiers, where a reference51

point is placed on each opposite-class leaf, and an efficient shortest-path algorithm is used to find the52

nearest reference (Section 4.2). Table 1 shows a query at the top, and some SEV calculations from53

our methods below, showing feature values that were changed within the explanation.

Table 1: An example for a query in the FICO Dataset with different kinds of explanations, SEV1

represents the SEV calculation with one single reference using population mean, SEV© represents
the cluster-based SEV, SEVF represents the flexible-based SEV. The columns are four features.

EXTERNAL
RISKESTIMATE

NUMSATIS-
FACTORYTRADES

NETFRACTION
REVOLVINGBURDEN

PERCENTTRADES
NEVERDELQ

Query 69.00 10.00 117.01 90
SEV1 72.65 21.47 22.39 90
SEVF 78.00 10.00 9.00 90
SEV© 81.00 26.00 12.00 90
SEVT 69.00 10.00 117.01 10054

In addition to developing methods for calculating SEV, we propose two algorithms to optimize a55

machine learning model to reduce the number of points that have high SEV without sacrificing56

predictive performance in Section 5, one based on gradient optimization, and the other based on57

search. The search algorithm is exact. It uses an exhaustive enumeration of the set of accurate models58

to find one with (provably) optimal SEV.59

Our notions of decision sparsity are general and can be used for any model type, including neural60

networks and boosted decision trees. Decision sparsity can benefit any application where individuals61

are subject to decisions made from predictive models – these are cases where decision sparsity is62

more important than global sparsity.63

2 Related Work64

The concept of SEV revolves around finding models that are simple, in that the explanations for65

their predictions are sparse, while recognizing that different predictions can be simple in different66

ways (i.e., involving different features). In this way, it relates to (i) globally sparse models, (ii) local67

classification methods, which predict the outcomes of different units using local models, and (iii)68

black box explanation methods, which seek to explain predictions of complex models. We further69

comment on these below.70

Instance-wise Explanations. Prior work has developed methods to explain predictions of black71

boxes [e.g., Guidotti et al., 2018, Ribeiro et al., 2016a, 2018, Lundberg and Lee, 2017, Baehrens72

et al., 2010] for individual instances. These explanations are designed to estimate importance of73

features, are not necessarily faithful to the model, and are not associated with sparsity in decisions,74

so they are fairly distant from the purpose of the present work. Our work is on tabular data; there75

is a multitude of unrelated work on explanations for images [e.g., Apicella et al., 2019, 2020] and76

text [e.g., Lei et al., 2016, Li et al., 2016, Treviso and Martins, 2020, Bastings et al., 2019, Yu et al.,77

2019, 2021]. More closely related are counterfactual explanations, also called inverse classification78

[e.g., Mothilal et al., 2020, Wachter et al., 2017, Lash et al., 2017, Sharma et al., 2022, Virgolin79

and Fracaros, 2023, Guidotti et al., 2019, Poyiadzi et al., 2020, Russell, 2019, Boreiko et al., 2022,80

Laugel et al., 2017, Pawelczyk et al., 2020]. Counterfactual explanations are typically designed to81

find the closest instance to a query point with the opposite prediction, without considering sparsity of82

the explanation. However, extensive experiments [Delaney et al., 2023] indicate that these “closest83

counterfactuals” tend to be unnatural for humans because the decision boundary is typically in a84

region where humans have no intuition for why a point belongs to one class or the other. For SEV,85

on the other hand, reference values represent the population commons, so they are intuitive. Thus,86
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SEV has two advantages over standard counterfactuals: its references are meaningful because they87

represent population commons, and its explanations are sparse.88

Local Sparsity Optimization Models While there are numerous prior works on developing89

post-hoc explanations, limited attention has been paid to developing models that provide sparse90

explanations. We are aware of only one work on this, namely the Explanation-based Optimization91

(ExpO) algorithm of Plumb et al. [2020] that used a neighborhood-fidelity regularizer to optimize92

the model to provide sparser post-hoc LIME explanations. Experiment in Appendix K in our paper93

shows that ExpO is both slower and provides less sparse predictions than our algorithms.94

3 Preliminaries and Motivation95

The Sparse Explanation Value (SEV) is defined to measure the sparsity of individual predictions of96

binary classifiers. The point we are creating an explanation for is called the query. The SEV is the97

smallest set of feature changes from the query to a reference that can flip the prediction of the model.98

When we make a change to the query’s feature, we align it to be equal to that of the reference point.99

The reference point is a “commons,” i.e., a prototypical point of the opposite class as the query. In100

this section, we will focus on the basic definition of SEV, the selection criteria for the references, as101

well as three reference selection methods.102

3.1 Recap of Sparse Explanation Values103

Figure 1: SEV Hypercube

We define SEV following Sun et al. [2024]. For a specific104

binary classification dataset {xi, yi}ni=1, with each xi ∈ Rp,105

and the outcome of interest is yi ∈ {0, 1}. (This can be106

extended to multi-class classification by providing counter-107

factuals for every other class than the query’s class.) We108

predict the outcome using a classifier f : X → {0, 1}.109

Without loss of generality, in this paper, we are only interested in110

queries predicted as positive (class 1). We focus on providing a111

sparse explanation from the query to a reference that serves as a112

population commons, denoted r. Human studies [Delaney et al.,113

2023] have shown that contrasting an instance with prototypical114

instances from another class provides more intuitive explanations115

than comparing it with instances from the same class. Thus, we define our references in the opposite116

class (negative class in this paper). To calculate SEV, we will align (i.e., equate) features from query117

xi and reference x̃ one at a time, checking at each time whether the prediction flipped. Thinking of118

these alignment steps as binary moves, it is convenient to represent the 2p possible different alignment119

combinations as vertices on the boolean hypercube. The hypercube is defined below:120

Definition 3.1 (SEV hypercube). A SEV hypercube Lf,i,r for a model f , an instance xi with label121

f(xi) = 1, and a reference r, is a graph with 2p vertices. Here p is the number of features in xi and122

bv ∈ {0, 1}p is a Boolean vector that represents each vertex. Vertices u and v are adjacent when their123

Boolean vectors differ in one bit, ∥bu − bv∥0 = 1. 0’s in bv indicate the corresponding features are124

aligned, i.e., set to the feature values of the reference r, while 1’s indicate the true feature value of125

instance i. Thus, the actual feature values represented by the vertex v is xr,v
i , := bv⊙xi+(1−bv)⊙r,126

where ⊙ is the Hadamard product. The score of vertex v is f(xr,v
i ), also denoted as Lf,i,r(bv).127

Table 2: Calculation process for SEV− = 1

TYPE HOUSING LOAN EDUCATION Y (RISK)
(1,1,1) query Rent >10k High School High

(0,1,1) SEV−

Explanation Owning >10k High School Low

(0,0,0) reference Owning <5k Master Low

The SEV hypercube definition can also be extended128

from a hypercube to a Boolean lattice as they have129

the same geometric structure. There are two vari-130

ants of the Sparse Explanation Value: one gradually131

aligns the query to the reference (SEV−), and the132

other gradually aligns the reference to the query133

(SEV+). In this paper, we focus on SEV−:134

Definition 3.2 (SEV−). For a positively-predicted query xi (i.e., f(xi) = 1), the Sparse Explanation135

Value Minus (SEV−) is the minimum number of features in the query that must be aligned to reference136

r to elicit a negative prediction from f . It is the length of the shortest path along the hypercube to137

obtain a negative prediction,138

SEV−(f,xi, r) := min
b∈{0,1}p

∥1− b∥0 s.t. Lf,i,r(b) = 0.
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Figure 1 and Table 2 shows an example of SEV−=1 in a credit risk evaluation setting. Since p = 3,139

we construct a SEV hypercube with 23 = 8 vertices. The red vertex (1, 1, 1) corresponds to the140

query. The dark blue vertex at (0, 0, 0) represents the negatively-predicted reference value. The141

orange vertices are predicted to be positive, and the light blue vertices are predicted to be negative.142

To compute SEV−, we start at (1, 1, 1) and find the shortest path to a negatively-predicted vertex. On143

this hypercube, (0, 1, 1) is closest. Translating this to feature space, this means that if the query’s144

housing situation changes from renting to the reference value “owning,” it would be predicted as145

negative. This means that SEV− is equal to 1 in this case. The feature vector corresponding to146

this closest vertex (0, 1, 1), is called the SEV− explanation for the query, denoted by xexpl,r
i for147

reference r.148

3.2 Motivation of Our Work: Sensitivity to Reference Points149

Since SEV− is determined by the path on a SEV hypercube and each hypercube is determined by150

the reference point, the SEV− is therefore sensitive to the selection of reference points. Adjusting151

the reference point trades off between sparsity (according to SEV−) and closeness (measured by ℓ2,152

ℓ∞ or ℓ0 distance between the query and its assigned reference point). Note that this trade-off exists153

because SEV− tends to be small when the reference is far from the query. More detailed explanations,154

visualizations, and experiments are shown in Appendix B.155

Selecting References. The reference must represent the commons, meaning the negative population,156

and the generated explanations should represents the negative populations as well. Moreover, the157

negative population may have subpopulations; e.g., Diabetes patients may have higher blood glucose158

levels, while hypertension patients have higher blood pressure. To have meaningful coverage of159

the negative population, in this work, we consider multiple references, placed within the various160

subpopulations. This allows each point in the positive population to be closer to a reference. LetR161

denote possible placements of references. For query xi, an individual-specific reference ri ∈ R for162

xi is chosen based on three criteria: it should be nearby (i.e., close), and should provide a sparse163

and reasonable explanation. That is, we are looking to minimize the following three objectives over164

placement of the reference ri:165

∥xi − ri∥, ri ∈ R (Closeness) (1)
166

SEV−(f,xi, ri), ri ∈ R (Sparsity) (2)
167

−P (xexpl,ri

i |X−) (Negated Credibility), (3)
with the constraint that the references obey auditability, meaning that domain experts are able to check168

the references manually, or construct them manually. The function SEV−(f,xi, ri) in (2) represents169

the SEV− computed with the given function f , query xi, and the individual-specific reference ri170

for generating the hypercube, xexpl,ri

i is the sparse explanation for the sample xi, and P (·|X−) in171

the definition of credibility represents the probability density distribution of the negative population172

and P (xexpl,ri

i |X−) is the density of the negative distribution at xexpl,ri

i . If P (xexpl,ri

i |X−) is large,173

xexpl,ri

i is in a high-density region.174

4 Meaningful and Credible SEV175

We now describe cluster-SEV, which improves closeness at the expense of SEV, and its variant,176

tree-based SEV, which improves all three objectives and computational efficiency. We also present177

methods to improve the credibility and sparsity of the explanations.178

4.1 Cluster-based SEV: Improving Closeness179

Figure 2: Cluster-based SEV

This approach creates multiple references for the nega-180

tive population. A clustering algorithm is used to group181

negative samples, and the resulting cluster centroids are182

assigned as references. A query is assigned to its closest183

cluster center:184

r̃i ∈ argmin
r∈C
∥xi − r∥2

where C is the collection of centroids obtained by clustering185

the negative samples. We refer to the SEV− produced186

by the grouped samples as cluster-based SEV, denoted187

SEV©. Figure 2 illustrates the calculation of SEV© for two188
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examples located in two different centroids. A red dot represents a query, while a blue dot represents189

a reference. For each instance, it selects the closest centroid and considers the SEV hypercube, where190

each cyan point represents a negatively predicted vertex and each pink point represents a positively191

predicted vertex. We deduce by following the red lines that the SEV© for the two queries are 2 and 1,192

respectively. The cluster centroids should serve as a cover for the negative class. To ensure that the193

cluster centroids have negative predictions, we use the soft clustering method of Bezdek et al. [1984]194

to constrain the predictions of the cluster centers. Details are in Appendix C.195

4.2 Tree-based SEV: SEV© Variant with Useful Properties and Computational Benefits196

Figure 3: SEVT Preprocessing

Tree-based SEV is a special case of cluster-based SEV,197

where we consider each negative leaf as a reference198

candidate, and and find the sparsest explanation (path199

along the tree) to the nearest reference. Here, SEV−200

and ℓ0 distance (i.e., edit distance) are equivalent. That201

is, we find the minimum number of features to change202

in order to achieve a negative prediction.203

We denote SEVT as the SEV− calculated based on this204

process. Here, we assume that trees have no trivial205

splits where all child leaves make the same prediction. If so, we would collapse those leaves before206

calculating the SEVT . The first theorem below refers to decision paths that have negatively predicted207

child leaves. This is where taking one different choice at an internal split leads to a negative leaf.208

Theorem 4.1. With a single decision classifier DT and a positively-predicted query xi, define Ni209

as the leaf that captures it. If Ni has a sibling leaf, or any internal node in its decision path has a210

negatively-predicted child leaf, then SEVT is equal to 1.211

Figure 4: Efficient SEVT calculation:
Query (node 7 ) has SEVT =1, which goes
to node 10 . The path to this node is
recorded as LL at node 3 , which is along
the decision path to node 7 .

The second theorem states that SEV− and minimum212

edit distance from the query to negative leaves are equiv-213

alent.214

Theorem 4.2. With a single decision tree classifier DT215

and a positively-predicted query xi, with the set of all216

negatively predicted leaves as reference points, both217

SEV− and the ℓ0 distance (edit distance) between the218

query and the SEV− explanation are minimized.219

The proofs of those two theorems are shown in Ap-220

pendix L and M. The structure of tree models yields221

an extremely efficient way to calculate SEV−. We per-222

form an important preprocessing step before any SEV−223

calculations are done, which will make SEV− easier to calculate for all queries at runtime. At each224

internal node, we record all paths to negative leaves anywhere below it in the tree. This is described225

in Algorithm 2 in Appendix E. E.g., if the tree has binary splits, a path from an internal node to a leaf226

node might require us to go left, then right, then left. In that case, we store LRL on this internal node227

to record this path. Then, when a query arrives at runtime (in a positive leaf, since it has a positive228

prediction), we traverse directly up its decision path all the way to the root node. For all internal229

nodes in the decision path, we observe distances to each negative leaf, which were stored during230

preprocessing. We traverse each of these, and the minimum distance among these is the SEV−. This231

is described in Algorithm 3 in Appendix E and illustrated in Figure 4. Note that we actually would232

traverse to each negative node because some internal decisions might not need to be changed along233

the path. In the example in Figure 4, we change the split at node 3 , and use the value that the query234

already has for the split at node 6 , landing in node 10 , so SEV− is 1 not 2.235

Table 3: Illustration of SEVT calculation.

