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A Assumption (ID) and Evaluation (OOD) Mismatch Examples

To illustrate the mismatch between meta-learning theory/methodology and evaluation (Section 2),
below are some examples of works that motivate commonly-used meta-learning methods in the
in-distribution setting, but largely evaluate empirical performance on OOD FSL benchmarks. For
convenience, we provide exact lines from the original works that refer to the ID scenario. Our aim is
not to draw attention to these works specifically, but to highlight the ubiquity of the divide between
theory and practice in current meta-learning literature.

• Lee et al. [25] (Section 3.1): “It is often assumed that the training and test set are sampled
from the same distribution and the domain is mapped to a feature space using an embedding
model fϕ parameterized by ϕ ”.

• Rajeswaran et al. [31] (Section 2.1): “... a collection of meta-training tasks {Ti}Mi=1 drawn
from P (T ) ... At meta-test (deployment) time, when presented with a dataset Dtr

j corresponding
to a new task Tj ∼ P (T ).” Notice that the training and test tasks are all sampled from the same
task distribution P (T ).

• Finn et al. [16] (Section 3): “To do so, meta-learning algorithms require a set of meta-training
and meta-testing tasks drawn from some distribution p(T ). The key assumption of learning-
to-learn is that the tasks in this distribution share common ... ”.

B Formal Analysis on Why Current FSL Benchmarks Are OOD

In this section we provide formal arguments for the informal statements in Section 3, which explain
why it is improbable for the train and test tasks in the current FSL benchmarks to be iid sampled from
the same underlying distribution.

Formal Setup. If we believe that both train and test tasks in current FSL benchmarks are sampled
from the same underlying task distribution, then this shared task distribution (where each task is
specified by a class tuple) must cover a larger set of underlying classes CL which would contain both
the base classes and novel classes as subsets CL ⊇ (CB ∪ CN ). For convenience, we represent the
classes in this set with CL := {1, . . . , L} where the task distribution (from which the train and test
tasks are iid sampled) is induced by a probabilistic distribution over n−way non-repeating tuples
c := (c1, . . . , cn) ∈ [Cn

L], denoted by PL(c). To sample a task from this larger task distribution, we
sample c ∼ PL and take the corresponding task Tc. Notice that this task distribution can be more
general than PCN

or PCB
, as PL(c) does not have to be a uniform distribution over all possible class

tuples.
Definition 1 (Probability of observing a class in a single draw). The indicator event of observing a
class i anywhere in a randomly drawn class tuple c ∼ PL can be represented by

∑n
j=1 1(cj = i),

since it is impossible to observe the same class more than once in the same tuple. We denote the
probability of this event by pi := P

((∑n
j=1 1(cj = i)

)
= 1
)

=
∑n

j=1 P(1(cj = i) = 1) =∑n
j=1 P(cj = i).

Lemma 1. The sum of the probability of observing a class i in a single class tuple draw over all the
classes i ∈ CL is equal to n, i.e.,

∑L
i=1 pi = n.
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Proof of Lemma 1. We know that
∑L

i=1 pi =
∑L

i=1

∑n
j=1 P(cj = i) by simply plugging in the

definition of pi. Since
∑L

i=1 P(cj = i) = 1, by exchanging the summations we get,
∑L

i=1 pi =∑n
j=1

∑L
i=1 P(cj = i) =

∑n
j=1[1] = n.

Assumption 1 (Every class must have nonzero probability to be sampled). To avoid degeneracy,
we assume that each class has a minimum non-zero probability of being sampled in a class tuple:
∀i ∈ {1, . . . , L}, 1 ≥ pi ≥ γn

L , where γ ∈ (0, 1]. Notice γ is strictly greater than 0 to avoid the
degenerate case where a class would almost surely never be sampled in any class tuple. If there exists
such a class, then we can prune the set CL accordingly and use the pruned set (which now has every
class with nonzero probability) as our new CL.

Remark. Note that the task distribution induced by the probability values {pi}Li=1 in Assumption 1
is a relaxed form of the uniform distribution Unif({Tc := c ∈ [Cn

L]}) over all non-repeating class
tuples spawned by CL. This case can be recovered by setting pi =

n
L , ∀i ∈ [L].

Suppose there are N total iid random draws {c(k)}Nk=1 of class tuples from PL (every c(k) ∈ [Cn
L]),

then the event of observing a class i in any of these N class tuple draws is exactly the complement of
the event that the class does not appear in any of these tuples.

Definition 2 (Observing a class at least once in N draws). We denote the indicator random variable
of observing a class i in any of the N draws by

Xi,N := 1− 1

((
N∑

k=1

1(i ∈ c(k))

)
= 0

)
∈ {0, 1}. (1)

Then we have E[Xi,N ] = P(Xi,N = 1) = 1−(1−pi)
N . We denote the random variable representing

the total number of unique classes observed in N draws as Z, which can be expressed by

Z =

L∑
i=1

Xi,N . (2)

Remark. We note that the total number of unique classes seen (Z) in N iid draws 1) must have at
least n classes (even after a single class tuple is sampled, there would already be n different classes
seen) and cannot be greater than the total number of classes possible, i.e., Z ∈ [n,L], and 2) cannot
be greater than the total number of (possibly overlapping) classes drawn, i.e., Z ≤ nN .

Lemma 2. For notational convenience, let qi := 1− pi. Then, by Equation (1) and Assumption 1 we
have:

(a) E[Z] = L−
∑L

i=1(1− pi)
N = L−

∑L
i=1 q

N
i , (3)

(b) For {qi}Li=1, 0 ≤ qi ≤ 1− γn
L and

∑L
i=1 qi = L− n. (4)

Now that we have set up the problem formulation, we provide Theorems 1, 2 describing properties of
E[Z] and V[Z] which we will use to analyze the dichotomy described in the main paper (Section 3).

