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A Discussion on Algorithm 1

In this section, we provide a pronounced discussion on Algorithm 1 in maintext by offering more
details on solving adversarial estimation over g and 7, as well as establishing the theoretical con-
vergence guarantee in Theorem A.1. The convergence of the step provides a basis for us to use the
mirror descent for policy updating. The detailed version of Algorithm 1 in maintext is summarized in
Algorithm A.1.

In function approximation settings, the €2, Q, I are often represented by compact parametric functions
in practice, either in linear or non-linear function classes [53]. In the following, we denote these
parameters as 1 and 6 and w corresponding to €2, and Qp, and II,, respectively.

Under this parametric setting, we focus on solving the adversarial loss £°(q, 7, 7, ¢*, A), which can
be expressed as:
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As stated in Algorithm 1, at each iteration, we aim to solve max,, ming £°(gg, 7y, T, ¢*, A), which
forms a saddle-point formulation, and we denote the saddle point as (¢*, 6*) (should depend on 7,
but we omit here for simplifying the notation). At the same time, we denote the population loss as
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In the following, we omit the arguments 7, ¢*, X in the expression for simplicity, and thus using
ﬁo (QQ, T,/,) (A.3)

to denote the population loss for £°(gg, 7y, T, c*, A).

We can observe that the inner minimization problem is relatively easy to solve. In addition to the
closed-form solution as discussed in maintext, the feature mapping class is sufficient for modeling O,
as demonstrated in [8]. The feature mapping class simplifies the optimization, making it efficiently
solvable by various algorithms as discussed in [52]. In contrast, the more challenging aspect is
optimizing 7. Due to its complex structure, it demands a sufficiently flexible non-linear function
approximation class, e.g., deep neural networks, for optimization [18]. Unfortunately, concavity
typically does not hold for non-linear function approximation classes, and thus the outer maximization
of max,, ming £°(gg, 7y) is also affected. As a result, we need to develop a more efficient and
convergent algorithm. Therefore, we regard solving a non-concave maximization problem, conditional
on the solved global optimizer gy := arg miny £°(gg, 7). Under this framework, we first study the
gradients of the objective function with respect to 1. Define £°(7y) = £°(gg, Ty ), then the gradient
of £°(7,) with respect to 1 satisfies
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With the gradients provided in (A.5), we propose a stochastic approximation algorithm to update 7.
At each iteration, we update 7, by solving the proximal mapping [41]:

Projd)(w*a Vy DBeTg) = arginax{ <wa V) - DBe’rg (w*a w)}7 (A6)

where ¢* can be viewed as the current update of the parameter, Dperg4(-, -) denotes the Bregman
divergence as discussed in [45], and V represents the scaled stochastic gradient of the parameter
of interest. In practice, we may consider using the Euclidean distance to reduce the computational
burden. Once g and 7 are solved, we apply mirror descent in terms of the negative entropy DyegEntropy
[4]. That is, given a stochastic gradient direction of m we solve the prox-mapping in each iteration.
Note that, it follows from [41], step 4 in Algorithm 1 (step 13 in Algorithm A.1) has a closed-form
exponential updating rule, particularly with the negative entropy DNegEntropy» a5

7ka('|8) X Tyk—1 eXp(qu(sv ))v

for any s. The detailed version of the proposed optimization algorithm is presented in Algorithm A.1.

Algorithm A.1 Adversarial proximal-mapping algorithm (detailed version)

1: Input observed data Dy.,, = {(s;, ai, s, s;)}"_, and and the initial state s.
2: Initialize the parameters 0(9), )(®) ;) ¢* X ¢, 1%, K and T.

3: Fork=1t0K:

4: Update )*) and (%)

5: Initialize ¢/ = ¢»(*~1) and #° = A~V and n° = 1°.

6: Fort=1tot="1T:

7 Update 0" by solving L£(gg, Typt—1, Tur—1,¢*, A) in (A.1).

8: Decay the stepsize ' of the rate O(t~1/4). N

9: Compute the stochastic gradient with respect to ¢ as V., L°(7y, got) in (A.3).
10: Update 1" by solving: /" = Proj,, ("7, nf%ﬁ’ (Ty,q0t); DBerg) in (AL6).
11: End for

12: Output y)(*) = )7 and §) = 47
13:  Update w* by solving argmax ¢ (¢"(s, ), s,(+|s)) — DNegEntropy (e (+|5), Tor—1(-]5)) .

14: Return the policy 7, which randomly selects a policy from the set {7* }kf(:l.

In the following, we demonstrate that our algorithm is convergent with a sublinear rate even under
non-linear (non-concave) settings regarding solving the steps 6 to 12 in Algorithm A.1. Before we
state our convergence guarantee, we make the following regular assumptions as stated in [64].



Assumption A.1 (Lo-Lipschitz continuity on gradient). For any 7y, € Qy, Ty is differentiable (not
necessarily convex or concave), bounded from below, ||V Ty, (s,a) — VyTy, (s,a)|| < Lo||lyr —
Yal, for any s,a, where Lo < oo is some universal Lipschitz constant and || - || denotes the Euclidean
norm.

Assumption A.l imposes the first-order smoothness condition on the specified function class.
Assumption A.2 (Smooth function class). |gg,(s,a) — go,(s,a)] < Loll6h —
0s||, for any s,a, and qp € Q.

Assumption A.2 holds for a wide range of function approximation classes, including feature mapping
space with smooth basis functions, non-linear approximation classes, DNNs with Leaky ReLLU
activation function, or spectral normalization on ReL.U activation [17].

Assumption A.3. The gradient of function T, (-) evaluated at saddle point 1* is bounded above; i.e.,
V Ty (s, a) < c3 uniformly over (s, a) for some finite and positive constant c3.

Assumption A.3 is a much weaker assumption compared to the bounded variance of stochastic
gradients assumption which is commonly made in the existing literature [44, 37]. In the following,
we derive the convergence rate, which holds for non-concave function approximation class {2y,.