ACTION
HYPER-
TENSION

DIABETES
HYPER-

LIPIDEMIA
OBESITY

HAVE
STROKE

# OF CHANGED
CONDITION

(SEV)
Instance

1 → 3 → 7
Check

node 1 & 3 No Yes No Yes Yes 7

Flip at
node 3 Check LL No Yes Yes No 10 1

3 → 6 → 10 Flip at 3 (Unchanged)
Flip at

node 1 Check LR Yes No No 5 2

2 → 5 Flip at 1 Flip at 2
Check LLR Yes Yes No No 9 2
2 → 4 → 9 Flip at 1 (Unchanged) Flip at 4

Table 3 walks through the calcula-236

tion again, using the names of the237

features (hypertension, diabetes,238

etc.). On the first action line,239

the decision path to the query is240

3 → 6 → 10 . That means we241

check 1 and 3 for negative242

paths, yielding path LL. We flip243

node 3 (change Hyperlipidemia244
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to ‘yes’) and follow the LL path. We do not change Obesity to get to the negative node, so we245

record the SEVT as 1 in that row. In our implementation, we simply stop when we reach an SEVT =1246

solution, but we will continue in order to illustrate how the calculation works. We go up to node 1247

and repeat the process for the LR and LLR paths. Those both have SEVT =2.248

4.3 Improving Credibility for All SEV Calculations249

As we mentioned in Section 3.2, the credibility objective encourages explanations to be located in250

high-density region of the negative population. Previous SEV− definitions focus on sparsity and251

closeness objectives, but did not consider credibility. It is possible to increase credibility easily while252

constructing an explanation: if the explanation veers out of the high-density region, we continue253

walking along the SEV hypercube during SEV calculations. Specifically, we continue moving254

towards the reference until the vertex is in a high-density region. Since the reference is in a high-255

density region, walking towards it will eventually lead to a high-density point. The tree-based SEV256

explanations automatically satisfy high credibility:257

Theorem 4.3. With a single sparse decision tree classifier DT with support at least S in each258

negative leaf, the SEVT explanation for query xi always satisfies credibility at least S
N− , where N−259

is the total number of negative samples.260

This theorem can be easily proved because SEV− explanations generated by SEVT are always the261

negative leaf nodes (which are the references), and the references are located in regions with support262

at least S by assumption.263

4.4 Flexible Reference SEV: Improving Sparsity264

From Section 3.2, we know that queries further from the decision boundary tend to have lower SEV−.265

Based on this, we introduce Flexible Reference SEV (denoted SEVF ), which moves the reference266

value slightly in order to achieve a lower value of the model output f(r̃), which, in turn, is likely267

to lead to lower SEV−. Consider a given reference r̃, and the decision function for classification268

f(·), the optimization for finding the optimal reference is: r∗ ∈ argminr f(r) s.t∥r − r̃∥∞ ≤ ϵF269

where the argmin is over reference candidates that are near the original reference value r̃. The270

flexibility threshold ϵF represents the flexibility allowed for moving the reference within a ball. We271

limit flexibility so the explanation stays meaningful. Since it is impractical to explore all potential272

combinations of feature-value candidates, we address this problem by marginalizing. Specifically,273

we optimize the reference over each feature independently. The detailed algorithm for calculating274

Flexible Reference SEV, denoted SEVF , is shown in Algorithm 1 in Appendix D. In Section 6.2, we275

show that moving the reference slightly can sometimes reduce the SEV, improving sparsity.276

5 Optimizing Models for SEV−
277

Above, we showed how to calculate SEV− for a fixed model. In this section, we describe how to train278

classifiers that optimize the average SEV− without loss in predictive performance. We propose two279

methods: minimizing an easy-to-optimize surrogate objective (Section 5.1) and searching for models280

with the smallest SEV from a “Rashomon set” of equally-good models (Section 5.2). In what follows,281

we assume that SEV− was calculated prior to optimization, that reference points were assigned to282

each query, and that these assignments do not change throughout the calculation.283

5.1 Gradient-based SEV Optimization284

Since we want to minimize expected test SEV−, the most obvious approach would be to choose our285

model f to minimize average training SEV−. However, since SEV calculations are not differentiable286

and they are combinatorial in the number of features and data points, this would be intractable.287

Following Sun et al. [2024], we instead design the optimization objective to penalize each sample288

where SEV− is more than 1. Thus, we propose the loss term:289

ℓSEV_All_Opt−(f) :=
1

n+

n+∑
i=1

max

(
min

j=1,...,p
f((1− ej)⊙ xi + ej ⊙ r̃i), 0.5

)
,

where ej is the vector with a 1 in the jth coordinate and 0’s elsewhere, n+ is the number of290

queries, and the reference point r̃i is specific to query xi and chosen beforehand. Intuitively,291

f((1− ej)⊙ xi + ej ⊙ r̃i) is the function value of query xi where its feature j has been replaced292

with the reference’s feature j. minj=1,...,p f((1−ej)⊙xi+ej ⊙ r̃i) chooses the variable to replace293
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that most reduces the function value. If the SEV− is 1, then when this replacement is made, the point294

now is on the negative side of the decision boundary and f is less than 0.5, in which case the max295

chooses 0.5. If SEV− is more than 1, then after replacement, f will still predict positive and be more296

than 0.5, in which case, its value will contribute to the loss. This loss is differentiable with respect to297

model parameters except at the “corners” and not difficult to optimize.298

To put these into an algorithm, we optimize a linear combination of different loss terms,299

min
f∈F

ℓBCE(f) + C1ℓSEV_All_Opt−(f) (4)

where ℓBCE is the Binary Cross Entropy Loss to control the accuracy of the training model and F300

is a class of classification models that estimate the probability of belonging to the positive class.301

ℓSEV_All_Opt− is the loss term that we have just introduced above. C1 can be chosen using cross-302

validation. We define All-Opt− as the method that optimizes (4). Our experiments show that this303

method is not only effective in shrinking the average SEV− but often attains the minimum possible304

SEV− value of 1 for most or all queries.305

5.2 Search-based SEV Optimization306

As defined in Section 4.2, our goal is to find a model with the lowest average SEV− among classifica-307

tion models with the best performance.308

The Rashomon set [Semenova et al., 2022, Fisher et al., 2019] is defined as the set of all models from309

a given class with performance approximately that of the best-performing model. The first method310

that stores the entire Rashomon set of any nontrivial function class is called TreeFARMS [Xin et al.,311

2022], which stores all good sparse decision trees in a data structure. TreeFARMS allows us to312

optimize multiple objectives over the space of sparse trees easily by enumeration of the Rashomon313

set to find all accurate models, and a loop through the Rashomon set to optimize secondary objectives.314

We use TreeFARMS and search through the Rashomon set for a model with the lowest average315

SEV−:316

min
f∈Rset

1

n+

n+∑
i=1

SEVT (f,xi),

where the Rashomon set is Rset, and where we use SEVT as the SEV− for each sparse tree in the317

Rashomon set. Recall that Algorithms 2 and 3 show how to calculate SEVT . We call this search-based318

optimization as TOpt.319

6 Experiments320

Training Datasets To evaluate whether our proposed methods would achieve sparser, more credible321

and closer explanations, we present experiments on seven datasets: (i) UCI Adult Income dataset322

for predicting income levels [Dua and Graff, 2017], (ii) FICO Home Equity Line of Credit Dataset323

for assessing credit risk, used for the Explainable Machine Learning Challenge [FICO, 2018], (iii)324

UCI German Credit dataset for determining creditworthiness [Dua and Graff, 2017], (iv) MIMIC-III325

dataset for predicting patient outcomes in intensive care units [Johnson et al., 2016a,b], (v) COMPAS326

dataset [Jeff Larson and Angwin, 2016, Wang et al., 2022a] for predicting recidivism, (vi) Diabetes327

dataset [Strack et al., 2014] for predicting whether patients will be re-admitted within two years, and328

(vii) Headline dataset for predicting whether the headline is likely to be shared by readers [Chen329

et al., 2023a]. Additional details on data and preprocessing are in Appendix A.330

Training Models For SEV©, we trained four baseline binary classifiers: (i, ii) logistic regression331

classifiers with ℓ1 (L1LR) and ℓ2 (L2LR) penalties, (iii) a gradient boosting decision tree classifier332

(GBDT), and (iv) a 2-layer multi-layer perceptron (MLP), and tested its performance with SEVF333

added, and the credibility rules added. In addition, we trained All-Opt− variants of these models in334

which the SEV penalties described in the previous sections are implemented. For SEVT methods, we335

compared tree-based models from CART, C4.5, and GOSDT [Lin et al., 2020] with the TOpt method336

proposed in Section 5.2. Details on training the methods is in Appendix F.337

Evaluation Metrics To evaluate whether good references are selected for the queries, we evaluate338

sparsity and closeness (i.e., similarity of query to reference). For sparsity, we use the average339

number of feature changes (which is the same as ℓ0 norm) between the query and the explanation; for340

closeness, we use the median ℓ∞ norm between the generated explanation and the original query as341

the metric for SEV©. For tree-based models, we use only SEVT as the metric since SEVT and ℓ0342

norm are equivalent; for credibility, we trained a Gaussian mixture model on the negative samples of343

each dataset, and used the mean log-likelihood of the generated explanations as the metric.344
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6.1 Cluster-based SEV shows improvement in credibility and closeness345

Let us show that SEV© provides improved explanations. Here, we calculated the metric for different346

SEV© variants, SEV© and SEV©+F (SEV© with flexible reference), and compared to the original347

SEV1, where SEV1 is defined as the SEV− calculation with single reference generated by the mean348

value of each numerical feature and mode value of each categorical feature of the negative population,349

as done in the original SEV paper [Sun et al., 2024] under various datasets and models.350

(a) Sparsity (SEV−) and Closeness (L∞) (b) Sparsity (SEV−) and Credibility (log-likelihood)

Figure 5: Explanation performance under different models and metrics. We desire lower SEV− for
sparsity, lower ℓ∞ for closeness and higher log likelihood for credibility (shaded regions)

Figure 5a shows the relationship between spasity and variants, the scatter plot between mean SEV−351

and mean ℓ∞ for each explanation generated by different variants. We find that SEV© improves352

closeness, which was expected since the references were designed to be closer to the queries.353

Interestingly, SEV© sometimes has lower decision sparsity than SEV1. SEV© was designed to trade354

off SEV− for closeness, so it is surprising that it sometimes performs strictly better on both metrics,355

particularly for the COMPAS, Diabetes, and German Credit datasets.356

Interestingly, we also find that even though we do not optimize credibility for our model, Figure 5b357

shows that SEV© improves credibility, particularly for the Adult, German, and Diabetes datasets by358

plotting the relationship between mean SEV− and mean log-likelihood of the generated explanations.359

It is reasonable since the references are the cluster centroids for the negative samples, so the expla-360

nations are more likely to be located in the same high-density area. More detailed values for those361

methods and metrics are shown in Appendix H.362

6.2 Flexible Reference SEV can improve sparsity without losing credibility363

In Section 4.4, we proposed the flexible reference method for sparsifying SEV− explanations, which364

moves the reference slightly away from the decision boundary. The blue points in Figure 5a and 5b365

have already shown that with small modification of the reference, the credibility of the explanations366

is not affected. Figure 6a shows how SEV− and credibility change as we increase flexibility; SEV−367

sometimes substantially decreases while credibility is maintained.368

(a) SEV−/Credibility change rate for varying flexibility (b) Median Log likelihood and # of features changed

Figure 6: (a) Sparsity and Credibility as a function of the change of flexibility level (0 to 5%/10%/20%)
under different models and datasets (b) The median log-likelihood and number of features within
different counterfactual explanations. Points at the upper left corner are desired.

6.3 SEV− provides the sparsest explanation compared to other counterfactual explanations369

Recall that SEV− flips features of the query to values of the population commons. This can be viewed370

as a type of counterfactual explanation, though typically, counterfactual explanations aim to find the371

8



minimal distance from one class to another. In this experiment, we compare the sparsity of SEV−372

calculations to that of baseline methods from the literature on counterfactual explanations, namely373

Watcher [Wachter et al., 2017], REVISE [Joshi et al., 2019], Growing Sphere [Laugel et al., 2017],374

and DiCE [Mothilal et al., 2020].375

6.4 All-Opt− and TOpt optimize SEV−, preserving model performance, explanation376

closeness and credibility377

Even without optimization, our SEV− variants improve decision sparsity and/or closeness. If we378

are willing to retrain the prediction model as discussed in Section 5, we can improve these metrics379

further, creating accurate models with higher decision sparsity. Figure 7a shows that gradient-based380

SEV optimization can reduce the SEV without harming the closeness metric (ℓ∞) and the credibility381

metrics (log-likelihood). The slashed bars represents the SEV− and ℓ∞ metrics before optimization382

using different models, while the colored bars are the results after optimizing with All-Opt−. We383

have also compared our results with ExpO [Plumb et al., 2020], which is a optimization method that384

maximizes the mean neighborhood fidelity of the queries, but we have found that explanations are385

not sparse, and it requires long training times; the detailed results are shown in Appendix K.386

Figure 6b shows sparsity and credibility performance of all counterfactual explanation methods on387

different datasets under ℓ2 logistic regression (other information, including ℓ∞ norms for counterfac-388

tual explanation methods, is in Appendix G). All SEV variants are in warm colors, while competitors389

are in cool colors. SEV− methods have the sparest explanations, followed by DiCE. (A comparison390

of SEV− to DiCE is provided by Sun et al. [2024].) We point out that this comparison was made on391

methods that were not designed to optimize explanation sparsity. Importantly, sparsity is essential for392

human understanding [Rudin et al., 2022]. Moreover, it has been shown that SEV (especially SEV©)393

would have more credible explanations than competitors, while explanations remain sparse.