B.1 Lower Bound on E[Z]

To achieve a lower bound of E[Z], we need to analyze the worst case class tuple distribution that
makes the value L −

∑L
i=1 q

N
i as small as possible. This amounts to maximizing the value of∑L

i=1 q
N
i under the constraints for {qi}Li=1 described in Lemma 2. We present an upper bound for

this constrained maximization objective below.
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Theorem 1 (Lower bound on E [Z]). The optimal value of the following constrained optimization
problem in (5) is upper bounded by L

(
1− γn

L

)N
.

max
{qi}L

i=1

L∑
i=1

qNi (5)

subject to 0 ≤ qi ≤ 1− γn

L
, ∀i ∈ [L]

L∑
i=1

qi = L− n

As a result, for Z defined in (2), directly applying (3) we get E[Z] ≥ L
(
1− (1− γn

L )N
)
.

To prove Theorem 1, we first provide a lemma describing the structure of the solution to the
optimization problem in (5).

Lemma 3 (Structure of the optimal solution to (5)). The optimal solution to optimization Objective
(5) has the following form: out of the L variables {qi}Li=1, K of them have value 1− γn

L , (L−K−1)
of them have value 0, and the last remaining variable has the value (L− n)−K(1− γn

L ), which
must still be in the range of

[
0, 1− γn

L

]
. This directly implies that the integer K must be satisfy

L2−nL
L−γn − 1 ≤ K ≤ L2−nL

L−γn .

Proof of Lemma 3. Let us denote the optimal solution to Objective (5) by (q∗1 , . . . , q
∗
n). Suppose that

there exists a pair q∗k, q∗j , k ̸= j, such that neither of them equals 0 or 1 − γn
L . Then by changing

the values of q∗k, q∗j to be either (1− γn
L , q∗k + q∗j − 1 + γn

L ) or (0, q∗k + q∗j ), the new q tuple would
still be feasible while the value of Objective 5 would strictly improve because the function qNk + qNj
is strongly convex over R2

++. (Recall that a convex function over a closed interval can only take
maximum value at either one of its two endpoints.) As a result, there can be no more than a single q∗i
in the optimal solution (q∗1 , . . . , q

∗
L) that has a value of neither 0 nor 1 − γn

L . Now, we denote the
total number of qi’s in the optimal solution that has the value of 1− γn

L by K ∈ Z, then there must
be at least L −K − 1 values of 0, with the remaining term (L − n) −K(1 − γn

L ) ∈
[
0, 1− γn

L

]
.

Manipulating this inequality of K gives us the feasible range of K, L2−nL
L−γn − 1 ≤ K ≤ L2−nL

L−γn .

Proof of Theorem 1. We know from Lemma 3 that the optimal solution to the constrained maximiza-
tion problem in Theorem 1 is given by the optimal solution to the reduced objective below.

max
K∈{0,...,L}

K ·
(
1− γn

L

)N
+
[
L− n−K ·

(
1− γn

L

)]N
(6)

subject to
L2 − nL

L− γn
− 1 ≤ K ≤ L2 − nL

L− γn
(7)

Let the optimal value of K (minimum value if multiple are optimal) in the above optimization
problem be K∗. Then the optimal value of the above is upper bounded by:

K∗ ·
(
1− γn

L

)N
+
[
L− n−K∗ ·

(
1− γn

L

)]N
≤ (K∗ + 1) ·

(
1− γn

L

)N
≤ L ·

(
1− γn

L

)N
As a result, directly applying (3), we have:

E[Z] ≥ L ·
[
1−

(
1− γn

L

)N]
. (8)
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B.2 Upper bound on V[Z]

We apply the Efron-Stein inequality to obtain the upper bound of the variance of Z, which we state
here for convenience.
Lemma 4 (Efron-Stein’s inequality). Let S : YN → R be a measurable function that is permutation
invariant. Let the random variable U be given by U = S(Y1, . . . , YN ), where (Y1, . . . , YN ) is a
random vector of N independent random variables in YN . Then, we have:

V[U ] ≤ 1

2

N∑
i=1

E(U − U ′
i)

2, (9)

where U ′
i = S(Y1, ..., Y

′
i , ..., YN ), and ∀i ∈ [N ], Yi and Y ′

i are drawn iid from the same distribution.

Theorem 2 (Upper bound on V [Z]). For Z defined in (2), the variance V[Z] ≤ 1
2n

2N .

Proof of Theorem 2. By directly applying Lemma 4 on the permutation invariant measurable function
S : [Cn

L]
N → R, where Z = S(c(1), . . . , c(N)) :=

∑L
i=1 Xi,N , we have the variance V[Z] ≤

1
2

∑N
i=1 E(Z − Z ′

i)
2 ≤ 1

2

∑N
i=1 n

2 = 1
2n

2N . Note that the last inequality holds because when we
swap out one observed class tuple c(k) (among the N total) with a different one c(k)

′
(to get Z ′

i), the
total number of unique classes we observe can change by at most n, i.e., |Z − Z ′

i| ≤ n.

Using Theorems 1, 2, we now show that it is extremely unlikely for the commonly used FSL
benchmarks, which have a (relatively) small number of train classes and disjoint train/test classes, to
have their training and test tasks sampled iid from the same underlying task distribution. We break
this analysis into the dichotomy presented in the main paper (Section 3).

B.3 When |CL| is Small (L = O(nN))

Definition 3. Let Ztr be the total number of unique classes observed in Ntr iid drawn train class
tuples (tasks) from PL and similarly let Zte be the total number of unique classes observed in Nte

iid drawn test class tuples (tasks) from PL. Furthermore, denote the set of indices of unique train
classes by Itr := {j : Xj,Ntr = 1, j ∈ [Ntr]} and the set of unique test classes be Ite := {j :
Xj,Nte = 1, j ∈ [Nte]}. Under this notation, the probability of observing disjoint sets of train and
test classes among the Ntr and Nte randomly drawn train and test class tuples can be denoted by
P(Itr ∩ Ite = ϕ).
Theorem 3 (Upper bounding the probability of having disjoint train, test classes). P(Ztr + Zte ≤
L) ≤ 4

(
1− γn

L

)min(Ntr,Nte). As a result, P(Itr ∩ Ite = ϕ) ≤ P(Ztr + Zte ≤ L) ≤
4
(
1− γn

L

)min(Ntr,Nte).