Theorem A.1 (Convergence to a stationary point [64]). Under Assumption 3 in maintext, and
Assumptions A.1-A.3 above, suppose the steps 6-12 in Algorithm A.1 runs T' > 1 rounds with stepsize

n' = min{ VtTAG?/ok _Cy,1/Cy},

fort =1,...,T and Euclidean distance is used for Bergman divergence. If we pick up the solution
output YT following the probability mass function

2n' — (n')*C,

P(T*=t)= T )
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where L°(1y) is defined in (A.5) and G = L°(1y0) — miny L°(1y) measures the distance of
the initial and optimal solution, C1 is Lipschitz constant depending on c*,ca, c3, M, Lo,V and \.
Recall that co and M are from the definition of D. Here the variance of the stochastic gradient

is bounded above by 0.y = maxic1.T \/C4H9(¢t) — 0|2 + c5||wt — *||2, for some constants

cy, c5 depending on c*, ca, cs, Lo, V., X and . Here, 0(1)") is the optimizer for L°(qg, Tyt ).
Theorem A.1 is adapted from Theorem 6.5 in [64] on local convergence. Theorem A.l implies
that the steps 6-12 in Algorithm A.1 can converge sublinearly to a stationary point if the 0,y 1S

sufficiently small. The rate of convergence is also affected by the smoothness of the class §2,, and the
distance of the initial and optimal solution.

B Experiment Details

We include our source code for experiments and algorithm, and the guideline for access to the
OhioT1DM dataset in this GitHub repository.

B.1 Environment Settings

Simulated environment. For the simulated environment setting, the system dynamics are given by

75 (2a — 1 1
= ( 075(5 ) 0.75(10— 2a) >5t+ ( (1) 0 ) O s's' Inxy + e,

t o1l 2 1 t 1T 141,23 0.25
r'=s <1>—4(2a—1)—|—(s s )26(0.5 7
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for t > 0, where ® denotes the Hadamard product, I is the identity matrix, the noise {5t} >0 id
N (0251, 0.25I555) and the initial state variable s ~ N (02x1,0.25I2x2). The transition dynamic
mainly follows the design in [50], but the reward function we consider here is more complex. In this
setting, we consider a binary action space a* = {0, 1}.

CartPole environment. We utilize the CartPole environment from OpenAl Gym [6], a standard
benchmark in RL for evaluating policies. The 4-dimensional state space in this environment is
represented as st = (sfl], 81[52]’ ng] , sf4]), encompassing both the cart’s position and velocity and the
pole’s angle and angular velocity. The action space is binary, with actions {0, 1}, representing pushes
to the left or right, respectively. To enhance the differentiation between various policy values, we
adopt a modified reward function, as in [49, 64]. The reward function is defined as:

t
it

sfl] (clip)

rt=—1+12

t
‘ C

3?3] (clip)

Here, s‘fl] and 51{3] represent the cart’s position and the pole’s angle, respectively. The terms sfl] (clip)
and s’fg] (clip) denote the thresholds at which the episode terminates (done = True) if either |sf1] | >
s’fl] (clip) or |sf3]\ > sf?)] (clip) is satisfied. Under this definition, a higher reward is obtained when the
cart is closer to the center and the pole’s angle is closer to the perpendicular position.

D4RL benchmark environments. We use Maze2D and Gym-locomotion environments of D4RL
benchmark [12, 28] to evaluate the proposed algorithm in continuous control tasks. We summarize
the descriptions of different task settings in [12] in the following:

Maze2D is a navigation task set within a 2D state space where the agent aims to reach a predetermined
goal location. By leveraging previously collected trajectories, the agent’s objective is to determine
the shortest path to the destination. The complexity of the mazes increases in the sequence: "maze2d-

non

umaze," "maze2d-medium," and "maze2d-large."

Gym-locomotion. For each task within the Gym-locomotion continuous controls set, which includes
{hopper, walker2d, halfcheetah}. We refer the readers to [12] for detailed background for the
above-mentioned tasks. In our experiments, data is generated and collected in the following manners:

» random: This dataset is produced using a policy initialized at random for each task.

* medium: This dataset is derived from a policy trained with the SAC algorithm in [15]. The
training is stopped prematurely through early stopping.

* medium-replay: This combines two subsets. The “replay” subset consists of samples
collected during the training of the policy for the “medium” dataset. Therefore, the "medium-
replay” dataset encompasses both the “medium” and "replay" data.

* medium-expert: This dataset supplements an equal number of expert trajectories with
suboptimal trajectories. The suboptimal samples are sourced either from a uniformly
random policy or from a medium-performance policy.

Real world enviroment: OhioT1DM offline dataset.

We applied the proposed algorithm on the Ohio Type 1 Diabetes Mobile Health (OhioT1DM) study
[35]. This dataset comprises six patients with type 1 diabetes, each contributing eight weeks of
life-event data—spanning health status measurements to insulin injection dosages. Given the unique
glucose dynamics of each patient, we treat each patient’s data as an individual dataset, in line with
[66]. Thus, daily data is seen as an individual trajectory. Data points are aggregated over 60-minute
intervals, ensuring a maximum horizon length of 24. After the exclusion of missing samples and
outliers, the total number of transition pairs for each patient’s dataset approximates n = 360. The
state variable s’ is set to be a three-dimensional vector including the average blood glucose levels
s‘fl] , the average heart rate s, and the total carbohydrates sf3] intake during the period time [t — 1, t].

Here, the reward is defined as the average of the index of glycemic control [47, 31] between time
t — 1 and ¢, measuring the health status of the patient’s glucose level. That is
I(sfy) > 140)|sf,; — 140[*10 + (s, < 80)(sf, — 80)*

rt=— ,
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which implies that reward r* is non-positive and a larger value is preferred. Then we estimate the
optimal policy by treating each day as an independent sample. We study the individualized dose-
finding problem by selecting the optimal continuous dose level for intervention options. For model
performance evaluation, since the data-generating process is unknown, we follow [34] to utilize the
Monte Carlo approximation of the estimated function of the initial state of each trajectory to evaluate
the performance of each method. To better evaluate the stability and performance of each method,
we randomly select 20 trajectories from each individual based on available trajectories 50 times and
apply all methods to the selected data. The mean and standard deviation of the improvements on the
Monto Carlo discounted returns are presented in Table 2 in maintext.