(a) All-Opt− Performance

TRAIN ACC TEST ACC MEAN SEVT

CART 0.71± 0.01 0.71± 0.01 1.10± 0.03
C4.5 0.71± 0.01 0.71± 0.01 1.13± 0.05

GOSDT 0.70± 0.01 0.70± 0.01 1.08± 0.02
TOpt 0.70± 0.01 0.70± 0.01 1.00± 0.02

(b) SEVT performance on different tree-based models

Figure 7: (a) SEV− and ℓ∞ before and after All-Opt− on the FICO Dataset. Slashed bars are before,
solid color is after. (b) All tree-based models with similar accuracy have low SEVT .

394 For the Tree-based SEV, we have applied the efficient computation procedure to different kinds of395

tree-based models, and compared them with the search-based optimization method (TOpt) for trees in396

Section 5. The search-based algorithm works perfectly in finding a good model without performance397

loss. It achieves a perfect average SEV score of 1.00.398

Conclusion399

Decision sparsity can be more useful than global model sparsity for individuals, as individuals care400

less about, and often do not even have access to, the global model. We presented approaches to401

achieving high decision sparsity, closeness and credibility, while being faithful to the model. One402

limitation of our method is that causal relationships may exist among features, invalidating certain403

transitions across the SEV hypercube. This can be addressed by searching across vertices that do not404

satisfy the causal relationship, though it requires knowledge of the causal graph. Another limitation405

is that to make the explanation more credible, the threshold to stop searching the SEV hypercube406

is not easy to determine. Future studies could focus on on these topics. Overall, our work has the407

potential to enhance a wide range of applications, including but not limited to loan approvals and408

employment hiring processes. Improved SEV translates directly into explanations that simply make409

more sense to those subjected to the decisions of models.410
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A Data Description and Preprocessing558

The datasets were divided into training and test sets using an 80-20 stratification. The numerical559

features were transformed by standardization to have a mean of zero and a variance of one. The560

categorical features, which have k different levels, were transformed into k− 1 binary variables using561

one-hot encoding. The binary characteristics were transformed into a single dummy variable using562

one-hot encoding. The sizes of the datasets before and after encoding are shown in Table 4.563

OBSERVATIONS
PRE-ENCODED

FEATURES
POST-ENCODED

FEATURES

COMPAS 6,907 7 7
Adult 32,561 14 107

MIMIC-III 48,786 14 14
Diabetes 101,766 33 101

German Credit 1,000 20 59
FICO 10,459 23 23

Headlines 41,752 12 17
Table 4: Training Dataset Sizes

Below we provide more details for each dataset.564

COMPAS565

The COMPAS dataset contains information on criminal recidivism in Broward County, Florida566

[Jeff Larson and Angwin, 2016]. The goal of this dataset is to predict the likelihood of recidivism567

within a two-year period, taking into account the following variables: gender, age, prior convictions,568

number of juvenile felonies/misdemeanors, and whether the current charge is a felony.569

Adult570

The Adult data is derived from U.S. Census statistics, including information on demographics,571

education, employment, marital status, and financial gain/loss [Dua and Graff, 2017]. The target572

variable of this dataset is whether an individual’s salary exceeds $50,000.573

MIMIC-III574

MIMIC-III is a comprehensive database that stores a variety of medical data related to the experience575

of patients in the Intensive Care Unit (ICU) at Beth Israel Deaconess Medical Center [Johnson et al.,576

2016a,b]. The outcome of interest is determined by the binary indicator known as the “hospital577

expires flag,” which indicates whether or not a patient died during their hospitalization. We chose578

the following set of variables as features: age, preiculos (pre-ICU length of stay), gcs (Glasgow579

Coma Scale), heartrate_min, heartrate_max, meanbp_min (min blood pressure), meanbp_max580

(max blood pressure), resprate_min, resprate_max, tempc_min, tempc_max, urineoutput,581

mechvent (whether the patient is on mechanical ventilation), and electivesurgery (whether the582

patient had elective surgery).583

Diabetes584

The Diabetes dataset is derived from 10 years (1999-2008) of clinical care at 130 hospitals and585

integrated delivery networks in the United States [Dua and Graff, 2017]. It consists of more than 50586

characteristics that describe patient and hospital outcomes. The dataset includes variables such as587

race, gender, age, admission type, time spent in hospital, specialty of admitting588

physician, number of lab tests performed, number of medications, and so on. We con-589

sider whether the patient will return to the hospital within 2 years as a binary indicator.590
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German Credit591

The German credit data [Dua and Graff, 2017] uses financial and demographic indicators such592

as checking account status, credit history, employment/marital status, etc., to predict whether an593

individual will default on a loan.594

FICO595

The FICO Home Equity Line of Credit (HELOC) dataset [FICO, 2018] is used for the Explainable596

Machine Learning Challenge. It includes a number of financial indicators, such as the number of597

inquiries on a user’s account, the maximum delinquency, and the number of satisfactory transactions,598

among others. These indicators relate to different individuals who have applied for credit. The target599

variable is whether a consumer has been 90 or more days delinquent at any time within a 2-year600

period since opening their account.601

Headlines602

The News Headline dataset [Chen et al., 2023b] is a survey data aimed at discovering what603

kind of news content is shared and what factors are significantly associated with news shar-604

ing. The survey includes several factors, including, age, income, gender, ethnicity, social605

protection,economic protection, truth (“What is the likelihood that the above headline is606

true?”), familiarity (“Are you familiar with the above headline (have you seen or heard about it607

before?)? )”), Importance (“Assuming the headline is completely accurate, how important would608

you consider this news to be?”), Political Concordance (“Assuming the above headline is com-609

pletely accurate, how favorable would you consider it to be for Democrats versus Republicans?”).610

The goal of this data set is to predict Sharing (“If you were to see the above article on social media,611

how likely would you be to share it?”).612
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B Sensitivity of the reference points613

In this section, we will mainly show how sensitive SEV− is when we change the reference. Figure 8614

shows an example of this, where moving the reference further away from the query (from r to the615

r′) changes the SEV− from 2 to 1. In this figure, the dark blue axes represent the feature values of616

different reference values, while the black dashed line represents the decision boundary of a linear617

classifier. Areas with different colors represent data points with different SEV−. When the reference618

moves further from the decision boundary (from r to r′), the corresponding areas for SEV− will619

move away from the decision boundary. For example, the star located in the yellow area has an SEV−620

of 1 instead of 2 when the reference moves from r to r′. If the reference point is r, then the query621

needs to align the feature values along both x and y-axis to reach the SEV Explanation with reference622

r (recall an example of SEV− explanation in Figure 2) in Section 3.2, which is the same point as r.623

However, if the reference point is r′, then the query only needs to align the feature value along the624

x-axis to reach the SEV Explanation with SEV= 1, which is the light blue dot.625

Figure 8: SEV− distribution

Experiments have also shown that moving data points closer to the decision boundary might increase626

SEV−. The result on the Explainable ML Challenge loan decision data [FICO, 2018] shown in Table627

5 demonstrates that altering the reference point may increase the average SEV− (from 3 to 5), but628

also introduces “unexplainable” samples (meaning SEV−≥10). Hence, SEV− is sensitive to the629

reference.630

Table 5: SEV− change by moving reference point r̃ moving closer to the decision boundary to r̃′

% OF SAMPLES

MODEL
REFERENCE

POINT
MEAN
SEV−

SEV
≥ 3

SEV
≥ 6

SEV
≥ 10

L2LR r̃ 2.76 2.82 0 0
r̃′ 4.95 89.23 32.3 0

L1LR r̃ 2.46 1.00 0 0
r̃′ 4.57 56.87 21.27 0
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C Detailed Description for Score-based Soft K-Means631

As we have discussed in Section 4.1, SEV− needs to have negatively predicted reference points.632

Therefore, when clustering the negative population, it is necessary to avoid positively predicted633

cluster centers. However, for most of the existing clustering methods, it is hard to “penalize” the634

positive predicted clusters, or their assigned samples. Therefore, we have modified the soft K-Means635

[Bezdek et al., 1984] algorithm so as to encourage negative clustering results.636

The original Soft K-Means (SKM) algorithm generalizes K-means clustering by assigning mem-637

bership scores for multiple clusters to each point. Given a data set X = {x1,x2, · · · ,xn} and C638

clusters, the goal is to minimize the objective function J(U, V ), where U = [uij ] is the membership639

matrix and V = {v1, · · · ,vC} are the weighted cluster centroids. The objective is to minimize:640

J(U, V ) =

n∑
i=1

C∑
j=1

um
ij∥xi − vj∥22 (5)

where uij is the (soft) membership score of xi in cluster j:641

ui,j =
1∑C

k=1

(
∥xi−vj∥2

∥xi−ck∥2

) 2
m−1

(6)

and m > 1 is a parameter that controls the strength towards each neighboring point. When m ≈ 1,642

the SKM is similar to the performance of hard K-means clustering methods. When m > 1 for point643

i, it is considered to be associated with multiple clusters instead of one distinct cluster. The higher644

the value of m, the more a point is considered to be part of multiple clusters, thereby reducing the645

distinctness of each cluster and creating a more integrated and interconnected clustering arrangement.646

To avoid the cluster group being predicted positively, we have given higher m for those positive647

samples. Therefore, if the samples are predicted as positive, it reduces the possibility that those648

positively predicted samples to group as a cluster, which we can replace m as m′
i for each instance649

xi as650

m′
i = 2m ·min{f(xi)− 0.5, 0}+ 1. (7)

The value of min{f(xi) − 0.5, 0} increases as xi is classified as positive and further away from651

the decision boundary. As m′ increases, the negatively predicted samples are more associated with652

one distinct cluster, while the positively predicted samples are associated with multiple clusters with653

smaller weight. This makes the cluster centers less likely to be influenced by positively predicted654

points. Thus, we can rewrite the objective of the soft K-Means algorithm can be modified as655

J ′(U, V ) =

n∑
i=1

C∑
j=1

u
m′

i
ij ∥xi − vj∥22. (8)

We call this new objective function for encouraging negative clustering centers Score-based Soft656

K-Means (SSKM). In our experiments, the clustering is applied to the dataset after PaCMAP [Wang657

et al., 2021], and the feature mean of all samples in a cluster is considered as the cluster center of658

this cluster, which is eventually used as a reference point. The queries are assigned to reference659

points that are closest (based on ℓ2 distance) to them in the PaCMAP embedding space for SEV©660

calculation.The reason why we would like to first embed the dataset is that the dimension of the661

datasets might be too high for direct clustering, and PaCMAP provides an embedding that preserves662

both local and global structure. Figure 9 shows the probability of the negative predicted instances, as663

well as the clustering results using different kinds of clustering methods. The red points and stars664

represent the positively predicted instances and cluster centers, while the blue ones are the negatively665

predicted instances and cluster centers. It is evident from the Figure that that SKM is more likely to666

introduce positively predicted cluster centers, compared to SSKM.667

When we calculate SEV© in the experiments, all clustering parameters are tuned and fixed. For668

the rest of the datasets, the embedding using PaCMAP, and their clustering results for the negative669

population with their cluster centers, are shown in Figure 10. The regions with different colors670

represent different clusters, the blue stars in the graphs are cluster centers, and the gray points within671

the graphs are positive queries. All those cluster centers can be constrained to be predicted as negative672

by tuning the hyperparameter for Score-based Soft K-Means. Note that if one of the cluster centers673

cannot be constrained to be predicted as negative even with high m, then it is reasonable to remove674

this cluster center when calculating SEV©.675
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Figure 9: The clustering results for FICO dataset. (Left) The probability distribution for the negatively
labeled queries; (Middle) The clustering result for Original Soft K-Means Clustering; (Right) The
clustering result for Score-based K-Means Clustering The red stars represent the positively predicted
cluster centers, and the blue stars the negatively predicted cluster centers

Figure 10: Clustering Results for different datasets.
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D Detailed Algorithm for Flexible-based SEV676

This section presents how the flexible-based SEV (SEVF ) has done to determine the flexible refer-677

ences. The key idea of finding the reference is to do a grid search through each of the features in the678

training dataset based on the original reference, and find the feature values that has the minimum679

model outcome.680

Algorithm 1 Reference Search for Flexible SEV

1: Input: The negative samples X−, flexibility ϵ, reference r̃, grid size G
2: Output: Flexible reference r̃′

3: Initialization: r̃′ ← r̃
4: for each feature j ∈ J , where r̃j is the reference value of feature j in X− do
5: qj ← quantile(X−

j , r̃j) {Quantile location of r̃j}
6: B+

j ← percentile(X−
j , qj + ϵ) {The upper range}

7: B−
j ← percentile(X−

j , qj − ϵ) {The lower range}

8: B
(g)
j ∼ Uniform[B−

j , B+
j ], g = 1, · · · , G

9: P
(g)
j ← f([r̃1, · · · , B(g)

j , · · · r̃J ]), g = 1 · · ·G {Slight change to feature j for prediction}

10: g′ ← argming P
(g)
j {Find minimum model outcome}

11: r̃′j ← B
(g′)
j {Update for flexible references}

12: end for
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E Detailed Algorithms for Tree-based SEV681

This section presents how the tree-based SEV is calculated through two main procedure: Algorithm682

2 (Preprocessing) for collecting all negative pathways and assigning them to each internal nodes and683

Algorithm 3 (Efficient SEVT Calculation) for checking all negative pathways conditions for each684

query and calculating the number of feature changes.685

Algorithm 2 Preprocessing - Information collection process for SEVT

1: Input: Decision tree DT
2: Output: DT−, a dictionary of paths to negative predictions for each internal node encoding
3: nodes← [DT.root]
4: negative_path← []
5: {Negative path collection procedure}
6: while nodes not empty do
7: [node, path]← nodes.pop()
8: if node is a negative leaf then
9: negative_path.append(path)