Proof of Theorem 3. Since the random variable L− Ztr ≥ 0, using Markov’s inequality we have:

P
(
Ztr ≤

L

2

)
=P

(
L− Ztr ≥ L− L

2

)
(10)

≤ L− E[Ztr]

(L− L
2 )

≤ 2(L− E[Ztr])

L

≤ 2
(
1− γn

L

)Ntr

. (using Theorem 1) (11)

Similarly, since L− Zte ≥ 0, we have

P
(
Zte ≤

L

2

)
≤ 2

(
1− γn

L

)Nte

. (12)
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Since P (Ztr + Zte ≤ L) ≤ P
((
Ztr ≤ L

2

)
∪
(
Zte ≤ L

2

))
, applying the union bound yields:

P (Zte + Zte ≤ L) ≤ 4
(
1− γn

L

)min(Ntr,Nte)

. (13)

When Ztr + Zte > L, by pigeonhole principle, the two sets of class indices Itr and Ite must
have non-empty intersection, i.e., Itr ∩ Ite ̸= ϕ. Taking the contra-positive of this claim, we see
that Itr ∩ Ite = ϕ implies the event Ztr + Zte ≤ L. As a result, we have P(Itr ∩ Ite = ϕ) ≤
P(Ztr + Zte ≤ L) ≤ 4

(
1− γn

L

)min(Ntr,Nte).

Corollary 1. If enough samples are observed i.e., if min(Ntr, Nte) ≥ ln(4/ρ)L
γn , then the probability

of having no training and test classes intersection is upper bounded by P(Itr ∩ Ite = ϕ) ≤ ρ.

Proof of Corollary 1. By logarithm inequality ln(1 + x) ≥ x
1+x , we have ln(L/(L− γn)) ≥ γn/L.

Taking the reciprocal of the two sides, we have L
γn ≥ 1

ln(L/(L−γn) . As a result, min(Ntr, Nte) ≥
ln(4/ρ)L

γn ≥ ln(4/ρ)
ln(L/(L−γn)) =

ln(ρ/4)
ln(1− γn

L ) = log(1− γn
L )(

ρ
4 ), where the last step uses the change of basis

equality of logarithm. Thus, by min(Ntr, Nte) ≥ log(1− γn
L )(

ρ
4 ), we have

P(Itr ∩ Ite = ϕ)

≤ P(Ztr + Zte ≤ L)

≤ 4
(
1− γn

L

)min(Ntr,Nte)

≤ 4
(
1− γn

L

)log(1− γn
L

)(
ρ
4 )

= 4 · ρ
4

= ρ.

Remark. From Corollary 1, we see that when the number of tasks sampled is larger than a multiple
of the number of underlying classes (for example when ρ = 0.01, γ = 0.5, n = 5, min(Ntr, Nte) ≥
ln(4/ρ)L

γn ≈ 2.39L), and equivalently, L = O(nN), the probability of having no training and test task
classes intersecting is upper bounded by P(Itr ∩ Ite = ϕ) ≤ ρ (in our example, the probability is
upper bounded by ρ = 0.01, which is a statistically rare event). In summary, in this case, we show
that when L ≤ cnN for some small constant c, the probability of having no intersection between the
training and test task classes is extremely small because it is very likely that the training tasks and
test tasks would each cover a majority (≥ 50%) of the entire set of classes.

B.4 When |CL| is Large (L = Ω(nN))

In this alternate case, we analyze the scenario where the underlying set of classes is larger than the
total number of tasks we sampled, for which we make the following assumption:
Assumption 2. L ≥ nN , i.e., even if we observe all the classes in the randomly drawn N tuples to
be distinct, we still would not exhaust the much larger underlying set CL. In this setting, L = Ω(nN).

Corollary 2. By Assumption 2 and the Bernoulli inequality (1 + x)r ≤ 1 + rx
1−(r−1)x , x ∈

(−1, 1
r−1 ), r > 1, substituting x = −γn

L , r = N , we can further lower bound the RHS of Equation (8)
in Theorem 1:

E[Z] ≥ γnN

(1 + γ)
(14)

Theorem 4 (Unlikely to observe only a small number of unique classes). For η ∈ (0, 1), the
probability of observing totally fewer than ηγnN

1+γ classes in N iid class tuple samples from PL is at

most (1+γ)2

2(1−η)2γ2N .
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Proof.

P
(
Z ≤ ηγnN

(1 + γ)

)
(15)

≤P(Z ≤ η E[Z])

= P(Z ≤ E[Z]− (1− η)E[Z])

≤ P(|Z − E[Z]| ≥ (1− η)E[Z])

≤ V[Z]

((1− η)E[Z])2
(by Chebyshev’s inequality)

≤
1
2n

2N

(1− η)2 E[Z]2
(using Theorem 2)

≤
1
2n

2N

(1− η)2
(

γnN
(1+γ)

)2 (using Corollary 2)

=
(1 + γ)2

2(1− η)2γ2N
(16)

In summary, in this case, when L ≥ nN , the probability of observing only a small fraction of nN
classes in N tuple draws, scales with 1/N . Because in practice a very large number of training tasks
are used (N ≥ 105), the probability of only observing fewer than hundreds of classes (Z ≤ 103)
in N class tuple samples would be extremely small. This means that we shouldn’t treat the large
number of tasks used during meta-training as being sampled iid from an underlying task distribution
under the assumption that the number of task samples hasn’t exceeded the total number of underlying
classes.