B.2 Implementation Details

In the synthetic environments, we first learn a sub-optimal policy using DQN [36] and then apply
softmax to its g-function, divided by a temperature parameter « to set the action probabilities to define
a behavior policy 7. In particular, we set o = 0.1, 0.5, 1 for the three degree of exploration “Low”,
“Medium”, and “Relatively High”, respectively. For the implementation, we set the detection function
as a quadratic form, i.e., D(z) = (2 — 1), which satisfies the definition of D(z) in Definition 3.1
in maintext. To evaluate the policy obtained from the proposed method in synthetic experiments, we
generate 100 independent trajectories, each with a length of 100 based on the learned policy. We
sample each action by the learned policy 7(a|s) and calculate the discounted sum of reward for each

trajectory. We compare the discounted return of each method and output the results in maintext.

For function approximation in Qy class in our practical implementation, we set the function spaces Qg
to RKHS:s to facilitate the computation. For function modeling in €2,,, we model 2, by feedforward
neural networks to handle the complex behavior of 7. The radius of the function class is selected to be
sufficiently large to ensure the flexibility of the €2,,. For the feedforward neural networks modeling,
we are parameterized by a two-layer neural network with a layer width 256 and using ReLU as
activation functions. For the RKHS modeling, we use the Gaussian RBF kernel. RBF kernel, for any

sample z and 2’
7112
K (z;2)) == ex Nz =2 ,
( ) P ( 2bw?

where bw is the bandwidth. In our numerical experiments, we use Silverman’s rule of thumb for
bandwidth selection [51]. In particular, we apply the finite representer theorem in RKSH to model
0 Qasqp(s,a) = K({s,a},{s;,a;})b;, for the parameters of interest {6, }!" ;. In step 7 in
Algorithm A.1, we optimize # with a fixed 1/’ ~! using stochastic gradient descent with learning rate
5x 1073, and set the stepsize n° = 1 x 1073, We set the decay learning rate 1 for the tth iteration be
#;tm, where ay is the learning rate of the initial iteration for optimizating 1)¢. For updating the
policy, we model the policy class I1,, by a softmax policy class or Gaussian distribution a two-layer
neural network with a layer width 64. The updating rate ( is also set to 3 x 1073, The class €2,, and
II,, and Qp are optimized with Adam [20]. For hyperparameters-tuning, we set hyper-parameters
pl/4
For the implementation of competing methods, we implement the methods BEAR, CQL, IQL, BCQ,
and COMBO mainly based on the popular offline deep reinforcement learning library [48]. For the
general optimization and function approximation settings, we use a multi-layer perceptron (MLP)
with 2 hidden layers, each with 256 units for function approximation. We set the batch size to be
64, and use ReLLU function as the activation function. In addition to the explicitly mentioned in the
following, we choose the learning rate from the set of {3 x 1074, 1 x 107%,3 x 107°}. We use
Adam as the optimizer for learning the neural network parameters. Specifically, for BEAR, the MMD
constraint parameter is tuned over the candidate set {0.1,0.25,0.5,0.75, 1} as in [24]. The samples
of MMD is tuned over the set 5, 10, 15. The KL-control baseline uses automatic temperature tuning as
in [24]. For CQL, we follow the author-released default settings but we modify the actor learning rate
and use a fixed « instead of the Lagrange variant. This modification is to match the hyperparameters
defined in their paper as [13] found the original hyperparameters performed better. For IQL, we use
cosine schedule for the actor learning rate. For COMBO, we selected the conservative coefficient
from the set {0.5,1,2.5} and found 1 is the best. We choose p(s, a) in [62] as the soft-maximum
of the g-values and estimated with log-sum-exp. In addition, we set up the learning rate for policy

satisfying the condition A = ¢* = via a offline selection rule inspired from Theorem 5.2.



and value function updates as 1 x 10~% and 3 x 1075, respectively. For the implementation of the
methods, ATAC and OptiDICE, we use the source code provided by the authors [7] and [28]. In
particular, we follow the basic implementation for OptiDICE setup in [28], we model the value
function class, the advantage function class and the policy class using fully-connected MLPs with
two hidden layers and ReLU activations, where the number of hidden units on each layer is equal
to 256. For the optimization of each network, we use Adam optimizer and its learning rate 0.0003.
The batch size is set to be 32. We select the regularization coefficient to be 0.1. Before training
neural networks, we preprocess the dataset D ., by standardizing observations and rewards. In terms
of the details for implementing ATAC, we follow [7], employing separate 3-layer fully connected
neural networks for realizing the policy and the critics. Each hidden layer comprises 256 neurons
and utilizes a ReLU activation function, while the output layer employs a linear function. We use a
softmax policy class for the policy. Optimization is performed using Adam with a minibatch size
of 64, and we set the two-timescale stepsizes in [7] as 7 = 0.0005 and 7510w = 10’37]fast , with
values s = 5 x 10™% and ngow = 5 x 107°. The mixing weights in a combination of the temporal
difference (TD) losses of the critic and its delayed targets are set to w = 0.5 to ensure stability.
Finally, for TD3+BC, we follow the default implementation in the original paper but we make a
flexible choice on the hyperparameter A not fix A = « in the original paper. We set and implement
A= m, which decreases the value of A\ when the function estimate is divergent due to

extrapolation error [13, 14]. We found this setup helps to improve the performance of the algorithm.

B.3 Additition Experiments Results

Sensitivity Analyses Tuning parameter selection is an open problem in offline policy optimization.

Fortunately, our algorithm has desired robustness to choices of hyperparameters, when we set
the hyperparameters satisfying the conditions in Theorem 5.2, i.e., O(#‘%). To validate
the robustness of the proposed algorithm with respect to the hyperparameter-tuning, we conduct
sensitivity analyses on the walker2d, hopper, and halfcheetah datasets. Figure B.1 shows that
the policy performance is robust over a wide value range of ¢* and A (), ¢* in [1,0.01]), and the

performance of under our choice (¢* = 0.1, A = 0.1) shown in Table B.3 is close the best.

In Tables B.3-B.3, we report the results of the experiments for sensitivity analyses on the values of
the hyperparameters vs policy performance on the additional D4RL benchmarks (hopper, walker2d,
maze2d), in addition to the results (halfcheetah) we previously presented. Each number in the
following tables is the normalized score of the policy at the last iteration of training, averaged over
3 random seeds. From the tables, we can see that, our algorithm demonstrates robustness over
a wide value range of hyperparameters. Also, the policy performance under our hyperparameter
choice is close to the best performance in the table, which indicates the effectiveness of our proposed
hyperparameter selection rule.