10: else if node is an internal node or a root node then
11: {A}dd the child nodes and the path to the node list
12: nodes.append([node.left,path+“L”])
13: nodes.append([node.right,path+“R”])
14: else
15: Continue {if the leaf is positive, ignore it}
16: end if
17: end while
18: {Assign Negative Pathways to root or internal nodes}
19: DT− ← dict()
20: for each path in negative_path do
21: for i = 1, · · · path.length do
22: {Add the negative decision path for internal nodes}
23: curr_node← negative_path[:i]
24: {curr_node is the encoded internal node, and negative path[i:] is a negative decision path

below this node}
25: DT−[curr_node] .append(negative_path[i:])
26: end for
27: end for
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Algorithm 3 Efficient SEVT Calculation – Negative Pathways Check

1: Input: DT : decision tree, DT−: decision trees with paths to negative predictions, query value
xi, DPi: list of internal nodes representing decision process for xi, pathi: the encoded DPi

2: Output: SEVT

3: INITIALIZATION: SEVT← 0
4: decision_path← encoded(DT , xi)
5: {encoded(DT , xi) is a function to get the string representation of the query xi or a node node

for DT , e.g. "LR","LL" mentioned in section 4.2}
6: for each internal node node in DPi do
7: if node has a sibling leaf node and is predicted as negative then
8: SEVT← 1 {Based on Theoerem 4.1}
9: Break {SEVT =1 is the smallest SEVT , no further calculation needed}

10: end if
11: encoded_node←encoded(DT , node) {Get the string representation of node}
12: negative_paths← DT−[encoded_node] {Get the negative pathways encoded_node have}
13: for each path in negative_path do
14: {If the negative goes the same direction as the decision path, we don’t need to calculate this

path again}
15: {path[0] is the first character in path}
16: if decision_path[encoded_node.length]=path[0] then
17: Continue
18: end if
19: temp_sev←0
20: {Go over the condition in the path}
21: {Check if query xi satisfies, if it doesn’t satisfies the condition, then temp_sev should add 1}

22: for condition in each path do
23: if xi doesn’t satisfy condition then
24: temp_sev←temp_sev +1
25: end if
26: end for
27: SEVT← min{temp_sev, SEVT }{Update SEVT to be the samller one}
28: if SEVT = 1 then
29: Break {SEVT =1 is the smallest SEVT , no further calculation needed}
30: end if
31: end for
32: end for
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F Model Training and parameters selection686

Baseline models were fit using sklearn [Pedregosa et al., 2011] implementations in Python. The687

logistic regression models L1 LR and L2 LR were fit using regularization parameter C = 0.01.688

The 2-layer MLP used ReLU activation and consisted of two fully-connected layers with 128 nodes689

each. It was trained with early stopping. The gradient-boosted classifier used 200 trees with a max690

depth of 3. For tree-based methods comparisons, the decision tree classifiers were fit using sklearn691

[Pedregosa et al., 2011] and TreeFARMS packages [Wang et al., 2022b]. Since GOSDT methods692

require binary input, we used the built-in threshold guessing function in GOSDT to binarize the693

features with set of parameters n_est=50, and max_depth=1. All the models are trained using a694

RTX2080Ti GPU, and with 4 core in Intel(R) Xeon(R) Gold 6226 CPU @ 2.70GHz.695

In order to test the performance of All-Opt−, all models mentioned above were trained by adding the696

SEV losses from Section 5 to the standard loss term (BCELoss). For GBDT, the training goal is to697

reweigh the trees from the baseline GBDT model. The resulting loss was minimized via gradient698

descent in PyTorch [Paszke et al., 2019], with a batch size of 128, a learning rate of 0.1, and the Adam699

optimizer. To maintain high accuracy, the first 80 training epochs are warm-up epochs optimizing700

just Binary Cross Entropy Loss for classification (BCELoss). The next 20 epochs add the All-Opt701

terms and the baseline positive penalty term to encourage low SEV values. Moreover, during the702

optimization process, it is important to ensure that the reference has a negative prediction. If the703

reference is predicted as positive, then the SEV− may not exist, and a sparse explanation is no longer704

meaningful. Thus, we add a term to penalize the reference if it receives a positive prediction:705

ℓPos_ref(f) :=

n∑
i=1

max(f(r̃i), 0.5− θ)

where θ > 0 is a margin parameter, usually θ = 0.05. This term is (0.5− θ) as long as the reference706

is predicted negative. As soon as it exceeds that amount, it is penalized (increasing linearly in f(r̃)).707

To put these into an algorithm, we optimize a linear combination of different loss terms,708

min
f∈F

ℓBCE(f) + C1ℓSEV_All_Opt−(f) + C2ℓPos_ref(f) (9)

Therefore, we are tuning both C1 and C2 to find a model with sparser explanations without perfor-709

mance loss through grid search. For cluster-based SEV, the cluster centers are recalculated based on710

the new model every 5 epochs.711
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G The sparsity and meaningful performance of different counterfactual712

explanation methods713

In this section, we provide detailed information on other kinds of counterfactual explanations714

generated by the CARLA package [Pawelczyk et al., 2021] on different datasets for logistic regression715

models. Table 6 shows the number of features changed and the ℓ∞ for different counterfactual716

explanations. These counterfactual explanations tend to provide less sparse explanations than other717

SEV− variants shown in Section 6.3. For the ℓ∞ calculations, we consider only the numerical features,718

since the categorical features’ ℓ∞ norm does not provide meaningful explanations. Moreover, we719

have calculated the average log-likelihood of the explanations using the Gaussian Mixture Model in720

scikit-learn Pedregosa et al. [2011]. The parameter n_components for each dataset is selected based721

on the clustering result mentioned in Appendix C. Here, we are using the same Gaussian Mixture722

Model for evaluating whether the explanation is within a high-density region.723

Table 6: Explanation performance in different counterfactual explanations

DATASET
COUNTERFACTUAL

EXPLANATIONS
MEAN ℓ∞ # FEATURES CHANGE

MEDIAN
LOG-LIKELIHOOD

Adult Growing Sphere 1.07± 0.01 14± 0.00 345.03± 34.19
DiCE 0.78± 0.02 2.19± 0.12 −24752.12± 452.47

REVISE 6.1± 0.02 12.14± 0.75 345.03± 32.84
Watcher 0.01± 0.01 6.00± 0.00 345.12± 34.19
SEV1 22.62± 0.01 1.18± 0.02 −24752.12± 452.47
SEV© 2.86± 0.01 1.34± 0.02 156.88± 59.67

COMPAS Growing Sphere 0.02± 0.01 7.00± 0.00 10.47± 0.00
DiCE 1.38± 0.02 3.20± 0.45 −6.68± 0.02

REVISE 1.12± 0.03 5.54± 0.63 −1.84± 0.21
Watcher 0.01± 0.01 5.00± 0.00 10.48± 0.03
SEV1 2.31± 0.01 1.22± 0.02 14.65± 0.32
SEV© 2.06± 0.01 1.19± 0.02 14.41± 0.05

Diabetes Growing Sphere 0.01± 0.01 33.00± 0.00 320.41± 21.47
DiCE 0.71± 0.12 2.76± 0.15 −74296.98± 861.27

REVISE 0.80± 0.02 15.84± 0.02 320.41± 16.73
Watcher 0.01± 0.01 12± 0.00 320.41± 21.34
SEV1 2.7± 0.10 1.63± 0.01 309.56± 15.32
SEV© 2.31± 0.12 1.28± 0.02 320.71± 14.79

FICO Growing Sphere 0.01± 0.01 23± 0.00 −10.93± 0.42
DiCE 1.15± 0.13 3.27± 0.17 −20.11± 0.3

REVISE 0.12± 0.01 23± 0.00 −10.94± 0.42
Watcher 0.01± 0.01 23± 0.00 −10.94± 0.41
SEV1 1.81± 0.01 2.76± 0.02 −20.11± 0.32
SEV© 1.82± 0.01 2.21± 0.02 −19.32± 0.21

German Credit Growing Sphere 0.01± 0.02 20± 0.00 52.20± 0.02
DiCE 6.08± 0.01 2.76± 0.23 −53908.78± 367.84

REVISE 0.16± 0.01 7.65± 0.12 −73492.06± 492.45
Watcher 0.01± 0.00 6.00± 0.00 52.23± 0.04
SEV1 3.08± 0.01 1.51± 0.02 −124914.32± 792.52
SEV© 3.2± 0.01 1.17± 0.02 50.21± 0.32

Headline Growing Sphere 0.01± 0.00 18± 0.00 −4.56± 0.02
DiCE 1.13± 0.02 2.79± 0.14 −12.84± 0.42

REVISE 1.81± 0.13 15.93± 0.24 −6.98± 0.12
Watcher 0.01± 0.01 12± 0.00 −4.56± 0.02
SEV1 2.50± 0.02 1.98± 0.01 1.52± 0.12
SEV© 2.94± 0.02 1.62± 0.02 0.89± 0.26

MIMIC Growing Sphere 0.01± 0.01 14± 0.00 −24.52± 0.02
DiCE 1.34± 0.23 6.47± 0.24 −26.55± 0.02

REVISE 0.01± 0.00 12± 0.00 −24.52± 0.01
Watcher 0.01± 0.00 12± 0.00 −24.52± 0.01
SEV1 4.53± 0.49 1.18± 0.02 −20.11± 0.32
SEV© 1.98± 0.13 1.19± 0.02 −19.32± 0.15
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H Detailed SEV− for all datasets724

In this section, we show how SEV1, SEV©, SEV©+F can increase the similarity metrics or reduce725

the sparsity explanations. All the models are trained and evaluated 10 times using different splits, and726

evaluated for their mean SEV−, mean ℓ∞, as well as their explanation time for each query.727

Table 7 shows the model performance and SEV1 on various datasets. SEV1 is considered as a base728

case for other SEV− variants to compare with. Table 7 shows that SEV1 yields very high ℓ∞ for each729

model, indicating a large distance between the query and reference, which implies low closeness730

according to Section 3.2.731

Table 8 shows the model performance and SEV© on different datasets. Similarly, The Mean SEV©732

column reports the mean SEV© for the model and the decrease in mean SEV− in percentage compared733

to SEV1 (reported in the parenthesis). The Mean ℓ∞ column reports the mean ℓ∞ and the percentage734

reduction compared to SEV1. On most datasets, SEV© increases, and ℓ∞ decreases, which means735

that the model is providing both sparser and more meaningful explanations. For some datasets like736

Adult and MIMIC, the SEV© increases, since the cluster-based reference points might be closer to the737

decision boundary of the model as each query is trying to find the closest (in ℓ2 distance) negatively738

predicted reference point, which might provide less sparse explanations.739

Table 9 shows the model performance and SEV©+F (SEV© with variable reference) on various740

datasets with different flexibility levels. The Mean SEVF column reports the mean SEV− for the741

model and the decrease in mean SEV− in percentage compared to SEV1 (reported in the parenthesis).742

The Mean ℓ∞ column reports the mean ℓ∞ and the percentage reduction compared to SEV1. It is743

evident that with SEVF , SEV− decreases, but the ℓ∞ norm will increase due to the flexibility of the744

features mentioned in section 4.4. The “flexibility used” column shows the proportion of queries745

using the flexible reference instead of the original one for calculating SEVF , and the higher the746

proportion, the larger decrease in SEV− the model can achieve.747

Table 7: The SEV1 under different models
TRAIN TEST TRAIN TEST AVERAGE MEDIAN EXPLANATION AVERAGE LOG-

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV1 ℓ∞ TIME(10−2S) LIKELIHOOD

Adult GBDT 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.23± 0.02 18.28± 1.8 0.69± 0.08 −57437.86± 2718.7
L1LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.14± 0.01 24.2± 2.41 0.26± 0.01 −44735.07± 1393.91
L2LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.18± 0.0 22.62± 2.27 0.16± 0.01 −49293.12± 1157.19
MLP 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.27± 0.06 21.73± 3.57 0.62± 0.17 −67000.48± 5030.26

COMPAS GBDT 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.15± 0.04 1.94± 0.08 0.18± 0.02 8.15± 0.97
L1LR 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.25± 0.02 2.31± 0.07 0.12± 0.0 5.09± 0.92
L2LR 0.68± 0.0 0.67± 0.02 0.73± 0.0 0.72± 0.01 1.26± 0.03 2.41± 0.09 0.08± 0.01 5.19± 1.0
MLP 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.35± 0.12 2.3± 0.32 0.27± 0.09 6.49± 1.1

Diabetes GBDT 0.65± 0.0 0.64± 0.0 0.66± 0.0 0.66± 0.0 1.39± 0.01 2.82± 0.01 364.74± 92.38 −59814.81± 2356.74
L1LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.62± 0.01 2.6± 0.01 106.63± 79.76 −20834.12± 1378.32
L2LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.63± 0.01 2.7± 0.01 117.63± 79.76 −19117.45± 1091.56
MLP 0.65± 0.01 0.64± 0.0 0.71± 0.01 0.69± 0.0 1.69± 0.13 2.67± 0.09 136.33± 140.47 −70595.3± 3666.52

FICO GBDT 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 3.58± 0.12 1.81± 0.01 692.83± 30.77 −74.13± 8.92
L1LR 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 2.47± 0.11 1.81± 0.07 100.83± 30.77 −81.31± 7.41
L2LR 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.78± 0.01 2.76± 0.12 1.93± 0.04 481.75± 146.53 −52.09± 2.1
MLP 0.72± 0.01 0.71± 0.01 0.8± 0.02 0.78± 0.01 2.7± 0.29 1.88± 0.15 553.15± 463.34 −67.71± 13.05

German GBDT 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.02 1.39± 0.12 1.87± 0.46 2.69± 1.8 −75811.5± 6476.74
Credit L1LR 0.75± 0.01 0.75± 0.01 0.8± 0.01 0.79± 0.05 1.3± 0.06 2.45± 0.16 0.78± 0.49 −64237.32± 26906.43