B.5 Concluding Remarks

In the first part of the dichotomy, we show using Theorem 3 that when the number of underlying
classes is smaller than nN , it is highly unlikely for the train and test classes to be completely disjoint.

In the second part of the dichotomy, we show using Theorem 4 that when the number of underlying
classes is larger than nN , it is unlikely to observe only a few (very small fraction of nN ) unique train
classes — in fact the number of unique train classes observed would roughly speaking scale linearly
with the number of task samples N .

Conclusion on why current FSL benchmarks target OOD. Note that in current FSL benchmarks i)
there is no overlap of classes observed in the train and test tasks; and ii) the number of train (base)
classes observed (e.g., 64 for mini) is much smaller than the total number of train tasks (e.g., ≈ 106

for mini). Thus, the two sides of the dichotomy (above) when taken together leads us to reject the
hypothesis/assumption of iid sampled train and test tasks in the current FSL benchmarks.
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C Overview of Notations for (S,Q) Sampling in ID and OOD Benchmarks

Table 2: An overview of the notations used to describe each of the two steps: i) sampling the task from the
training/test task distribution, and ii) sampling (S,Q) pair from the task; for the OOD benchmarks (mini, cifar,
FC, tiered, Zappos-OOD) and ID benchmarks (FEMNIST, Zappos-ID).

Benchmark / Steps Step 1: T ∼ P(T ) Step 2: (S,Q) ∼ T
mini, cifar, FC, Train TcB

∼ PCB
:= Unif({TcB

: cB ∈ [Cn
B ]}) S,Q ∼ TcB

tiered (OOD) Test TcN
∼ PCN

:= Unif({TcN
: cN ∈ [Cn

N ]}) S,Q ∼ TcN

Zappos-OOD Train Ta ∼ PA(T ) = Unif({Ta : a ∈ [A2])} S,Q ∼ Ta
(OOD) Test Ta′ ∼ PA′(T ) = Unif({Ta′ : a′ ∈ [A′2])} S,Q ∼ Ta′

FEMNIST Train Tid ∼ P(id) S,Q ∼ Tid
(ID) Test Tid ∼ P(id) S,Q ∼ Tid

Zappos-ID Train Ta ∼ PA(T ) = Unif({Ta : a ∈ [A2])} S,Q ∼ Ta
(ID) Test Ta ∼ PA(T ) = Unif({Ta : a ∈ [A2])} S,Q ∼ Ta

D Dataset Preprocessing and Hyperparameter Details

Here we first provide some details on the logic used to construct the ID benchmark Zappos-ID and its
OOD counterpart Zappos-OOD. We then list the set of hyperparameter configurations used to train
the meta-learning methods PN, RR, SVM, FOMAML and the supervised learning baselines MB, SB and
IC on each of the benchmarks in the paper.

D.1 Zappos Preprocessing

Recall that the Zappos dataset is motivated through an online shopping recommendation problem,
where each task is a binary classification of shoe images into an attribute context. Every online user
is represented by such a task, where the user’s preference for shoes is specified by the corresponding
shoe attribute context. We consider a simplified setting where we fix a set of universal shoe attributes
A and each user’s preference is specified exactly by a pair of attributes a = (a1, a2) ∈ A2, a1 ̸= a2.
The Zappos-ID and Zappos-OOD FSL benchmarks we use are derived from the UT Zappos50k
corpus which consists of 50,025 shoe images each annotated with a list of attributes the shoe possess.

Attributes Selection. We limit the subset of attributes we consider to the 78 considered by Ren
et al. [35] (Table 7). Recall that the task distribution we consider is the uniform distribution Ta ∼
PA(T ) = Unif({Ta : a ∈ [A2])} (Table 2) over all non-repeating attribute pairs in A. In order to
ensure that each attribute pair in A has at least 20 shoes carrying both the attributes (feasible pairs),
we only consider the uniform distribution over such feasible attribute pairs. Thus, we reduce the
original set of 78 attributes to 66, since 12 of the attributes where found to be infeasible with every
other attribute in the original set.

Determining A,A′. For the Zappos-ID benchmark we use the set of attributes specified by A (of size
36) to iid sample 1000 (or 50) train and 25000 test tasks. On the other hand, as mentioned in Section 5
we use a disjoint set of attributes A′ (of size 30) to sample 25000 test tasks for Zappos-OOD (see
Table 3 for the exact sets). To determine this partition, we first consider a graph of 66 nodes, where
each node represents an attribute and an undirected edge between a pair of attribute node is weighted
by the number of shoe images (in the corpus) that have both attributes. Using spectral clustering, we
find an approximate min-cut bipartition of this graph. In other words, we partition the entire set of
attributes into two subsets in a way that reduces the number of images which carry pairs of attributes
that are not in the same subset. This graph partition gives us the split of a 36-attribute set (A) and a
30-attribute set (A′).
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Table 3: We show the disjoint set of attributes A,A′ for the Zappos-ID/OOD datasets. For the Zappos-ID dataset
we use the set of attributes in A to iid sample train and test tasks Ta ∼ PA. For the Zappos-OOD dataset the
train tasks are still sampled using A i.e., Ta ∼ PA but the test tasks are sampled using A′ i.e., Ta′ ∼ PA′ .