Table B.1: Hopper-medium-replay: Our selection rule chooses A = ¢* = 0.25 with the policy
performance 114.0 £ 2.4.

c(col), Mrow)| 2.5 1 0.1 0.01 0.0025 | 0.001
25 108.1 £ 2.7|]109.7 £ 2.4|111.6 £ 3.1|111.1 £ 2.7]100.5 £ 2.1|108.3 £ 4.4
1 1093 £ 1.7|111.8 £ 2.4[113.2 £ 2.6|112.9 £ 2.2|112.0 £ 3.0|110.7 £ 3.3
0.1 112.6 £ 2.1|113.3 £ 2.0[114.4 £ 2.9|114.6 £ 2.1|113.2 £ 2.9|112.5 3.4

0.01 111.8 £ 2.8/112.0 + 3.6|114.6 +2.9|114.2 £ 3.3|113.1 £ 2.7|110.2 = 3.4
0.0025 109.7 £ 2.6|111.5 + 3.2|113.8 + 2.6|113.3 + 4.4/112.6 + 3.7|110.1 + 3.7
0.001 108.2 £+ 3.0{109.5 + 3.8|111.9 4+ 3.5|111.2 + 2.6/109.8 + 3.1|108.4 + 4.6




Table B.2: Walker2d-medium-replay: Our selection rule chooses A = ¢* = 0.1 with the policy
performance 101.2 4 3.2.

c(col), A (tow) | 2.5 1 0.1 0.01 0.0025 | 0.001
25 958 £2.597.4 £ 2.8 084 L25(90.1£3.2 978 £3.0]97.0 L 3.4

1 973 £2.7/98.0 £3.1| 088 £ 2.8 90.4 £ 3.4|98.7 £ 2.7 |98.1 £ 3.2

0.1 97.4+2.8/98.3 £ 2.9[101.2 £ 3.2/101.3 £ 3.4|98.0 £ 3.6 |97.5 £ 4.2

0.01 98.2 £ 2.8/99.5 £ 2.9|101.7 £ 3.9{102.6 & 3.4|{100.2 4= 3.1|98.4 + 3.3
0.0025 98.0 £ 3.6/97.5 = 4.2/100.1 £ 3.6{100.8 & 3.5{ 99.2 + 4.2 |97.4 + 4.0
0.001 97.2£3.8/98.5£3.3/982+3.8[99.3£3.6[97.8+£5.2(98.2+4.1

Table B.3: Maze2d-medium: Our selection rule chooses A = ¢* = 2.25 with the policy performance
138.1 £ 7.6.

c*(col), \ (row) 15 10 5 2.5 1 0.5
15 134.5+£4.6|133.9+5.8|134.8£4.5[136.7+6.2(134.84+6.0(134.9 5.4
10 133.7£4.2|136.7+5.1|135.8 £ 6.8 [138.4 + 7.4(135.7 4+ 12.2{137.5 £ 8.2
5 133.9£5.8|137.3+6.9|136.6 £5.5(138.3+9.2/134.94+7.0(135.1 £5.2
2.5 137.5£6.3|135.8 +5.9(140.7 £ 10.9{138.9 + 9.2/ 132.2 + 8.1 [133.7 £ 6.5
1 134.0 £4.2 (137.2+10.7| 133.8 £6.9 [137.3 £ 9.5/ 138.2 + 5.2 [137.6 £ 8.0
0.5 135.2 £11.8/133.7+8.3|136.1 £7.8{134.5 £6.7[ 137.24+9.2|135.5 £ 7.1

Return

10.0 1.0 0.1 0.01 0.001 0.0001
A values

Figure B.1: Sensitivity analysis on the effects of hyperparameters A and ¢* for model performance
with halfcheetah-medium-replay dataset.

Empirical evaluation on theoretical results. We also empirically validate the regret bound in
Theorem 5.2. In general, we have no information on the optimal policy and whether it is covered by
offline datasets, which makes it challenging to accurately compute the regret in order to verify our
theoretic bound. Thus, we carefully design a synthetic environment. We describe the environment
in the following: the reward r(s,a) = (a — (8s) " A(a — Bs) with coefficient matrix 3 and the
negative definite matrix A. Therefore, the optimal policy has an analytical form 7*(s) = s' 3,
which is important to calculate precise regret. The dataset is generated following 7, such that
a=pBs+N (O, o2l ) , indicating the behavior policy is more different from the optimal one and the
data is more explored when o is large.

In Figure B.3 we study the convergence rate of regret, which validates the O(n~'/4) rate in Theorem

5.1 and 5.2. The plot shows that the convergence rate is close to O(n~1/%) in all scenarios, which
validates the theoretical regret bound of our practical algorithm in Theorem 5.1 and 5.2.



Table B.4: Hyperparameter values for D4ARL benchmark.

Gym locomotion Tasks |Hypereparameters
walker2d-medium 0.25
walker2d-medium-replay 0.1
walker2d-medium-expert 0.35
walker2d-random 0.25
hopper-medium 0.4
hopper-medium-replay 0.25
hopper-medium-expert 0.5
hopper-random 0.4
halfcheetah-medium 0.25
halfcheetah-medium-replay 0.1
halfcheetah-medium-expert 0.35
halfcheetah-random 0.25
Maze2d Tasks Hyperparamters
maze2d-umaze 2
maze2d-medium 2.25
maze2d-large 2.5

—e— Regret curve oo =0
-m- Regret curve gy =0.25
—#— Regret curve gp = 0.50

- Regret curve g =0.75
—a— Curve with decay rate O(n~%)

27 28 29 210 oh 212 215 B s
Sample Size

Figure B.2: Convegence rate of the near-optimal regret (compete to the optimal policy) on the
synthetic dataset with different degrees of exploration 0. A smaller o indicates the training data is
less explored.

C Proof of Theorem 3.1

C.1 Proof of Lemma C.1

Lemma C.1 ([64]). For any target policy m € ll and T € (),
Eulr(s,a)r(s, a)] Ey[r(s,a) (¢"(s,a) — 4" (s, 7)) — AD(7(s, a))]
-y 1—~
where J°(m) := J(1) — Xé(D, 7) for E(D, 7) := EM[%S;;I))], and ™ is the unique fixed point of
Bellman equation B™q = q.