L2LR 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.51± 0.15 3.08± 0.42 1.34± 0.96 −111945.26± 9916.8
MLP 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.6± 0.19 2.69± 0.45 7.68± 5.59 −119557.08± 15328.57

Headline GBDT 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.82± 0.03 2.35± 0.02 16.25± 2.45 −395.41± 340.77
L1LR 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.92± 0.01 2.51± 0.02 6.73± 0.38 −558.81± 287.68
L2LR 0.78± 0.0 0.78± 0.0 0.86± 0.0 0.85± 0.0 1.98± 0.01 2.5± 0.02 9.21± 0.49 −555.95± 286.15
MLP 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 2.03± 0.03 2.31± 0.07 26.25± 2.45 −493.37± 316.22

MIMIC GBDT 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.18± 0.02 1.28± 0.15 1.03± 0.22 −18.92± 0.37
L1LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.15± 0.02 4.53± 0.49 0.26± 0.04 −19.76± 0.52
L2LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.16± 0.02 4.34± 0.52 0.29± 0.03 −19.66± 0.49
MLP 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.18± 0.03 2.08± 0.35 0.79± 0.19 −17.25± 0.84
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Table 8: The SEV© under different models
TRAIN TEST TRAIN TEST AVERAGE MEDIAN AVERAGE AVERAGE LOG-

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV ℓ∞ TIME (10−2) LIKELIHOOD

Adult GBDT 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.39(13.01%) 2.41(-86.82%) 2.22± 0.84 −22974.51(60.0%)
L1LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.23(7.89%) 2.05(-91.53%) 0.56± 0.03 −39333.37(12.07%)
L2LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.34(13.56%) 2.86(-87.36%) 0.38± 0.12 −21033.54(57.33%)
MLP 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.62(27.56%) 5.16(-76.25%) 1.18± 0.53 −23421.5(60.97%)

COMPAS GBDT 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.18(2.61%) 1.52(-21.65%) 0.32± 0.03 9.08(11.41%)
L1LR 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.19(-4.8%) 1.75(-24.24%) 0.12± 0.01 5.53(8.64%)
L2LR 0.68± 0.0 0.67± 0.02 0.73± 0.0 0.72± 0.01 1.22(-3.17%) 2.06(-14.52%) 0.09± 0.01 5.98(15.22%)
MLP 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.3(-3.7%) 1.82(-20.87%) 0.15± 0.03 9.12(40.52%)

Diabetes GBDT 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.36(-2.21%) 1.89(-49.21%) 17.39± 7.21 −5572.49(90.55%)
L1LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.22(-24.6%) 2.31(-11.58%) 2.1± 0.4 −5460.38(92.27%)
L2LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.28(-21.47%) 2.31(-14.44%) 3.8± 1.26 −14461.36(24.36%)
MLP 0.65± 0.0 0.63± 0.0 0.7± 0.01 0.69± 0.0 1.47(-13.02%) 2.24(-16.1%) 23.28± 14.31 −11320.72(83.96%)

FICO GBDT 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 2.06(-42.52%) 1.08(-40.3%) 23.34± 8.86 −59.52(19.7%)
L1LR 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.0 1.79(-27.53%) 1.95(7.73%) 3.11± 1.02 −77.53(4.65%)
L2LR 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.21(-19.93%) 1.82(-5.7%) 39.49± 16.49 −58.86(-13.0%)
MLP 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.15(-20.37%) 1.75(-6.91%) 26.26± 9.01 −62.6(7.55%)

German GBDT 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.22(-12.23%) 1.73(-7.49%) 0.79± 0.53 −28478.65(62.43%)
Credit L1LR 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.77± 0.04 1.03(-20.77%) 1.52(-37.96%) 0.05± 0.01 −23691.73(63.12%)

L2LR 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.17(-22.52%) 3.2(3.9%) 0.1± 0.07 −40622.35(63.71%)
MLP 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.24(-22.5%) 2.54(-5.58%) 0.24± 0.2 −40045.69(66.5%)

Headline GBDT 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.76(-3.3%) 2.18(-7.23%) 6.96± 0.84 −383.24(-3.08%)
L1LR 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.57(-18.23%) 2.94(17.13%) 0.88± 0.21 −559.35(0.1%)
L2LR 0.78± 0.0 0.78± 0.0 0.86± 0.0 0.85± 0.0 1.62(-18.18%) 2.94(17.6%) 1.46± 0.1 −556.52(0.1%)
MLP 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.67(-17.7%) 1.99(-16.08%) 3.05± 0.43 −495.08(0.0%)

MIMIC GBDT 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.49(-61.72%) 0.61± 0.12 −18.15(4.07%)
L1LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.17(1.74%) 1.8(-60.26%) 0.17± 0.03 −20.41(-3.29%)
L2LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.98(-54.38%) 0.19± 0.03 −20.26(-3.05%)
MLP 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.23(4.24%) 0.6(-71.15%) 0.33± 0.07 −16.77(2.78%)
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Table 9: SEV©+F under different models
FLEX- TRAIN TEST TRAIN TEST AVERAGE MEDIAN AVERAGE LOG- EXPLANATION

DATASET MODEL IBILITY ACCURACY ACCURACY AUC AUC SEV− ℓ∞ LIKELIHOOD TIME(10−2S)

Adult GBDT 0.05 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.3(5.69%) 0.95(-94.8%) −21763.14(62.11%) 3.98± 0.45
0.10 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.29(4.88%) 0.95(-94.8%) −20395.38(4.49%) 3.82± 0.32
0.20 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.29(4.88%) 0.96(-94.75%) −17611.65(69.34%) 3.63± 0.29

L1LR 0.05 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.2(5.26%) 0.96(-96.03%) −29801.44(33.38%) 1.0± 0.04
0.10 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.19(4.39%) 0.96(-96.03%) −29144.93(34.85%) 0.94± 0.04
0.20 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.19(4.39%) 0.97(-95.99%) −30245.09(32.39%) 0.91± 0.04

L2LR 0.05 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.32(11.86%) 2.47(-89.08%) −20693.31(58.02%) 1.59± 0.19
0.10 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.32(11.86%) 2.41(-89.35%) −20294.61(58.83%) 1.64± 0.18
0.20 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.32(11.86%) 2.49(-88.99%) −21987.43(55.39%) 1.59± 0.16

MLP 0.05 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.54(21.26%) 2.95(-86.42%) −27141.97(59.49%) 3.78± 1.4
0.10 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.52(19.69%) 2.75(-87.34%) −23444.97(65.01%) 3.76± 1.36
0.20 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.44(13.39%) 2.37(-89.09%) −22225.46(66.83%) 2.88± 1.11

COMPAS GBDT 0.05 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.2(4.35%) 1.44(-25.77%) 8.85(8.59%) 0.77± 0.06
0.10 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.19(3.48%) 1.4(-27.84%) 9.11(11.78%) 0.77± 0.06
0.20 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.12(-2.61%) 1.3(-32.99%) 8.97(10.06%) 0.68± 0.04

L1LR 0.05 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.14(-8.8%) 1.62(-29.87%) 5.67(11.39%) 0.29± 0.02
0.10 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.14(-8.8%) 1.55(-32.9%) 5.85(14.93%) 0.29± 0.01
0.20 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.14(-8.8%) 1.5(-35.06%) 5.87(15.32%) 0.28± 0.01

L2LR 0.05 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.17(-7.14%) 1.92(-20.33%) 6.36(22.54%) 0.27± 0.01
0.10 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.17(-7.14%) 1.85(-23.24%) 6.27(20.81%) 0.27± 0.01
0.20 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.17(-6.35%) 1.68(-30.29%) 6.26(20.62%) 0.29± 0.01

MLP 0.05 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.2(-11.11%) 1.67(-27.39%) 8.2(26.35%) 0.39± 0.07
0.10 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.2(-11.11%) 1.65(-28.26%) 8.19(26.19%) 0.41± 0.06
0.20 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.2(-10.37%) 1.62(-29.57%) 8.36(28.81%) 0.42± 0.07

Diabetes GBDT 0.05 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.37(-3.6%) 1.16(-58.87%) −4521.05(-92.44%) 50.03± 8.06
0.10 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.36(-2.16%) 1.35(-52.13%) −5505.82(-90.8%) 58.29± 7.65
0.20 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.35(-2.88%) 1.46(-48.23%) −5258.28(-91.21%) 54.67± 7.11

L1LR 0.05 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.2(-25.93%) 2.31(-11.15%) −11250.28(46.0%) 5.23± 0.68
0.10 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.2(-25.93%) 2.31(-11.15%) −11190.99(46.29%) 5.3± 0.7
0.20 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.2(-25.93%) 2.31(-11.15%) −7913.34(62.02%) 5.09± 0.63

L2LR 0.05 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.24(-23.46%) 2.31(-14.44%) −23047.62(22.58%) 7.05± 1.0
0.10 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.24(-23.46%) 2.31(-14.44%) −23047.64(22.58%) 7.12± 0.99
0.20 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.24(-23.46%) 2.31(-14.44%) −14691.43(21.86%) 7.41± 0.64

MLP 0.05 0.65± 0.01 0.63± 0.0 0.71± 0.01 0.68± 0.0 1.41(-13.5%) 1.73(-35.45%) −46675.04(33.81%) 40.41± 30.18
0.10 0.65± 0.01 0.63± 0.0 0.71± 0.01 0.68± 0.0 1.41(-13.5%) 1.72(-35.82%) −46689.47(33.84%) 38.03± 27.63
0.20 0.65± 0.01 0.63± 0.0 0.71± 0.01 0.68± 0.0 1.39(-14.72%) 1.73(-35.45%) −47723.79(4.23%) 30.72± 19.28

FICO GBDT 0.05 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 1.97(-44.97%) 0.87(-51.93%) −58.85(20.61%) 132.34± 34.38
0.10 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 2.03(-43.3%) 0.89(-50.83%) −58.47(21.13%) 162.91± 37.45
0.20 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 2.03(-42.18%) 0.88(-51.38%) −56.13(24.28%) 163.64± 45.55

l1lr 0.05 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 1.84(-25.51%) 1.89(4.42%) −77.6(4.56%) 29.88± 6.18
0.10 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 1.86(-24.7%) 1.96(8.29%) −78.18(3.85%) 34.15± 7.9
0.20 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 1.86(-24.7%) 2.09(15.47%) −79.92(-1.71%) 42.69± 9.43

L2LR 0.05 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.3(-16.36%) 1.8(-6.74%) −57.96(12.02%) 285.3± 96.59
0.10 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.28(17.09%) 1.79(-7.25%) −57.11(10.38%) 303.19± 98.72
0.20 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.24(-18.55%) 1.91(-1.04%) −57.22(10.59%) 303.85± 97.78

MLP 0.05 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.17(-18.11%) 1.63(-10.93%) −79.53(15.44%) 124.03± 50.02
0.10 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.18(-17.74%) 1.66(-9.29%) −77.83(12.98%) 135.6± 56.71
0.20 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.18(-17.74%) 1.71(-6.56%) −78.07(13.33%) 156.08± 70.95

German GBDT 0.05 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.21(-12.95%) 2.13(13.9%) −31442.17(58.53%) 6.28± 3.44
Credit 0.10 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.21(-12.95%) 1.8(-3.74%) −31253.08(58.78%) 6.87± 3.83

0.20 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.2(-12.23%) 1.91(2.14%) −36087.77(52.4%) 7.78± 4.46
L1LR 0.05 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.78± 0.04 1.03(-20.77%) 2.03(-17.14%) −24474.67(61.9%) 0.79± 0.39

0.10 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.77± 0.04 1.04(-20.0%) 2.01(-17.96%) −24862.18(-61.3%) 0.79± 0.38
0.20 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.78± 0.04 1.03(-20.77%) 2.12(-13.47%) −25849.27(-59.76%) 0.7± 0.17

L2LR 0.05 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.17(-22.52%) 3.0(-2.6%) −40660.55(63.68%) 2.05± 1.58
0.10 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.18(-21.85%) 3.03(-1.62%) −40228.76(64.06%) 1.84± 1.02
0.20 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.17(-22.52%) 2.93(-4.87%) −40136.71(64.15%) 1.71± 0.82

MLP 0.05 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.25(-21.88%) 2.57(-4.46%) −46257.34(61.31%) 2.99± 1.42
0.10 0.81± 0.05 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.23(-23.13%) 2.56(-4.83%) −46884.11(60.79%) 3.04± 1.67
0.20 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.21(-24.38%) 2.6(-3.35%) −41223.18(65.52%) 2.55± 1.47

Headline GBDT 0.05 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.74(-4.4%) 2.49(5.96%) −407.77(-3.13%) 22.98± 8.46
0.10 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.71(-6.04%) 2.51(6.81%) −432.26(-9.32%) 20.88± 7.71
0.20 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.53(-15.93%) 2.22(-5.53%) −543.65(-37.49%) 8.83± 2.41

L1LR 0.05 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.54(-19.79%) 2.94(17.13%) −576.99(-3.25%) 3.97± 0.15
0.10 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.55(-19.27%) 2.94(17.13%) −577.03(-3.26%) 4.16± 0.17
0.20 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.47(-23.44%) 2.94(17.13%) −577.7(-3.38%) 2.54± 0.12

L2LR 0.05 0.78± 0.0 0.78± 0.0 0.86± 0.0 0.85± 0.0 1.59(-19.7%) 2.94(-17.6%) −556.65(0.13%) 4.81± 0.2
0.10 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.6(-19.19%) 2.94(17.6%) −573.97(-3.24%) 5.1± 0.25
0.20 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.5(-24.24%) 2.94(17.6%) −574.67(-3.37%) 3.22± 0.13

MLP 0.05 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.64(-19.21%) 1.97(-14.72%) −617.43(-25.15%) 7.02± 1.86
0.10 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.64(-19.21%) 1.97(-14.72%) −604.44(-22.51%) 7.47± 2.23
0.20 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.5(-26.11%) 2.06(-10.82%) −570.13(-15.56%) 4.1± 0.79