A

Category.Boots Category.Sandals Closure.Ankle.Strap Closure.Ankle.Wrap
Closure.Buckle Closure.Bungee Closure.Button.Loop Closure.Elastic.Gore
Closure.Pull.on Closure.Sling.Back Closure.Snap Closure.T.Strap
Closure.Toggle Closure.Zipper Gender.Girls Gender.Women
HeelHeight.High.heel HeelHeight.Short.heel Material.Rubber Material.Suede
SubCategory.Ankle SubCategory.Clogs.and.Mules SubCategory.Flats SubCategory.Heel
SubCategory.Heels SubCategory.Knee.High SubCategory.Mid.Calf SubCategory.Over.the.Knee
ToeStyle.Almond ToeStyle.Center Seam ToeStyle.Closed Toe ToeStyle.Open Toe
ToeStyle.Peep Toe ToeStyle.Pointed Toe ToeStyle.Round Toe ToeStyle.Snip Toe

A′

Category.Shoes Category.Slippers Closure.Hook.and.Loop Closure.Lace.up
Closure.Monk.Strap Closure.Slip.On Gender.Boys Gender.Men
Material.Corduroy Material.Silk Material.Wool SubCategory.Boat.Shoes
SubCategory.Crib.Shoes SubCategory.Firstwalker SubCategory.Loafers SubCategory.Oxfords
SubCategory.Prewalker SubCategory.Slipper.Flats SubCategory.Sneakers.and.Athletic.Shoes ToeStyle.Algonquin
ToeStyle.Apron Toe ToeStyle.Bicycle Toe ToeStyle.Bump Toe ToeStyle.Capped Toe
ToeStyle.Medallion ToeStyle.Moc Toe ToeStyle.Snub Toe ToeStyle.Square Toe
ToeStyle.Wide Toe Box ToeStyle.Wingtip

D.2 Hyperparameter settings

For all the experiments performed in our paper, we have run grid search to tune both the meta-
learning method-specific hyperparameters and the optimization hyperparameters for each meta-
learning method. For the existing OOD FSL benchmarks, we found that the best hyperparameters are
often the same as what was reported in the original paper. Additionally, the absolute performance
and performance orders we report on OOD FSL benchmarks match with other works after the
hyperparameter tuning – indicating that we have been fair in representing each meta-learning method
with its best hyperparameter setting. For our newly identified in-distribution benchmarks, we took
care in tuning these hyperparameters for each method to ensure fairness of comparison.

In Table 4 we list the optimization and other algorithm-specific hyperparameters for each meta-
learning method, dataset pair. For optimization hyperparameters, we describe

(a) the total number of epochs (each with 1000 iterations of gradient updates except for FEM-
NIST, Zappos-ID, and Zappos-OOD where each epoch depends on number of training
tasks);

(b) step (staircase) learning rate schedule (lr: e1(r1)− e2(r2)− . . .− en(rn) where ri is the
value of the learning rate and ei is the epoch number at which ri is first set);

(c) the number of tasks in a minibatch to compute one gradient update (task batch size or task
BS);

(d) for all experiments we use SGD optimizer (Nesterov Momentum 0.9).

Other meta-learning method specific hyperparameters: The scale-factor refers to a constant
factor that is multiplied to the logits for each class, before passing them through softmax. In some
cases these are fixed through training, and in others they are learnable. For other method-specific
hyperparameters that we borrow directly from the original paper, we provide the references.

i) During meta-training, we perform the same data augmentation used in Chen et al. [9] for
mini-M and used in Lee et al. [25] for cifar-M, FC-M, tiered-M. For FEMNIST, Zappos-ID
and Zappos-OOD we do not perform any data augmentations.

ii) We use a weight decay of 5e− 4 for all datasets except for FEMNIST for which a weight
decay of 1e− 2 is used to prevent overfitting.

iii) We use the Resnet-12 backbone for all our experiments except for FEMNIST which is
made up of the relatively easier tasks of digit classification. For FEMNIST, we use a four
layer Conv-64 model backbone.

Computational Resources. For all experiments we use (at most) four NVIDIA GEFORCE GTX
1080Ti GPU cards. A single run of PN, RR, SVM, and FOMAML on the mini-M dataset takes ≈ 12
hrs, 48 hrs, 48 hrs, and 72 hrs respectively. For experiments on Zappos and FEMNIST, except for
FOMAML which takes about 24 hrs, all the other experiments take no more than 5 hrs to complete
training.
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Table 4: Hyperparameter details for different algorithms and datasets in Sections 4, 5.

Alg / Dataset Optimization hyperparameters Other hyperparameters

PN/
(mini-M, cifar-M,
tiered-M)

60 Epochs
lr: 0(0.1)-20(6e-3)-40(1.2e-3)-
50(2.4e-4)
task BS: 4(5-way), 1(>5-way)

scale-factor 10
euclidean metric [39]

PN/
FC-M

15 Epochs
lr: 0(0.1)-5(6e-3)
task BS: 4(5-way), 1(>5-way)

scale-factor 10
euclidean metric [39]

(RR, SVM)/
(mini-M, cifar-M,
tiered-M)

60 Epochs
lr: 0(0.1)-20(6e-3)-40(1.2e-3)-
50(2.4e-4)
task BS: 8 (always 5 way)

learnable scale
other as in Lee et al. [25]

(RR, SVM)/
FC-M

30 Epochs
lr: 0(0.1)-20(6e-3)
task BS: 8 (always 5 way)

scale-factor 7
other as in Lee et al. [25]

FOMAML/
(cifar-M, FC-M)

60 Epochs
lr: 0(0.01)-20(6e-3)-40(1.2e-3)
task BS: 4 (always 5 way)

scale-factor 1
inner loop step size: 0.01
inner loop steps: 5 (train), 20 (test)
other as in Finn and Levine [14]

FOMAML/
(mini-M, tiered-M)

70 Epochs
lr: 0(1e-2)-35(1e-3)-65(1e-4)
task BS: 4 (always 5 way)

scale-factor 1
inner loop step size: 0.01
inner loop steps: 5 (train), 20 (test)
other as in Finn and Levine [14]

(PN, RR, SVM,
FOMAML)/
(Zappos-ID,
Zappos-OOD)

60 Epochs
lr: 0(0.1)-30(6e-3)
task BS: 4

PN: scale-factor 10, euclidean metric [39]
RR: learnable scale
SVM: learnable scale
FOMAML: inner loop steps: 5 (train), 20 (test),
other as in Finn and Levine [14]

(PN, RR, SVM, FO-
MAML)/
FEMNIST

100 Epochs
lr: 0(1e-3)-50(1e-4)
task BS: 5

PN: scale-factor 10, euclidean metric [39]
RR: learnable scale
SVM: learnable scale
FOMAML: inner loop steps: 5 (train), 20 (test),
other as in Finn and Levine [14]

(SB, MB)/
(mini-M, cifar-M,
tiered-M, FC-M)

100 Epochs
lr: 0(0.1)-90(1e-2)
batch size: 128

SB, MB: We project features in to unit norm
during meta-train and use euclidean metric with
scale-factor 10 in meta-test [39]
MB only: we further finetune (lr=1e-3) on the
meta-learning objective for additional 30 epochs.