0

- P (m) =

- qﬂ(s aﬂ—)v

Proof of Lemma C.1. Tt follows the definition JP(7) = J(7) + A{(D, 7). Then it is sufficient to
show

EH[T(87 CL)T(& CL)]
L=~
We rearrange the equation as

—J(m) = E,[r(s, a) (qﬂ(l&_a,)y_ vq" (s, m))] — g™ (s, ).

E, [7(s,a) (—q"(s,a) +7(s,a) +vq™ (s',7))] .
L=y

J(m) = q"(s° ) =



Following the definition of J(7) = E [Y_,;2,v'r!|7] = ¢™(s°, ), Therefore, it leaves to show the
IET[T+’YQW(SI,7T)—QW(S7Q)]

T =0.As ¢"(s,a) = r(s,a) + Eyp(.|s,a)[¢" (', 7)] by Bellman evaluation
equation, thus we concldue that

Eul7(s,a) (r(s,a) + 74" (s',m) — q"(s,0))]

I—vy
By [r(s,0)(r +10" (5, 7) — 4" (5,0))]
L=~
_fs,a IU,(S, CL) [T(sv a)Es/NlP(-\s,a) [(T’(S, a) +7q" (slv 7T) - qﬂ(& a))]]
= T
_fs,a (s, a) [T(sv a) (T(S, a) + VEs'np(|s.0) [qﬂ (s, 71—)} —q" (s, a))] —0
= T =0.
This completes the proof. O

C.2 Proof of Theorem 3.2

Proof. To prove the theorem, we follow the proof of Theorem 3.4 in [64]. We need to establish
appropriate confidence in upper and lower bounds at the same time. To simplify the notation, we
denote E, [] = E,[7(s,a)-]. At first, we prove for the confidence lower bound. It follows Lemma
C.1 and for any A > 0, we have
Er[r(s,a) + 74" (s, m) — q"(s,a) = AD(7(s,a))/7(s, a)]
-y
This immediately implies that

= J(r) — q"(s°,7) — A(D, 7).

Er[r(s,a) +74" (s, ™) — q"(s,a) = AD(7(s,a))/7(s, a)]
I—vy

< E. [r(s,a) —vq™ (s',7) — q"(s,a) — AD(7(s,a))/7(s,a)]

> 11—

The above equation helps to obtain the lower bound for the bias evaluation but without concern about

the uncertainty quantification due to sampling. To construct the sample estimator for the lower bound
and incorporate the uncertainty deviation, we first observe that it suffices to approximation

E; [r(s,a) —=vq" (s',7m) — ¢ (5,a) — AD(7(s,a))/7(s,a)]
1—n

J(m) = q"(s%,m) >

= J(m) + 4™ (5%, 7).

by its sample counterparts. That is,
& 2oy T80y ai) (ri + 4" (s}, 7) — ¢" (54, 04))
L—y
To bound below the uncertainty, this is equivalent to finding a good o, such that for any 7 € €2,
Er[r(s,a) =" (', m) — q"(s,a) — AD(7(s, a)) /7 (s, a)]
-y
- Ly 7(siyai) (ri + g™ (s}, ™) — ¢ (54, a5))
> 1

with probability at least 1 — §/2. Note that the power of §/2 is due to that we need to further consider
the upper confidence bound with also §/2 power so that the confidence interval holds w.p. > 1 — .

— X, (D, T)

- Xn(D, 1) — 0oy, (C.1DH

According to Bellman equation, we know that 7(s,a) — YEy p(.|s,a)[¢" (5", 7)] — ¢ (s,a) = 0 for
any s, a. This implies that

Er [r(s,a) = 74" (s',7) = ¢"(s,a) = AD(7(s,a))/7(s, a)]
L=y
_E [FAD(7(s,a))/7(s, )]
= T <0 (C2)
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where the last inequality comes from the fact of Definition 3.1 on the detection function ID(-) which
is always non-negative.

Combine the inequalities (C.1) and (C.2), it is sufficient to obtain o, satisfying the following
condition:

1

os n Yoy T(85,a8) (15 4+ g™ (85, ™) — ¢ (84, )
n — 1 _ ’V

for any 7 € (2. We can rewrite it to use a uniform argument, that is

sup {1 i T<Si?ai) (ri + ’7q7"(82,ﬂ'> — q”(Si,ai» — )\gn(Dﬂ')} < O-’?L

e | =1 1— ol

g

— X (D, 1),

Now, recall that we have a condition that

n

> rlsi,a) (i + 707 (s m) = 07 (51, 1)) = A& (D, 7)| < o,

=1

sup |———
TEQ ’I’L(]. - ’Y)

which directly implies that

sup {1 Z 7(8i,ai) (ri + 94" (s}, ) — ¢" (si,ai)) AEn(D,T)} < op.

TeQ | M i—1 1-— y

Therefore, we set o;, = 0,,, and combine with (C.1), it obtains that for any 7 € €2,

J(w) > L5 TR (AT T 200 00) | yr(0,7) — pe, (,7) ~ o
=1

1—7

Sy 2Ly riTlona) e F S Tl a0l ™) gl @) + (1= 9)a(s" )
n = 1—7 qeQ 1—7v
- X, (D, 7) — 05
J(n) >1 i rit(si,ai) sup & 2o T(si5 i) (q(si, i) = va(sy, ) — (1 = 7)q(s% 7)
ne— l-v ie) L—y
Mo (—q,7)
— X (D, 1) — ok

This completes the proof for the confidence lower bound.