MIMIC GBDT 0.05 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.52(-59.38%) −19.06(-0.74%) 2.93± 0.39
0.10 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.48(-62.5%) −19.08(-0.85%) 2.98± 0.39
0.20 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.41(-67.97%) −18.86(0.32%) 3.32± 0.43

L1LR 0.05 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.17(1.74%) 1.11(-75.5%) −21.32(-7.89%) 0.75± 0.06
0.10 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.18(2.61%) 1.15(-74.61%) −21.48(-8.7%) 0.77± 0.07
0.20 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.18(2.61%) 1.15(-74.61%) −21.48(-8.7%) 0.79± 0.08

L2LR 0.05 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.15(-73.5%) −21.37(-8.7%) 0.86± 0.1
0.10 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.15(-73.5%) −21.41(-8.9%) 0.84± 0.09
0.20 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.15(-73.5%) −21.48(-9.26%) 0.91± 0.09

MLP 0.05 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.21(2.54%) 0.58(-72.12%) −18.22(-5.62%) 1.35± 0.15
0.10 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.22(3.39%) 0.58(-72.12%) −18.12(-5.04%) 1.41± 0.14
0.20 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.22(3.39%) 0.58(-72.12%) −18.12(-5.04%) 1.43± 0.14
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I All-Opt− Variants Performance748

In this section, we will mainly show the model performance of All-Opt© and All-Opt1, which are the749

two gradient-based optimization methods used for SEV© and SEV1 optimization. Table 10 shows the750

SEV1, ℓ∞ and model performance after applying All-Opt1 methods for different models on different751

datasets with different levels of flexibility. It is evident that All-OptF has provided a significant752

decrease in SEV, so that its values are close to 1, providing much sparser explanations without model753

performance loss and closeness/credibility loss in explanations. Similar findings are observed in754

Table 11.755

Table 10: The model performance for All-Opt1
TRAIN TEST TRAIN TEST MEAN MEAN TRAINING MEAN

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV− ℓ∞ TIME(S) LOG-LIKELIHOOD
Adult GBDT 0.87± 0.02 0.84± 0.02 0.93± 0.01 0.90± 0.01 1.00± 0.00 5.67± 0.34 2010± 24 −39654.89± 4201.17

LR 0.84± 0.01 0.84± 0.01 0.90± 0.02 0.89± 0.01 1.03± 0.01 3.21± 0.02 60± 1 −70566.06± 10678.32
MLP 0.86± 0.01 0.85± 0.01 0.91± 0.02 0.91± 0.01 1.00± 0.00 9.52± 1.45 82± 3 −58049.77± 9932.16

COMPAS GBDT 0.70± 0.01 0.68± 0.01 0.74± 0.01 0.71± 0.01 1.01± 0.01 1.50± 0.04 244± 4 10.74± 0.98
LR 0.68± 0.01 0.68± 0.02 0.74± 0.01 0.73± 0.02 1.00± 0.01 2.13± 0.01 11± 1 9.17± 1.02

MLP 0.68± 0.01 0.67± 0.02 0.74± 0.02 0.72± 0.01 1.01± 0.01 1.90± 0.11 16± 1 14.57± 1.23
Diabetes GBDT 0.62± 0.01 0.63± 0.01 0.62± 0.01 0.64± 0.01 1.07± 0.01 1.78± 0.34 10548± 324 −14013.49± 2784.36

LR 0.62± 0.04 0.62± 0.04 0.63± 0.01 0.63± 0.01 1.07± 0.00 1.39± 0.01 217± 3 −40190.09± 10453.69
MLP 0.62± 0.01 0.65± 0.01 0.65± 0.01 0.64± 0.02 1.07± 0.00 2.50± 0.32 318± 5 −18013.49± 3894.36

FICO GBDT 0.70± 0.02 0.70± 0.02 0.77± 0.01 0.77± 0.02 1.19± 0.10 0.84± 0.12 864± 23 −40.44± 4.32
LR 0.70± 0.02 0.70± 0.02 0.77± 0.01 0.77± 0.02 1.10± 0.10 1.91± 0.33 19± 1 −20.32± 0.18

MLP 0.72± 0.01 0.72± 0.01 0.78± 0.02 0.78± 0.01 1.28± 0.09 1.23± 0.21 28± 0 −26.04± 0.43
German GBDT 0.94± 0.02 0.73± 0.02 0.99± 0.01 0.76± 0.02 1.02± 0.01 1.21± 0.05 99± 1 −27701.04± 3431.99
Credit LR 0.77± 0.01 0.75± 0.01 0.82± 0.02 0.77± 0.01 1.00± 0.00 1.39± 0.05 2± 0 −58065.80± 6843.21

MLP 0.82± 0.01 0.73± 0.03 0.93± 0.02 0.75± 0.02 1.00± 0.00 1.17± 0.08 3± 1 −85816.95± 13728.23
Headline GBDT 0.80± 0.01 0.76± 0.02 0.90± 0.01 0.89± 0.01 1.04± 0.02 2.45± 0.57 2732± 101 −4.37± 1.28

LR 0.77± 0.01 0.78± 0.01 0.86± 0.01 0.85± 0.01 1.00± 0.01 2.77± 0.44 78± 0 −2.39± 0.11
MLP 0.76± 0.02 0.77± 0.03 0.87± 0.02 0.86± 0.02 1.03± 0.03 2.78± 0.13 102± 1 −2.57± 0.89

MIMIC GBDT 0.88± 0.01 0.88± 0.01 0.84± 0.01 0.82± 0.02 1.06± 0.04 3.66± 0.02 2799± 102 −16.36± 0.54
LR 0.88± 0.01 0.88± 0.01 0.84± 0.01 0.82± 0.02 1.03± 0.03 3.67± 0.72 87± 2 −17.77± 2.22

MLP 0.89± 0.01 0.89± 0.02 0.84± 0.03 0.82± 0.03 1.00± 0.00 1.29± 0.20 115± 2 −10.38± 3.87

Table 11: The model performance for All-Opt©
TRAIN TEST TRAIN TEST MEAN MEAN MEAN

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV© ℓ∞ LOG-LIKELIHOOD

Adult GBDT 0.90± 0.00 0.83± 0.01 0.89± 0.01 0.89± 0.01 1.14± 0.03 1.87± 0.03 289.07± 52.79
LR 0.84± 0.00 0.84± 0.01 0.91± 0.01 0.90± 0.01 1.01± 0.01 2.56± 0.43 299.04± 17.24

MLP 0.85± 0.01 0.84± 0.01 0.92± 0.01 0.91± 0.01 1.00± 0.02 2.37± 0.19 297.14± 32.16
COMPAS GBDT 0.68± 0.01 0.68± 0.01 0.72± 0.01 0.74± 0.02 1.02± 0.02 1.34± 0.47 10.28± 2.14

LR 0.68± 0.01 0.68± 0.01 0.72± 0.01 0.74± 0.02 1.00± 0.00 2.49± 0.21 8.67± 1.32
MLP 0.67± 0.01 0.67± 0.02 0.74± 0.01 0.72± 0.01 1.05± 0.05 1.92± 0.05 7.22± 0.56

Diabetes GBDT 0.62± 0.01 0.62± 0.02 0.66± 0.01 0.66± 0.02 1.05± 0.00 1.99± 0.01 −5231.53± 489.52
LR 0.62± 0.01 0.62± 0.02 0.66± 0.01 0.66± 0.02 1.05± 0.00 2.89± 0.46 −5937.66± 638.77

MLP 0.62± 0.01 0.62± 0.01 0.67± 0.01 0.67± 0.01 1.05± 0.00 2.12± 0.01 −5217.39± 497.78
FICO GBDT 0.70± 0.01 0.70± 0.00 0.78± 0.01 0.78± 0.01 1.48± 0.09 0.90± 0.01 −55.09± 6.79

LR 0.70± 0.01 0.70± 0.00 0.78± 0.01 0.78± 0.01 1.41± 0.08 1.60± 0.27 −15.66± 7.01
MLP 0.70± 0.01 0.69± 0.11 0.79± 0.02 0.78± 0.02 1.28± 0.19 1.23± 0.05 −18.47± 8.98

German GBDT 0.75± 0.01 0.76± 0.01 0.82± 0.01 0.80± 0.01 1.00± 0.00 1.00± 0.00 −15797.31± 2134.01
Credit LR 0.75± 0.01 0.76± 0.01 0.82± 0.01 0.80± 0.01 1.00± 0.00 1.00± 0.00 −45070.76± 7924.23

MLP 0.86± 0.02 0.79± 0.01 0.92± 0.01 0.80± 0.01 1.00± 0.00 1.00± 0.00 −30917.95± 5534.23
Headline GBDT 0.78± 0.02 0.79± 0.01 0.85± 0.01 0.85± 0.01 1.26± 0.03 −1.72± 0.01 −4.20± 2.97

LR 0.78± 0.02 0.79± 0.01 0.85± 0.01 0.85± 0.01 1.29± 0.10 2.93± 0.02 −2.93± 1.28
MLP 0.78± 0.02 0.78± 0.03 0.84± 0.01 0.84± 0.01 1.15± 0.12 1.69± 0.16 −2.87± 1.51

MIMIC GBDT 0.90± 0.01 0.89± 0.01 0.80± 0.00 0.80± 0.00 1.05± 0.05 1.00± 0.00 −21.80± 2.45
LR 0.90± 0.01 0.89± 0.01 0.80± 0.00 0.80± 0.00 1.00± 0.00 1.00± 0.00 −28.74± 0.75

MLP 0.89± 0.01 0.89± 0.01 0.84± 0.01 0.81± 0.00 1.01± 0.01 0.06± 0.01 −29.35± 0.36
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J SEVT in tree-based models756

In this section, we show the model performance and SEVT values for different types of tree-based757

models. As discussed in section 4.2, the similarity and closeness metrics in SEVT are all ℓ0 norm, so758

we only need to compute the mean SEVT for each tree. Table 12 shows that most of the tree-based759

models can provide sparse explanations (SEVT≤ 2), and we can also find a decision tree with the760

same model performance as the other tree-based models from SEVT =1 to TOpt.761

Table 12: The model performance with different tree-based methods
DATASET METHODS TRAIN ACC TEST ACC MEAN SEVT

Adult CART 0.84± 0.01 0.84± 0.01 1.11± 0.01
C4.5 0.85± 0.01 0.84± 0.00 1.10± 0.02

GOSDT 0.81± 0.01 0.81± 0.01 1.08± 0.01
Topt 0.82± 0.01 0.82± 0.01 1.00± 0.00

COMPAS CART 0.68± 0.00 0.65± 0.01 1.02± 0.01
C4.5 0.68± 0.00 0.65± 0.01 1.02± 0.01

GOSDT 0.67± 0.02 0.65± 0.01 1.12± 0.02
Topt 0.66± 0.01 0.67± 0.01 1.00± 0.00

Diabetes CART 0.63± 0.01 0.63± 0.01 1.00± 0.00
C4.5 0.63± 0.01 0.63± 0.01 1.00± 0.00

GOSDT 0.61± 0.01 0.60± 0.01 1.00± 0.00
Topt 0.62± 0.01 0.63± 0.01 1.00± 0.00

FICO CART 0.71± 0.01 0.71± 0.01 1.10± 0.03
C4.5 0.71± 0.01 0.71± 0.01 1.13± 0.05

GOSDT 0.70± 0.01 0.69± 0.01 1.80± 0.02
Topt 0.70± 0.01 0.71± 0.01 1.00± 0.02

German CART 0.75± 0.01 0.70± 0.01 1.00± 0.02
Credit C4.5 0.75± 0.01 0.70± 0.01 1.00± 0.02

GOSDT 0.75± 0.01 0.70± 0.01 1.00± 0.02
Topt 0.75± 0.01 0.70± 0.01 1.00± 0.02

Headline CART 0.78± 0.01 0.78± 0.00 1.27± 0.01
C4.5 0.77± 0.01 0.77± 0.00 1.16± 0.02

GOSDT 0.76± 0.01 0.76± 0.02 1.09± 0.02
Topt 0.77± 0.00 0.77± 0.00 1.00± 0.00

MIMIC CART 0.89± 0.01 0.89± 0.01 1.00± 0.00
C4.5 0.89± 0.01 0.89± 0.01 1.00± 0.00

GOSDT 0.89± 0.01 0.89± 0.01 1.00± 0.00
Topt 0.89± 0.01 0.89± 0.01 1.00± 0.00
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K The SEV1 results after ExpO Optimization762

For the ExpO comparison experiment, we used the fidelity metrics from Plumb et al. [2020] as the763

penalty term for regularizing the original model. Then we evaluated the optimized model with SEV−.764

We used two kinds of fidelity metrics as the regularization term: 1D fidelity and 1D fidelity. Both765

of these two penalty terms aim to optimize the model f such that the local model g [Ribeiro et al.,766

2016b, Plumb et al., 2018] accurately approximates f in the neighborhood Nx, which is equivalent to767

minimizing:768

ℓfed(f, g,Nx) = Ex′∼Nx [g(x
′)− f(x′)]2. (10)

The local model g’s are linear models, and the Nx are points sampled normally around the original769

query. The 1D version of Fidelity regularization requires sampling the points around each feature770

of x at a time, which saves time and computational complexity. Based on the above equation, we771

rewrite the overall objective function as:772

min
f∈F

ℓBCE + CF ℓfed (11)

where ℓBCE is the Binary Cross Entropy Loss to control the accuracy of the training model, CF is the773

strength of the fidelity term, and the training process is the same All-Opt− optimization, which we774

used 80 epochs for basic training process, 20 epochs for regularization.775

In this section, we show the SEV− and training time for ExpO regularizer in LR and MLP models776

with 1D Fidelity (1DFed) and Global Fidelity (Fed) regularizers. Comparing the mean SEV1 of Table777