IC/
(cifar-M, mini-M)

100 Epochs
lr: 0(0.1)-90(1e-2)
batch size: 128

Figure 2(b) (cifar-M): For supervised learning
image classification (IC) baseline we collect all
the images belonging to the base classes in ci-
far-M and randomly split them into 80%(train)-
10%(val)-10%(test). The val and test rankings
used for computing the Kendall coefficient (ρ)
are obtained using the val and test splits.
Figure 3(b) (mini-M): The supervised learning
IC baseline is trained on 600 train images from
each base class in mini-M. After training is com-
pleted, we identify two IC models that differ by
ϵ = 0.5% in terms of their generalization perfor-
mance over a test set made up of all the unused
examples (∼ 700) from each base class. To test
the frequency of conclusion flips, for each of
the 100 comparison runs, a random test subset
is sampled from this test set with 100 examples
sampled from each class. The chosen IC model
pair is then evaluated over this test subset and
their performance difference is recorded for this
comparison run.
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E Additional Results on Evaluating ID Performance

In this section, we first present additional results on the choice of a different meta-learning method
or the usage of a different (S,Q) sampling strategy (FIX-ML) for the same meta-learning method
can lead to improvements in OOD performance at the cost of ID performance. Then, we show how
reducing the number of training tasks is unlikely to change the performance order of meta-learning
methods in the ID benchmark Zappos-ID — even though by reducing the number of training tasks,
the number of unseen attribute pairs at test time increases. Finally, we present additional results how
the degree of train/test task distribution mismatch can impact the performance order of meta-learning
methods.

E.1 Additional results on ID/OOD Performance Tradeoffs

In the main text (Section 4, Figure 1), we have compared the BaseGen and NovelGen performance of
the best validation snapshots from different meta-learning methods (PN, SVM, RR, FOMAML) and
supervised trained baselines (SB, MB) on the mini-M and tiered-M datasets. Here, we show how the
performance order of the same set of methods can also flip in the ID (BaseGen) and OOD (NovelGen)
settings on two additional datasets: cifar-M and FC-M (Figure 4(a),(b)). Additionally, in the main
text, we have shown how switching the choice of the (S,Q) sampling strategy to one with fixed
support sets (FIX-ML Setlur et al. [38]) can also lead to improvements in the OOD performance at the
cost of ID performance on the cifar-M dataset. In Figure 4(c),(d) we provide further evidence of this
performance tradeoff on two more datasets mini-M and FC-M.
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Figure 4: BaseGen and NovelGen performance tradeoff (for best validation snapshots): over the choice of a set
of four meta-learning and two supervised pre-training methods on cifar-M (a) and FC-M (b); over the use of
FIX-ML (S,Q) generation strategy or not (ML) with SVM, RR and PN on mini-M in (c) and FC-M in (d).

E.2 In-distribution Performance with Reduced Number of Training Tasks

Now we analyze the impact of the number of training tasks on the performance order of meta-learning
methods in ID scenario. For the 2w5s results on the Zappos-ID dataset in Table 1 we used 1000 (or
50) training tasks and 25000 test tasks. Here, we also consider using 250 training tasks (while still
using the same number of test tasks). As we have discussed in Section 4, it is possible to encounter
unseen classes (attribute pairs in the case of Zappos) at test time even while evaluating a meta-learning
method in the ID scenario. When we reduce the number of training tasks, we observe more unseen
attribute pairs at test time. For 250 train tasks we observe 153 and for 50 train tasks we observe 269
unseen attribute pairs at test time.

Table 5: We analyze the 2w5s performance order of PN, SVM, RR and FOMAML on the Zappos-ID dataset with
reduced number (50, 250) of train tasks and compare the performance order (ranking in parentheses) observed
with the larger set of 1000 train tasks.

Methods / # Train tasks 50 250 1000
PN (1)77.67± 0.17% (1)81.67± 0.16% (1)86.58± 0.15%

Ridge (2)74.75± 0.16% (2)80.84± 0.15% (2)85.56± 0.16%

SVM (3)74.06± 0.17% (3)80.15± 0.17% (3)85.12± 0.16%

FO-MAML (4)69.85± 0.18% (4)73.20± 0.16% (4)80.14± 0.15%
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In Table 5 we can see that even with reduced training tasks and more unseen attribute pairs at test
time the performance order of PN, RR, SVM and FOMAML is retained. Note that the same order is
observed on the other ID benchmark FEMNIST. This also matches the BaseGen performance order
obtained after doing ID evaluations on modified FSL benchmarks. This result further confirms that
the performance evaluations done on ID datasets are much more consistent than OOD datasets.

E.3 Degree of Mismatch between Train (PCB
) and Test (PCN

) Distributions

In Section 4 we notice that the performance order of meta-learning methods in the ID scenario
(Zappos-ID) is quite different from that of the OOD FSL benchmarks (e.g., mini). We believe this is
mainly because of the OOD nature of FSL benchmarks, which we also proof formally in Appendix B.
Moreover, since the type/degree of the mismatch between training and test distributions can vary
for different FSL benchmarks, the performance order of popular methods is not as consistent as we
would like them to be on these OOD benchmarks (see Section 5.2).