Now, it remains to prove the result for the confidence upper bound. According to the value interval in
(3) of the maintext, we observe

E, [r(s,a) —vq™ (s',7) — ¢"(s,a) + A\D(7(s,a))/7(s,a)]
L=~

To construct the sample estimator for the lower bound and incorporate the uncertainty deviation, we

first observe that it suffices to approximation

E- [r(s,a) —q" (8/7 m) — q"(s,a) + AD(7(s,a))/7(s, CL)]
L—v

J(m) <

+q"(s7, ).

by its sample counterparts. That is,
LS 7(siyai) (r + g™ (s}, ™) — ¢ (54, a5))
L=~
To bound below the uncertainty, this is equivalent to finding a good o,, such that for any 7 € 2,
Er[r(s,a) =" (', m) — " (s, 0) + AD(7(s, ) /7(s, a)]
L=y
LS T (sisai) (ri + g™ (55, ™) — q™ (54, a4))
L=y

+ A, (D7)

<

+ A (D, 7) 4+ o} (C.3)

11



with probability at least 1 — 6/2. According to Bellman equation, we know that r(s,a) —
YEg np(|s,a)[q™ (8", )] — ¢ (s,a) = O for any s, a. This implies that

E;[r(s,a) —vq" (s',7) — q"(s,a) + AD(7(s,a))/7(s,a)]
1—nv

_E, AD(7(s,0))/7(s,0)] _ (C4)

11— -

Combine the inequalities (C.3) and (C.4), it is sufficient to obtain o}, satisfying the following
condition:

s 5 i 70 a) (i a7 (sh, ™) — 07 (s0, 1))
> 1=
for any 7 € ). This could be satisfied by the uncertainty deviation condition in Theorem 3.1 that

suaz _Ti — Vqﬂ’(séa 77) + qﬂ(sivai))
sup + X, (D, 7) p > —0,.
TEN {n Z 1- Y g ( )

+ A& (D, 7),

by taking o, = o,. It then obtains that for any 7 € €,

n CoN( (o T(a. .
EZT(SM%)( T '71(1 (Szvﬂ)—i—q (3, ai)) + X, (D, 1) > -0y,
-7

1 o= 7(85,a;) (—ri —vq™ (s}, ) + ¢ (34, a;
Ly o) (Zr 20 n WA 0 0) | ye (,7) 4+ (J(x) — (7)) 2 — o
i I=7
By some algebra, this implies
(m) <1 Z rr(sina) o i Tl a) a5l ™) = alsisai)) + (1= 2)a(s,m)
ne3 qeQ I—~
M, (q,7)

+ A, (D, 7) + oy
This completes the proof for the confidence upper bound. O

D Proof of Theorem 3.2

Proof. 1t follows the definition of j (7 T), we have

1 ” iy g Tr
72 (0. 01) _ o W (—g,7) — Ma(D,7) — 0
n-- q€eQ

and we obtain the maximizer max ¢ {supTEQ jrj (m; 7‘)} Therefore, to provide the equivalence,
it suffices to show, for any 7w € II, the optimization

1 = rit(si, a; —~
sup {n Z %a) —sup M, (—q,7) — X (D, 7) — an} (D.1)

T€EN

P Y qeQ
is equivalent to the optimization

min ¢(s°,7),
q€Q.,

n

an = {q € Q : Sllp ‘n_l ZT(Siﬁa’i)(ri +’7qﬂ-(8{£7ﬂ-) - qw(siaai))‘ S En}y

TEQS, i=1

Qs = {To/ sup ||7o|q for 7o € Q1 £,(D, 70)) < aL} .
Q

To

12



which can be re-expressed as a prime form:
min ¢(s°, 7), s.t. ¢ satisfies
q€Q

n Y (o PN e o
sup l Z T(SZ7 az) (Tz + ’YCI(SW 7T) Q(Sw az)) < En —z (D.2)
Teﬁgn n 1 - ’}/

6, = { co.

=1

where
n

Z D( To (siya5))

sup,, cq 7ol n 2

Note that, it follows the definition of D(-), the above form of an can be further relaxed to

~ To 1 & D(To(si,ai)) -
R S To R P E ————— < 0on-
Q5 { ,To €82 - T~ o

SUDr, co, Il 2

Therefore, it is sufficient to show the optimization E.21 is equivalent to the optimization D.1.

First, by the rule of sup & inf: sup{A,} = —inf{—A,,} for any sequence A,,, we observe that

1 Xn: 7 (84, i) (ri +vq(s;, m) — q(si, i)

sup <én
€05, |1 i1 1=y
— lI}f l i T(Sia ai) (Q(Sia ai) — Ty — qu(sia ’/T)) Z 7gn
TEQS, n i—1 1- v

For a fixed (NZgn and T > 0, the optimization (E.21) is equivalent to,

HliIqu(SO,ﬂ'), st e { inf {_ (; Zn: T(si,a;) (ri + ’;qisg ) — Q(si,ai))> } >_z,

S
1 =1

1—

= w0 s,t,qe{_ " {_ <ii7(szvaz)(n+W( ™)~ gl 02)

1 iy A ~
< ming(s’,7), st.q € { sup { — m(siai) (i +7a(s, ) = q(si, 04)) <én
qeQ reds, n = 1—7
1 <& ) (7 L) — e _
= mm q(s®,m) +sup T [ sup { — § 7(si, i) (ri + vq(si, ) —q(si, ai) | €n
g€Q 120 \ren, (7S L=y

Furthermore, we can express the above optimization as a prime form w.r.t. to 7. Also, we have an

observation that the space
~ T
Q= {O 1T € Q}
sup-,eq |70l

where, for any 7 € Q, 7]l < 1. Then we can further write

mm q(s%,m) + sup T (sup {1 Z (s, a;) (1 + ’;qis% ) —q(si,a;)) } _ 5n>

q€ T>0  \req Py

1 <~ D(7(s4,a;) sup,,. - ~
" {Z (7(51,1) 5Upy, e [ 7o ) San}
n 1—7

i=1
It follows that the exchange of variables, 7°(s,a) = 7(s,a)sup, cq [|[Tollo € Q and 7(s,a) =
7°(s,a)/sup, cq |70/l € €2, so that 7 and 7° is bijective.

mln q(s®,m) + sup T <su13 {111 Z 7(si, ai) (ri + WIQ(S%; ™) — q(si; ai)) } - §n>

q€ >0  \,eo P
s.t. {1 3 Dro(si,a)) En} .
n 1—7
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This is further equivalent to the form

1¢ ") — a(si a _
min sup sup ¢ ¢(s°, ) + T E : 7(si,a) (ri +vq(s, ™) — q(si,ai) | z,
9€Q <0 e n < 1-— Y

=1
s.t. 7 € { S an}

Next, we transform the above prime form to its duality, for any dual variable ¥ > 0,

. 1~ 7(si,a) (ri +9q(si,m) —q(sina) |~
D SUD S 0 T~ L v Db -
rmgbup sup sup {Q(S , )+ ({nz 1—7 :

€L T>07€Q ¥>0 =

_@<i§fmu%@»_%

i=1 1—x

— HllIl q(s°,7) + supsupsup { T
q€Q T>07€Q U>0

1 & D(76(s;,a;
Ly (7o(si,a:))

n 1—7v

- T(84,0) (1 +vq(s;, m) — q(s4,a;)) ~
gy .