13 with Table 7, it is evident that with the optimization through Fed or 1DFed, the optimized models778

do not provide sparse explanations. In addition, it takes a long time to calculate Fed and 1DFed since779

the regularizer’s complexity is determined by the number of queries, features, as well as the points780

samples around the queries. For SEV−, the complexity is determined only by the number of queries781

and the number of features, so it is much easier to calculate.782

Table 13: Model performance, SEV1 and training time of LR and MLPs after ExpO with different
datasets

TRAIN TEST TRAIN TEST MEAN TRAINING
DATASET MODEL REGULARIZER ACCURACY ACCURACY AUC AUC SEV1 TIME(S)

Adult LR Fed 0.85± 0.01 0.84± 0.01 0.90± 0.01 0.89± 0.01 1.23± 0.02 1350± 162
LR 1DFed 0.84± 0.02 0.84± 0.01 0.90± 0.01 0.90± 0.02 1.17± 0.02 510± 23

MLP Fed 0.85± 0.01 0.83± 0.02 0.90± 0.01 0.89± 0.01 1.27± 0.02 1580± 50
MLP 1DFed 0.85± 0.01 0.83± 0.02 0.90± 0.01 0.89± 0.01 1.27± 0.02 686± 23

COMPAS LR Fed 0.67± 0.02 0.66± 0.01 0.72± 0.02 0.72± 0.02 1.22± 0.04 58± 10
LR 1DFed 0.65± 0.02 0.65± 0.01 0.73± 0.01 0.72± 0.02 1.27± 0.02 90± 5

MLP Fed 0.68± 0.02 0.66± 0.01 0.74± 0.02 0.72± 0.01 1.28± 0.03 125± 14
MLP 1DFed 0.66± 0.02 0.66± 0.02 0.72± 0.02 0.71± 0.01 1.28± 0.2 128± 15

Diabetes LR Fed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.50± 0.01 3625± 412
LR 1DFed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.46± 0.01 1842± 245

MLP Fed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.52± 0.01 4372± 316
MLP 1DFed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.46± 0.01 2032± 124

FICO LR Fed 0.71± 0.01 0.71± 0.01 0.78± 0.02 0.78± 0.01 2.76± 0.12 150± 21
LR 1DFed 0.71± 0.02 0.71± 0.01 0.77± 0.01 0.78± 0.01 2.76± 0.21 150± 14

MLP Fed 0.72± 0.02 0.71± 0.01 0.79± 0.02 0.78± 0.02 2.67± 0.14 210± 13
MLP 1DFed 0.72± 0.02 0.71± 0.01 0.78± 0.02 0.77± 0.02 2.80± 0.35 195± 14

German LR Fed 0.78± 0.02 0.76± 0.01 0.82± 0.02 0.80± 0.01 1.65± 0.12 28± 0
Credit LR 1DFed 0.77± 0.02 0.73± 0.02 0.80± 0.01 0.76± 0.02 1.76± 0.02 15± 0

MLP Fed 0.75± 0.02 0.72± 0.02 0.82± 0.01 0.78± 0.02 1.70± 0.03 33± 2
MLP 1DFed 0.70± 0.00 0.70± 0.00 0.72± 0.02 0.73± 0.01 1.70± 0.03 20± 0

Headline LR Fed 0.77± 0.04 0.77± 0.01 0.85± 0.01 0.85± 0.00 1.87± 0.01 680± 21
LR 1DFed 0.77± 0.01 0.77± 0.01 0.84± 0.01 0.85± 0.01 1.87± 0.02 562± 32

MLP Fed 0.77± 0.02 0.78± 0.01 0.85± 0.02 0.85± 0.03 1.87± 0.04 762± 56
MLP 1DFed 0.77± 0.02 0.77± 0.01 0.84± 0.02 0.85± 0.01 1.87± 0.04 852± 72

MIMIC LR Fed 0.89± 0.02 0.89± 0.02 0.77± 0.01 0.77± 0.01 1.18± 0.02 712± 42
LR 1DFed 0.89± 0.02 0.88± 0.01 0.78± 0.02 0.77± 0.02 1.17± 0.02 646± 42

MLP Fed 0.88± 0.00 0.88± 0.00 0.78± 0.00 0.77± 0.01 1.15± 0.01 960± 27
MLP 1DFed 0.88± 0.01 0.88± 0.01 0.78± 0.01 0.78± 0.01 1.16± 0.01 873± 18
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L Proof of Theorem 4.1783

Theorem L.1. With a single decision classifier DT and a positively-predicted query xi, define Ni784

as the leaf that captures it. If Ni has a sibling leaf, or any internal node in its decision path has a785

negatively-predicted child leaf, then SEVT is equal to 1.786

SEV− is defined as the number of features that need to change within the given classification tree. If787

you have switched a particular node from one path to another, it adds one to SEV−. Therefore, for788

the internal nodes along the SEV− path, if Ni has a sibling leaf node, if we goes up to its parent node789

and goes the opposite direction to change the query value for counterfactual explanation, the modified790

instance will be directly predicted as negative, which leads to SEV− being equal to 1 in this case.791

Figure 11 shows an example for SEVT being exactly 1, and a case illustrating that if N does not have792

a sibling or any internal node in its decision path that has a negatively-predicted child leaf, SEVT793

should be greater than or equal to 1. In Figure 11, the left trees are the full decision trees, where the794

blue nodes are the negatively predicted leaf nodes and the red ones are positively predicted. The red795

arrows graph represents the decision path for a specific instance. The person icon with a plus sign is796

Ni that we would like to calculate SEVT on. The right tree is the subtree of the left tree. The person797

icon with a minus is the query and the blue arrows indicate a decision pathway for SEV Explanation.798

If the query is predicted as positive in node 4 , it is easy to see that if we go up to node C and goes799

the opposite direction as the decision path for xi, then you can directly get a negative prediction.800

In other words, if you change the feature C in the query to make it doens’t satisfy the node C ’s801

condition, then it can be prediction as negative, which means that SEVT =1.802

For SEVT≥ 1 case, if the query predidcted as positive in node 7 , since it does not have a sibling803

leaf node, then if it goes to its parent node D and goes the opposite direction, then it would reach804

node E . However, if we don’t know the query xi’s value, then I am unable to know whether I need805

to change the condition in node E for higher SEVT . Therefore, in this case SEVT can be only806

guaranteed to be greater or equal to 1.807

Figure 11: Example of SEVT =1 in Theorem 4.1
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M Proof of Theorem 4.2808

Theorem M.1. With a single decision tree classifier DT and a positively-predicted query xi, with809

the set of all negatively predicted leaves as reference points, both SEV− and the ℓ0 distance (edit810

distance) between the query and the SEV− explanation is minimized.811

Proof (Optimality of Explanation Path):812

The definition for SEV− is the minimum number of features that is needed for a positively predicted813

query xi to aligned with the reference point in order to be predicted as negative. For tree-based814

classifiers, the decisions are all made in the leaf nodes. Since we have set of all the negatively815

predicted leaves as the reference points, then the ℓ0 distance (edit distance) between the query and the816

SEV− explanation is equivalent to be the minimum ℓ0 distance between the query and the negatively817

predicted leaf nodes. Each node can be considered as a list of rules of conditions that needs to be818

satisfied. If a query would like to be predicted as negative in a specific node, then it needs to change819

some of the feature values in the query so as to be predicted as negative, and the number of changed820

feature is SEV−. Therefore, SEV− and the ℓ0 distance are the same in this theorem.821

Next, we would like to show that if one of the negatively predicted leaf nodes is not considered822

as reference point, then SEV− is not minimized. It is really easy to give an counterexample: if823

we have a decision tree shown in Figure 12 with white nodes as root/internal nodes, blue nodes824

as negatively predicted node, and the red ones as positively predicted. Suppose we have a query825

predicted as positive, with feature values {A : False, B : False, C : False}, and only regard node 1826

as the reference point, then both feature A and C should be change to True, in order to do a negative827

prediction, in other words, if only node 1 is the reference point, then SEV−=2. However, based on828

Theorem 4.1, since node 4 has a sibling leaf predicted as negative, then the SEV− is not minimized.829

Figure 12: An counterexample with fewer reference point

Lastly, we would like to show that with all the negative leaf nodes considered as reference points if830

an new reference points is added, the SEV− cannot be further minimized. Since we know that the831

reference points should be predicted as negative, so the newly aded reference should still belongs to832

one of the existing negative predicted leaf node, so SEV− cannot be further minimized.833

To sum up, we have proved that with the set of all negatively predicted leaves as reference points, both834

SEV− and the ℓ0 distance (edit distance) between the query and the SEV explanation is minimized.835
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N Some extra examples for different kinds of SEV metrics836

Table 14: Different SEV Variants Explanations in MIMIC datasets
PREICULOS GCS HEARTRATE_MAX MEANBP_MIN RESPRATE_MIN TEMPC_MIN URINEOUTPUT

Query 43806.28 10.00 91.00 29.00 9.00 34.50 162.98
SEV-1 2215.88 —- —- —- —- —- —-
SEV-F 2215.88 —- —- —- —- —- —-
SEV-C 8739.30 —- —- —- —- —- —-
SEV-T —- —- —- —- —- —- 595.48
Query 0.51 15.00 105.00 21.00 20.00 32.28 7.98
SEV-1 —- —- —- 59.35 —- —- —-
SEV-F —- —- —- 59.35 —- —- —-
SEV-C —- —- —- 56.95 —- 36.11 —-
SEV-T —- —- —- —- —- —- 595.48
Query 1.34 3.00 139.00 33.00 11.00 35.56 247.98
SEV-1 —- 13.89 —- —- —- —- —-
SEV-F —- 13.89 —- —- —- —- —-
SEV-C —- 9.24 105.96 59.24 —- —- —-
SEV-T —- —- —- —- —- —- 595.48
Query 1.64 11.00 199.00 14.00 22.00 37.06 387.98
SEV-1 —- —- 102.57 —- —- —- —-
SEV-F —- —- 102.57 —- —- —- —-
SEV-C —- —- 107.58 —- —- —- —-
SEV-T —- —- —- —- —- —- 595.48
Query 6621.40 13.00 134.00 28.00 28.00 34.72 4.98
SEV-1 —- —- 102.57 —- 12.22 —- —-
SEV-F —- —- 102.57 —- 12.22 —- —-
SEV-C —- —- 97.70 —- 12.68 —- —-
SEV-T —- —- —- —- —- —- 595.48
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Table 15: Different SEV Variants Explanations in COMPAS datasets
AGE JUV_FEL_COUNT JUV_MISD_COUNT JUVENILE_CRIMES PRIORS_COUNT

Query 50.00 0.00 0.00 0.00 11.00
SEV-1 —- —- —- —- 2.21
SEV-F —- —- —- —- 2.21
SEV-C —- —- —- —- 4.63
SEV-T —- —- —- —- 2.50
Query 23.00 1.00 0.00 1.00 5.00
SEV-1 36.71 —- —- —- 2.21
SEV-F 36.71 —- —- —- 2.21
SEV-C 26.69 0.11 0.18 0.54 2.13
SEV-T —- —- —- —- 2.50
Query 21.00 0.00 2.00 3.00 3.00
SEV-1 —- —- —- 0.12 —-
SEV-F —- —- —- 0.12 —-
SEV-C 26.69 —- —- 0.54 —-
SEV-T 33.50 —- —- —- —-
Query 23.00 0.00 1.00 1.00 4.00
SEV-1 36.71 —- —- —- —-
SEV-F 36.71 —- —- —- —-
SEV-C 26.69 —- —- —- 2.13
SEV-T 23.00 —- —- —- 2.50
Query 21.00 0.00 0.00 0.00 1.00
SEV-1 36.71 —- —- —- —-
SEV-F 36.71 —- —- —- —-
SEV-C 28.02 —- —- —- —-
SEV-T 22.50 —- —- —- —-
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NeurIPS Paper Checklist837

The checklist is designed to encourage best practices for responsible machine learning research,838

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove839

the checklist: The papers not including the checklist will be desk rejected. The checklist should840

follow the references and precede the (optional) supplemental material. The checklist does NOT841

count towards the page limit.842

Please read the checklist guidelines carefully for information on how to answer these questions. For843

each question in the checklist:844

• You should answer [Yes] , [No] , or [NA] .845

• [NA] means either that the question is Not Applicable for that particular paper or the846

relevant information is Not Available.847

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).848

The checklist answers are an integral part of your paper submission. They are visible to the849

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it850

(after eventual revisions) with the final version of your paper, and its final version will be published851

with the paper.852

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.853

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a854

proper justification is given (e.g., "error bars are not reported because it would be too computationally855

expensive" or "we were unable to find the license for the dataset we used"). In general, answering856

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we857

acknowledge that the true answer is often more nuanced, so please just use your best judgment and858

write a justification to elaborate. All supporting evidence can appear either in the main paper or the859

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification860

please point to the section(s) where related material for the question can be found.861

1. Claims862

Question: Do the main claims made in the abstract and introduction accurately reflect the863

paper’s contributions and scope?864

Answer: [Yes]865

Justification: Our motivation and claims are made within the abstract. We have provided866

experimental and theoretical results for cluster-based SEV, and its variants, and propose867

algorithm for improving the decision sparsity.868

Guidelines:869

• The answer NA means that the abstract and introduction do not include the claims870

made in the paper.871

• The abstract and/or introduction should clearly state the claims made, including the872

contributions made in the paper and important assumptions and limitations. A No or873

NA answer to this question will not be perceived well by the reviewers.874

• The claims made should match theoretical and experimental results, and reflect how875

much the results can be expected to generalize to other settings.876

• It is fine to include aspirational goals as motivation as long as it is clear that these goals877

are not attained by the paper.878

2. Limitations879

Question: Does the paper discuss the limitations of the work performed by the authors?880

Answer: [Yes]881

Justification: Yes, we have discuss the limitation of the work in the conclusion section.882

Guidelines:883

• The answer NA means that the paper has no limitation while the answer No means that884

the paper has limitations, but those are not discussed in the paper.885
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• The authors are encouraged to create a separate "Limitations" section in their paper.886