Range of test task distributions. To further analyze the impact of the degree of distribution mismatch
on the performance order, for each FSL benchmark we construct a range of new task distributions
that are increasingly dissimilar to the train task distribution PCB

and similar to the test task
distribution PCN

. We denote this set of task distributions as {PBN(λ), λ ∈ [0, 1]}. When sampling
an n-way task from PBN(λ), instead of performing the first step of sampling outlined in Table 2,
we sample the class tuple c = (c1, . . . , cn) ∈ [(CB ∪ CN )n] where ci’s are sequentially sampled
non-repeatedly from CN uniformly with probability λ and from CB with probability 1 − λ. The
second step of sampling (S,Q) from the task distribution Tc is done in the usual way. It is clear that
PBN(0) = PCB

and PBN(1) = PCN
. In addition, when λ = |CN |/(|CN | + |CB |), PBN(λ) = PCB∪CN

which describes a continual learning setting where the evaluation task is made up of classes uniformly
sampled from the union of base and novel classes. Notice that the task distribution PBN(λ) is not the
same as the mixture distribution λ · PCN

+(1− λ) · PCB
because a single task from PBN(λ) can have

both classes from CN and CB . With this set of new task distributions defined, we evaluate our learned
algorithm snapshot for each meta-learning method not only over the training (PCB

) and the test (PCN
)

task distribution but also over distributions from this interpolation set. We plot the performances in
Figure 5.
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Figure 5: Comparison of PN, SVM, RR, FOMAML, SB and MB’s performance (best validation snapshots) on the
set of distributions {PBN(λ)} for (a) mini-M, (b) tiered-M, (c) cifar-M, and (d) FC-M datasets.

Performance order depends on degree of mismatch. In Figure 5 we first notice that the performance
drops in a monotonically non-increasing way as λ increases for each dataset/method combination.
More importantly, we note that the performance order of the methods depends on the degree of
mismatch. If the test task distribution is very similar to the train task distribution, then the performance
order is mostly retained as the ID performance order (e.g., for λ ≤ 0.2 in Figure 5(a)). Also in most
cases the lines don’t cross each other more than once, which indicates that if the degree of mismatch
crosses a certain threshold then it is unlikely for the performance order to switch again for a given
pair of methods. However, without seeing any test tasks during meta-training, it is difficult to know
the degree of training and test task distribution mismatch, which makes it more difficult to predict
when a given method will start performing better/worse. For example, the performance order changes
at a lower value of λ for mini and cifar, as compared to tiered.

F Additional Discussion and Results on OOD Evaluation

F.1 Simplified Example of Snapshot Selection and Hyperparameter Selection

To further explain our existing definition of hyperparameter and snapshot selection in Section 5.1,
we accompany our original definitions with a concrete simplified scenario: suppose we want to train
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Prototypical Network (PN) with two hyperparameter configs: training with learning rate 1e-3 vs. with
learning rate 1e-4 (with all other hyperparameters the same).

[Snapshot Selection] Training under each hyperparameter config would generate a sequence of
algorithm snapshots (most often with one snapshot saved after each training epoch). The term
snapshot selection refers to the procedure of choosing one snapshot from each hyperparameter
config: one from the 1e-3 learning-rate optimized PN algorithm snapshot trajectory, and one from the
1e-4 learning-rate optimized PN algorithm snapshot trajectory. There can be multiple strategies for
snapshot selection, for example, picking 1) the last snapshot at the end of training; 2) the snapshot
that has the lowest training loss; 3) the snapshot that has the best BaseGen performance; or 4) the
snapshot that has the best ValGen performance.

[Hyperparameter Selection] Once an algorithm snapshot is chosen for each considered hyperparam-
eter config, we need to decide which hyperparameter config’s (lr 1e-3 or lr 1e-4) selected snapshot to
choose to be evaluated on the test task distribution with its performance recorded as the meta-learning
method PN’s performance. The procedure of deciding which hyperparameter config’s snapshot to
choose is called the hyperparameter selection problem. Similar to snapshot selection, there can be
multiple strategies for hyperparameter selection: e.g., choosing the hyperparameter config whose
selected snapshot has the best BaseGen or the best ValGen performance.

F.2 Distinction between Snapshot Selection and Early Stopping

Early stopping is not the same as what we mean by snapshot selection in our paper. In standard
supervised learning, early stopping involves keeping track of the performance over an iid validation
dataset and stopping training after the validation performance starts to consistently deteriorate. It
mainly serves as an approach to avoid overfitting and to save unnecessary computations if one believes
further training would never improve the test performance. In terms of deciding which snapshot
to choose, early stopping is often equivalent to the strategy of selecting the snapshot that has the
highest validation accuracy. In contrast, in our paper, the term snapshot selection refers to the general
problem of deciding which snapshot to select for a given training run, as opposed to a specific
choice of selection strategy. As we have explained in Section 5.1.1, the strategy of picking the
snapshot with the best meta-validation performance (early stopping) might not be the best strategy in
the OOD scenario. There exist other snapshot selection strategies (different from early stopping),
such as picking the snapshot with the lowest training loss or the best BaseGen performance.

F.3 Differences in NovelGen Performance When Using Best BaseGen vs. ValGen for Snapshot
Selection

In Section 5.1 we compare different model selection strategies in the out-of-distribution scenario
where we show that in some cases BaseGen performance can track NovelGen (Figure 2(c)) while in
other cases the ValGen performance may be better correlated with NovelGen (Figure 2(d)). In Table 6
we present NovelGen (test) performance results on two different datasets when the snapshot is chosen
using the best BaseGen snapshot (row 1) vs the best ValGen snapshot (row 2), and compare them
against the best possible NovelGen across all snapshots (row 3). Here we notice that there can be a
significant difference in the selected snapshot’s NovelGen performance if we use one selection
strategy instead of another and there isn’t a single snapshot selection strategy that yields the best
results for multiple OOD scenarios.