1 — D(76(s;,a; -
—q’(niw—%

i=1

n s . / _ s
= ming(s mmpsupsup{r( 1§ rlsi) 1+ 90(s1,7) q«w»})
n -

qeQ T>07€EQ ¥>0 1—v
1 o= D(7o(s;, a; ~ ~
_@<n2;<ﬁ;7m>}_r%+m%

i=1
1 < 7y g iy Wi ) — g — /'a
— mlnq(s )+ supsupsup q T — m(si, a5) (a(si,0) = i = 74(s3, 7))
q€Q T>07€QT>0 n—= 1—7
1 i ]D)(To(si,ai)) ~ ~
2 —_— — Y&, + Yo,.
(ng; L ‘405

Let 7,(s,a) = T7(s, a) over the space (2, such that T is replaced by sup._cq ||7-|/o. Moreover, it
is feasible to select A equals to the maximizer of U, i.e., ¥* = ), this directly implies that

mlnsup{ +lzn:7 si, i) (1 +vq(s}, m) — q(si,a:))
9€Q reQ n ] 1_7
A o= D(7(s;, a; _ _
=D % = [ITlle&n + /\Un}
i
1 A 7(865a8) (15 +vq(sh, m) — q(si,a:))
0 KRl ¢ i) iy Qg
<= minsu O )+ —
quTeg{q( ) ”; 1—7
A~ D(r Szaaz o
- (Il ~ 35 . 03)
i=1

Denote the inner maximizer of (D.3) as 7%, then we set up

on =||7||0En — ATx
:HT*HQ(l - 7)5n — A0y

Then the above expression is equivalent to

min sup { (0. 7) + 1 i 7(si, i) (ri +vq(si, ™) —q(si,ai) A i D(7(s5,a;) } Y
n n
1=1 e

9€Q rcQ 1 -7

14



‘We check the Slater’s condition [40], as

1o~ 7(si,ai) (ri +94(s5,7) = q(siy00) A g~ D(7(si,00))
0 - 4 - AT\ ) )

is linear on ¢, and also

inf {_ (126 7(si;00) (ri +vq(si, ™) — q(si,01)) A~ D(r s“az )}
TEQ n 1—7 n

i=1 =1

is convex on g, as it is the supremum of a linear function of ¢, then Slater’s condition is satisfied and
strong duality holds,

min sup +li7— si, ai) (ri +vq(si, ) — q(si, a:)) éiD (si;a:)) o,
9€Q 7¢Q n = 1—7 n &
1O 7(si,a0) (i +7a(sh, ) = q(50:0) A = D(r (5, 1)
i 0 v\ i i Qi i Qg
< Sup min s,m)+ — = -0
Tegqu{Q( ) "; ] n; !

D.5)

where the order of minge g sup, cq, is exchanged to sup, . mingeo. According to the max-min
form in (D.5), we have

n

T(84,a:) (ri +vq(s), ™) — q(s;, a A D(7(s;,a;
(s0:00) s+ 70(sh ) — g5 00)) _ X g DU ))}_Jn

1
n 1—v ne— 1=

: 0
sup min s ,m) +
TEB‘JEQ {q( )

1
1 - 7’2'7'(51‘,(11‘) 0
< supmin< — — +q(s,m
Tegqeg{nz q(s”,m)

n n

(3] 7 1y Y A ]:D) K2} 1
era qu_) q(si,a;) EZ (s4,a;) }—Un

=1 =1

s Sup{:& ‘” W—l—mm{q(so,w)—i—li 7(si, ai) (7(1(8;771—)_(1(5i7ai))}

e N 1-7 9€Q n 1—7v
A o D(7(s;, a;
772 (71(8,61))}%
ni4 -7
1 = 7i7(si, a4 1« is Qg i @ /
o s Ly rrlea) 1S G0 o) <vatshm) o
rea (N 1—7 qeQ n = 1—7
A o= D(7(s;, a;
SED RN,
N4 L=y

It follows the definition of Z/\l\n(—q7 7) and &, (D, 7), we conclude the above form is equivalent to

1 i v J,
L rimls ) o W (—g,7) — Ma(D,7) — o = T (i 7).
1—’7 qeQ

This completes the proof. O
E Proof of Theorem 4.1

E.1 Proof of Lemma E.1

Lemma E.1 (Evaluation error lemma). For any target policy m and q € Q,

J(r)—q (30,77) _ Eg [r + Vql(s_',:) — q(s,a)].

15



Proof of Lemma E. 1. We follow the proof of Lemma 1 in [60]. First, we observe that J(7) = E{” [:] ,

then it suffices to show Eq- [q(s,a) — vq (s',7)] = (1 — v)q (s°,7) . It follows the definition of d
and ¢(s’, ), we have

Ea, [q(s,a) —vq(s',7)]

1—~
o0

/ Z'Ytp s'=s,a" =als’,7) q(s,q) Z’ytP (5" = s|s,7) q(s, )

s,a 1— S =1

/ Z"YtP st =s,a" =als®,7) q(s,a) Z’ytp(st:s,at:a|50,ﬂ')q(s,a)

5,a 1—q 5@ =1

:/ P (s = 5,a° = a|s°, 7) q(s, @) = q(s°, ),

where the conditional probability P(-|s?, ) is taken by assuming that the system follows the policy
7 with initial state s°. This completes the proof. O

E.2 Proof of Lemma E.2

Lemma E.2. Suppose for 7 € Q, sup, ||7(s,a)| 1, < Us and supT I7(s,a)llL., < U and
sup, [lq(s, a)||L.. <V, given an offline data D1, = {si, ai, 73, s;) } 1y, wp. > 1=,
By [7(s,a)(r(s,a) +vq (s, ) — q(s, )] = Pu [7(si; ai) (ri + g (5, 7) = q(si; a0))]|
oy 2 | (P max{Da,Do. Du}+13UIP o 1 (e max{Dq,Dg,Dp }+1)% U3 )P
<Z/{; s + o 5

n 3n

holds for any m € 11, 7 € Q and q € Q, and empirical measure P,,. The terms Dq, Dg and Dy are
the pseudo-dimension of 0, Q and 11, respectively, and D = Dq + Dg + Dy is so-called effective
pseudo-dimension.