• The paper should point out any strong assumptions and how robust the results are to887

violations of these assumptions (e.g., independence assumptions, noiseless settings,888

model well-specification, asymptotic approximations only holding locally). The authors889

should reflect on how these assumptions might be violated in practice and what the890

implications would be.891

• The authors should reflect on the scope of the claims made, e.g., if the approach was892

only tested on a few datasets or with a few runs. In general, empirical results often893

depend on implicit assumptions, which should be articulated.894

• The authors should reflect on the factors that influence the performance of the approach.895

For example, a facial recognition algorithm may perform poorly when image resolution896

is low or images are taken in low lighting. Or a speech-to-text system might not be897

used reliably to provide closed captions for online lectures because it fails to handle898

technical jargon.899

• The authors should discuss the computational efficiency of the proposed algorithms900

and how they scale with dataset size.901

• If applicable, the authors should discuss possible limitations of their approach to902

address problems of privacy and fairness.903

• While the authors might fear that complete honesty about limitations might be used by904

reviewers as grounds for rejection, a worse outcome might be that reviewers discover905

limitations that aren’t acknowledged in the paper. The authors should use their best906

judgment and recognize that individual actions in favor of transparency play an impor-907

tant role in developing norms that preserve the integrity of the community. Reviewers908

will be specifically instructed to not penalize honesty concerning limitations.909

3. Theory Assumptions and Proofs910

Question: For each theoretical result, does the paper provide the full set of assumptions and911

a complete (and correct) proof?912

Answer: [Yes]913

Justification: We have provided the theorem mostly for the tree-based SEV in the Section914

4.2, and the corresponding proofs are shown in Appendix L and Appendix M.915

Guidelines:916

• The answer NA means that the paper does not include theoretical results.917

• All the theorems, formulas, and proofs in the paper should be numbered and cross-918

referenced.919

• All assumptions should be clearly stated or referenced in the statement of any theorems.920

• The proofs can either appear in the main paper or the supplemental material, but if921

they appear in the supplemental material, the authors are encouraged to provide a short922

proof sketch to provide intuition.923

• Inversely, any informal proof provided in the core of the paper should be complemented924

by formal proofs provided in appendix or supplemental material.925

• Theorems and Lemmas that the proof relies upon should be properly referenced.926

4. Experimental Result Reproducibility927

Question: Does the paper fully disclose all the information needed to reproduce the main ex-928

perimental results of the paper to the extent that it affects the main claims and/or conclusions929

of the paper (regardless of whether the code and data are provided or not)?930

Answer: [Yes]931

Justification: Yes, all the experiment details are mentioned in the Appendix F. The detailed932

training process for the comparison with ExpO is shown in Appendix K.933

Guidelines:934

• The answer NA means that the paper does not include experiments.935

• If the paper includes experiments, a No answer to this question will not be perceived936

well by the reviewers: Making the paper reproducible is important, regardless of937

whether the code and data are provided or not.938
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• If the contribution is a dataset and/or model, the authors should describe the steps taken939

to make their results reproducible or verifiable.940

• Depending on the contribution, reproducibility can be accomplished in various ways.941

For example, if the contribution is a novel architecture, describing the architecture fully942

might suffice, or if the contribution is a specific model and empirical evaluation, it may943

be necessary to either make it possible for others to replicate the model with the same944

dataset, or provide access to the model. In general. releasing code and data is often945

one good way to accomplish this, but reproducibility can also be provided via detailed946

instructions for how to replicate the results, access to a hosted model (e.g., in the case947

of a large language model), releasing of a model checkpoint, or other means that are948

appropriate to the research performed.949

• While NeurIPS does not require releasing code, the conference does require all submis-950

sions to provide some reasonable avenue for reproducibility, which may depend on the951

nature of the contribution. For example952

(a) If the contribution is primarily a new algorithm, the paper should make it clear how953

to reproduce that algorithm.954

(b) If the contribution is primarily a new model architecture, the paper should describe955

the architecture clearly and fully.956

(c) If the contribution is a new model (e.g., a large language model), then there should957

either be a way to access this model for reproducing the results or a way to reproduce958

the model (e.g., with an open-source dataset or instructions for how to construct959

the dataset).960

(d) We recognize that reproducibility may be tricky in some cases, in which case961

authors are welcome to describe the particular way they provide for reproducibility.962

In the case of closed-source models, it may be that access to the model is limited in963

some way (e.g., to registered users), but it should be possible for other researchers964

to have some path to reproducing or verifying the results.965

5. Open access to data and code966

Question: Does the paper provide open access to the data and code, with sufficient instruc-967

tions to faithfully reproduce the main experimental results, as described in supplemental968

material?969

Answer: [Yes]970

Justification: Yes, we have provided the code for training, and evaluation in the Experiment971

folder, and the script for running in Script folder.972

Guidelines:973

• The answer NA means that paper does not include experiments requiring code.974

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/975

public/guides/CodeSubmissionPolicy) for more details.976

• While we encourage the release of code and data, we understand that this might not be977

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not978

including code, unless this is central to the contribution (e.g., for a new open-source979

benchmark).980

• The instructions should contain the exact command and environment needed to run to981

reproduce the results. See the NeurIPS code and data submission guidelines (https:982

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.983

• The authors should provide instructions on data access and preparation, including how984

to access the raw data, preprocessed data, intermediate data, and generated data, etc.985

• The authors should provide scripts to reproduce all experimental results for the new986

proposed method and baselines. If only a subset of experiments are reproducible, they987

should state which ones are omitted from the script and why.988

• At submission time, to preserve anonymity, the authors should release anonymized989

versions (if applicable).990

• Providing as much information as possible in supplemental material (appended to the991

paper) is recommended, but including URLs to data and code is permitted.992

6. Experimental Setting/Details993
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-994

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the995

results?996

Answer: [Yes]997

Justification: Yes, we have already mentioned them in the Section F.998

Guidelines:999

• The answer NA means that the paper does not include experiments.1000

• The experimental setting should be presented in the core of the paper to a level of detail1001

that is necessary to appreciate the results and make sense of them.1002

• The full details can be provided either with the code, in appendix, or as supplemental1003

material.1004

7. Experiment Statistical Significance1005

Question: Does the paper report error bars suitably and correctly defined or other appropriate1006

information about the statistical significance of the experiments?1007

Answer: [Yes]1008

Justification: Yes, all the training data has been run for 10 times, which is mentioned in1009

Section F, and all the results are calculated for error bars.1010

Guidelines:1011

• The answer NA means that the paper does not include experiments.1012

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1013

dence intervals, or statistical significance tests, at least for the experiments that support1014

the main claims of the paper.1015

• The factors of variability that the error bars are capturing should be clearly stated (for1016

example, train/test split, initialization, random drawing of some parameter, or overall1017

run with given experimental conditions).1018

• The method for calculating the error bars should be explained (closed form formula,1019

call to a library function, bootstrap, etc.)1020

• The assumptions made should be given (e.g., Normally distributed errors).1021

• It should be clear whether the error bar is the standard deviation or the standard error1022

of the mean.1023

• It is OK to report 1-sigma error bars, but one should state it. The authors should1024

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1025

of Normality of errors is not verified.1026

• For asymmetric distributions, the authors should be careful not to show in tables or1027

figures symmetric error bars that would yield results that are out of range (e.g. negative1028

error rates).1029

• If error bars are reported in tables or plots, The authors should explain in the text how1030

they were calculated and reference the corresponding figures or tables in the text.1031

8. Experiments Compute Resources1032

Question: For each experiment, does the paper provide sufficient information on the com-1033

puter resources (type of compute workers, memory, time of execution) needed to reproduce1034

the experiments?1035

Answer: [Yes]1036

Justification: Yes, we have error bars for the time execution for each methods and the GPU1037

and CPU details in Appendix F.1038

Guidelines:1039

• The answer NA means that the paper does not include experiments.1040

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1041

or cloud provider, including relevant memory and storage.1042

• The paper should provide the amount of compute required for each of the individual1043

experimental runs as well as estimate the total compute.1044
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• The paper should disclose whether the full research project required more compute1045

than the experiments reported in the paper (e.g., preliminary or failed experiments that1046

didn’t make it into the paper).1047

9. Code Of Ethics1048

Question: Does the research conducted in the paper conform, in every respect, with the1049

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1050

Answer: [Yes]1051

Justification: Yes, the paper conforms, in every respect, with the NeurIPS Code of Ethics1052

https://neurips.cc/public/EthicsGuidelines1053

Guidelines:1054

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1055

• If the authors answer No, they should explain the special circumstances that require a1056

deviation from the Code of Ethics.1057

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1058

eration due to laws or regulations in their jurisdiction).1059

10. Broader Impacts1060

Question: Does the paper discuss both potential positive societal impacts and negative1061

societal impacts of the work performed?1062

Answer: [Yes]1063

Justification: Yes, we have mentioned the social impact in the conclusion. Our method has1064

impact in that it provides sparser explanations for those subjected to decisions made by1065

models, including in finance and criminal justice.1066

Guidelines:1067

• The answer NA means that there is no societal impact of the work performed.1068

• If the authors answer NA or No, they should explain why their work has no societal1069

impact or why the paper does not address societal impact.1070

• Examples of negative societal impacts include potential malicious or unintended uses1071

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1072

(e.g., deployment of technologies that could make decisions that unfairly impact specific1073

groups), privacy considerations, and security considerations.1074

• The conference expects that many papers will be foundational research and not tied1075

to particular applications, let alone deployments. However, if there is a direct path to1076

any negative applications, the authors should point it out. For example, it is legitimate1077

to point out that an improvement in the quality of generative models could be used to1078

generate deepfakes for disinformation. On the other hand, it is not needed to point out1079

that a generic algorithm for optimizing neural networks could enable people to train1080

models that generate Deepfakes faster.1081

• The authors should consider possible harms that could arise when the technology is1082

being used as intended and functioning correctly, harms that could arise when the1083

technology is being used as intended but gives incorrect results, and harms following1084

from (intentional or unintentional) misuse of the technology.1085

• If there are negative societal impacts, the authors could also discuss possible mitigation1086

strategies (e.g., gated release of models, providing defenses in addition to attacks,1087

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1088

feedback over time, improving the efficiency and accessibility of ML).1089

11. Safeguards1090

Question: Does the paper describe safeguards that have been put in place for responsible1091

release of data or models that have a high risk for misuse (e.g., pretrained language models,1092

image generators, or scraped datasets)?1093

Answer: [NA]1094

Justification: Our paper doesn’t release models that have the potential to cause harm like1095

image generators or language models.1096
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Guidelines:1097

• The answer NA means that the paper poses no such risks.1098

• Released models that have a high risk for misuse or dual-use should be released with1099

necessary safeguards to allow for controlled use of the model, for example by requiring1100

that users adhere to usage guidelines or restrictions to access the model or implementing1101

safety filters.1102

• Datasets that have been scraped from the Internet could pose safety risks. The authors1103

should describe how they avoided releasing unsafe images.1104

• We recognize that providing effective safeguards is challenging, and many papers do1105

not require this, but we encourage authors to take this into account and make a best1106

faith effort.1107

12. Licenses for existing assets1108

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1109

the paper, properly credited and are the license and terms of use explicitly mentioned and1110

properly respected?1111

Answer: [Yes]1112

Justification: Yes, we have well cited the packages.1113

Guidelines:1114

• The answer NA means that the paper does not use existing assets.1115

• The authors should cite the original paper that produced the code package or dataset.1116

• The authors should state which version of the asset is used and, if possible, include a1117

URL.1118

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1119

• For scraped data from a particular source (e.g., website), the copyright and terms of1120

service of that source should be provided.1121

• If assets are released, the license, copyright information, and terms of use in the1122

package should be provided. For popular datasets, paperswithcode.com/datasets1123

has curated licenses for some datasets. Their licensing guide can help determine the1124

license of a dataset.1125

• For existing datasets that are re-packaged, both the original license and the license of1126

the derived asset (if it has changed) should be provided.1127

• If this information is not available online, the authors are encouraged to reach out to1128

the asset’s creators.1129

13. New Assets1130

Question: Are new assets introduced in the paper well documented and is the documentation1131

provided alongside the assets?1132

Answer: [Yes]1133

Justification:The paper provides code.1134

Guidelines:1135

• The answer NA means that the paper does not release new assets.1136

• Researchers should communicate the details of the dataset/code/model as part of their1137

submissions via structured templates. This includes details about training, license,1138

limitations, etc.1139

• The paper should discuss whether and how consent was obtained from people whose1140

asset is used.1141

• At submission time, remember to anonymize your assets (if applicable). You can either1142

create an anonymized URL or include an anonymized zip file.1143

14. Crowdsourcing and Research with Human Subjects1144

Question: For crowdsourcing experiments and research with human subjects, does the paper1145

include the full text of instructions given to participants and screenshots, if applicable, as1146

well as details about compensation (if any)?1147
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Answer: [NA]1148

Justification: The paper does not involve crowdsourcing nor research with human subjects.1149

Guidelines:1150

• The answer NA means that the paper does not involve crowdsourcing nor research with1151

human subjects.1152

• Including this information in the supplemental material is fine, but if the main contribu-1153

tion of the paper involves human subjects, then as much detail as possible should be1154

included in the main paper.1155

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1156

or other labor should be paid at least the minimum wage in the country of the data1157

collector.1158

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1159

Subjects1160

Question: Does the paper describe potential risks incurred by study participants, whether1161

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1162

approvals (or an equivalent approval/review based on the requirements of your country or1163

institution) were obtained?1164

Answer: [NA]1165

Justification: The paper does not involve crowdsourcing nor research with human subjects.1166

Guidelines:1167

• The answer NA means that the paper does not involve crowdsourcing nor research with1168

human subjects.1169

• Depending on the country in which research is conducted, IRB approval (or equivalent)1170

may be required for any human subjects research. If you obtained IRB approval, you1171

should clearly state this in the paper.1172

• We recognize that the procedures for this may vary significantly between institutions1173

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1174

guidelines for their institution.1175

• For initial submissions, do not include any information that would break anonymity (if1176

applicable), such as the institution conducting the review.1177
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