Table 6: NovelGen performance for i) PN trained on tiered-M; and ii) SVM trained on cifar-M evaluated using
the snapshot chosen with best BaseGen/ValGen/NovelGen performance.

Snapshot selection strategy PN on tiered-M (Figure 2(c)) SVM on cifar-M (Figure 2(d))
Best BaseGen 80.45% 80.49%
Best ValGen 80.05% 82.65%

Best NovelGen 80.45% 82.79%
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F.4 What to Consider While Designing Model Selection and Comparison Strategies for Both
ID and OOD Performance?

In Section 5.1 we discuss in detail the implications of different model selection strategies on the final
NovelGen performance of the selected snapshot specific to current OOD FSL benchmarks. In more
generic settings, it is likely that one may wish to design model selection methods when one cares
about both ID and OOD performance. In such a case we believe that the optimal model selection and
comparison strategy would depend on: i) the final comparison metric; ii) the type of task access for
model selection.

i) Method comparison metric: We first need to define a metric for the final evaluation of a meta-
learning method’s selected algorithm snapshot. One way is to individually evaluate ID and OOD
performance and record it as a 2-tuple. In this case, a meta-learning method is said to outperform
another only if its selected snapshot is better in each component of the 2-tuple. In this case, it is
very possible that there does not exist a meta-learning method that clearly outperforms all others
in this metric as we have seen from Figure 1(a)(b). Another way is to evaluate the performance
on a mixture task distribution, with the training and OOD test distributions weighted by fixed
probability weights (as we do in Appendix E.3). As we have seen in Appendix E.3 (Figure 5),
different probability weighting of the two distributions can result in different conclusions of
which meta-learning method works the best.

ii) Task access during model selection: We also need to specify what type of task samples are
available during model selection. While it is reasonable to assume there are additional fresh iid
samples from the training distribution (e.g. by holdout training set), it depends on the specific
application to know whether there exist task samples from the OOD task distribution. Different
scenarios may arise based on this: i) In federated learning applications, one might be allowed to
evaluate meta-learned algorithm snapshots over a small sample of users (tasks) from the OOD user
population before deployment; or ii) In case one does not have such OOD task samples, a proxy
distribution (e.g. validation task distribution in FSL benchmarks) may still be available and iid
task samples drawn from it could be used for model selection. However, its utility would depend
on how similar it is to the actual OOD distribution and we have seen examples in Figure 2(a) that
using samples from such proxy task distributions might also be suboptimal.

We hope that our work advocates for more discussion and development of model comparison metrics
and selection strategies while taking into these considerations described above.

F.5 Hyperparameter Selection Strategies

In Section 5.1 we discuss the distinction between snapshot selection and hyperparameter selection
and how the former is called as a subroutine while determining the best snapshot to represent a
specific hyperparameter configuration. As snapshot selection is a ubiquitous problem we focus on
analyzing it and exploring alternative strategies (in the context of meta-learning) in the main paper.
Motivated by the work of Gulrajani and Lopez-Paz [18], we now discuss some ways of performing
hyperparameter selection specifically for settings similar to the current FSL benchmarks where the
few-shot classification tasks are determined by a class tuple.

Because the current FSL benchmarks have set aside a specific validation set of classes, it would
appear that using tasks generated by these classes is the only option for hyperparameter selection.
However, as mentioned in [18], there are also other alternatives.

Cross validated hyperparameter selection. Instead of using a single set of validation classes,
one could rely on cross validation. Here, for a given hyperparameter configuration, one can train
multiple times, where each training run is done on tasks generated by a different subset of the training
(base) classes (or the union of base and val classes) and the proxy performance is calculated on tasks
generated by the remaining classes not used in training. Finally, the performance is averaged over all
runs for the given hyperparameter configuration and the hyperparameter with the highest performance
would be chosen.

However, this approach would still require performing snapshot selection for each run, thus it
remains unclear how to best perform snapshot selection in this case. Despite this, cross-validated
hyperparameter evaluation could potentially be more reliable than using a single set of validation
classes for hyperparameter selection (as done on the current FSL benchmarks) but it would also be
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more computationally expensive and we leave further investigation of this hyperparameter selection
approach as future work.

Allowing restricted oracle evaluation over the test task distribution. Instead of completely
forbidding access to the test task distribution, one can allow a limited number of test task distribution
performance evaluations for a given meta-learning method. In this case it becomes the responsibility
of designer of the meta-learning method to decide how to best distribute this fixed number of
evaluations wisely over different hyperparameter and snapshot choices.

F.6 Variance of performance A(CN ) over randomly sampled CN

In Section 5.2 Inconsistency example 1, we have shown how limited number of novel classes in the
evaluation can lead to a high chance of conclusion flips. This high degree of unreliability stems from
the variance of the performance estimator A(CN ) which only uses a subset of the larger underlying
class set CL. In Figure 6 we plot the histogram of the random variable A(CN ) randomized over the
choice of novel classes CN . We notice that the performance standard deviation is 2.49% on mini and
3.1% on tiered. The standard deviation on tiered is higher since the number of underlying classes
|CL| is larger in tiered (= 552). When the variance of the novel accuracy is as high as what we
have observed here, it becomes very hard to clearly determine the better meta-learning method. To
alleviate this, we provide some actionable suggestions like choosing benchmarks with more base
classes during training and more novel classes during evaluation (see Section 5.2).
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Figure 6: Histogram plots (over 100 runs) of the OOD accuracy A(CN ) for (a) a PN trained on mini and
evaluated on random 20 out of 120 novel classes; and (b) a PN trained on 64 tiered base-classes (see Section 5.2)
and evaluated on random 20 out of 552 novel classes.

28