Proof. First, we observe that it suffices to bound provide a uniform deviation bound that applies to
all m € II, 7 € Q, and ¢ € Q. According to the definition of e-covering number in Definition L.1,
and we define the e-covering number with resecp to a weighted L? norm | - |[1,, () in the space of £,
Q and II as follows:

HTI - TQHL2(;L) :\// |Tl(8aa> - TQ(Saa)|2dM(S7A)
SxA

a1 — @2l 2o () :=\// lq1(s,a) — q2(s, a)[2du(S x A)
SxA

1 — T2l s :—\/ / 71 () — ma(-13) Pda(S): (E.1)
s
where ;(S) is the marginal measure for ;(S x A). For the product space G := 2 x Q x II, where
the function g € G that

g9(s,a,r,8") =7(s,a)(r +vq(s",m) — q(s,a)).
We have the Lo (1) metric for g1, g2 € G, that ||g1 — g2/, (,) is upper bounded by

\//S A ‘ET=T(S,G),S/N]P(-‘S,(I) [gl (Sa a,r, 8/)] - Er=7'(s,a),s/~]1>(~\s,a) [92 (57 a,r, S,)} |2du(8 X A)
X
(E.2)

Based on this Lo (1) metric, and to complete the proof, it is sufficient to establish the supremum
bound, w.p. > 1 —4,

sup |]EM [9(57 a,T, 5/)] - P, [Q(Si’ iy T4, S;)“ .
geg
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To apply Bernstein -type concentration inequality, we need to first examine the boundedness. Accord-
ing to the boundedness conditions on the function classes, we have

(8, 0)| e <UL

sup [|7(s,a)|| L, <U3;  sup|
TEQ reQ

(r(s,a) +vq(s',7) — q(s,a)) € [-V,V],Vs,a,s.

It is easy to conclude that
sup ”9(57 a,r, 5/) HLQ(M) < ugv
9€g

sup [lg(s,a,7,8")||L.. ULV,
geg

To quantify the complexity of the product space G, we first need to calculate the Lo (u)-distance in G.
With some calculations, for g1, go € G corresponding to 71 X g1 X 71 and 7o X go X g, respectively,

lg1(s, a7, 8") = ga(s,a, 7, ") Loy
=|m1(s,a)(r +vq1(s', m1) — qu(s,a)) — Ta(s, @) (1 + vq2(s", m2) — q2(5,a)) || Lo )
<Vlri(s,a) = 72(s,a) [ Loy +Us [(r +7a1(s',m1) — au(s, ) — (r +7¢2(s", 72) — a2(s, @) | Lo )

+Us [|(r + g1 (8", m) — q1(s,a)) = (r +vg2(s’, m2) — q2(5, @) | Lo ()
<Vlri(s,a) = 2(s,a) [l Lo (u) + U3 (1 + ) lar(s, @) = a2(s,0) | o0

+ VU3 |71 (18") = ([ Lo (E.3)
which leads to

N (B0, G- 1a0) < NE - aN(E Q- s NE L] - ran): B4

where C := U3 (1 +~ + V) + V.
To upper bound these factors, we apply the generalized version of Corollary 2 in [16]. For the

pseudo-dimension of 2, Q and I, i.e., D, Dg and Dr, and for some ¢’ > 0,

4eC

6/

~\ Dao+Dgo+Dn
N (356/,97 [ - ||L2(u)) <¢*(Da+1)(Dg +1) (Dn +1) ( )

This also implies

12¢C?2

Do+Do+Dn
N (€G] I Lawy) <€ (Do +1) (Do +1) (Dn+1)< )
(E.5)

where C; = €3 (Dg + 1) (Do + 1) (D + 1) (12¢C?)P and D = Dg + Dg + Di, i.e., the
“effective” pseudo-dimension. With the calculated function class complexity, we apply empirical
Bernstein inequality and union bound, w.p. > 1 — § with Z = ¢(s, a,r,s’),

|EM [g(s, a,T, S/)] - Py [g(si>ai7ri7 S;)H

. BN (.Gl 12y ()
1 SN (6,G. | o) . 20121 In ——=272200)
<=2 21 0o 1 N - ;
n g Vary [Z]In 5 + o
n — SN(E,g,H.”L (u))
1 3 SN (6,6, || laqy) | 2ULV In =0T Eat0)
SE 2 E, [Z2]1In 5 2WJ - 5
i=1

o SN (Glly ~ Gl
<\/2nuf72V2 lnw N Qz,{;onnéW(eg'&M

n? 3n

. 2172 mMSM ZU;VIDMSM
=U} + )

n 3n
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We sete = (’)(ﬁ), and combine with the upper bound for covering number (E.5) by some algebra,
thus we have

E,. [7(s,a)(r(s,a) + ¢ (s, ) = q(s, )] — Py [7(si, i) (ri +7q (55, ™) — a(si, a:))]]
<UT\/2V2 In (eP max{Dq,Dg,Dn}+1)3UJ)?P 2[/{;—0‘7 In (eD max{DQ,DQéDH}+1)3(Z/l;)2D
Uy

4
n 3n

This completes the proof. O

E.3 Proof of Lemma E.3

Lemma E.3. For some admissible probability measure or empirical probability measure, denoted as
v, suppose \/E,[(7(s,a))?] < C for some positive constant C and T € 2, and

sup |]EV[T(57 a)(T(S’ a) + 'YQ(S/a 7T) - Q(Sv a))” <,
T7€Q

then it holds that \/E, [(r +vq(s',7) — q(s,a))?] < ¢/C.

Proof. To facilitate the proof, we first define 7 := sup, g |E, [7(s,a)A(g, 7)]|, for ¢ € Q, and
denote A(g, 7) = r(s,a) +vq(s’,m) — q(s,a). Then for any 7 € Il and ¢ € Q, it satisfies that

CVE[(r(s.a) +vq(s',m) — q(s,a))?] =C||A(q, 7)| L)
=C (A(g,m), A(g, ))

R =

X o=

= (A(g,m), A(g, 7))

CT
=(Aq,m), —
< (4 )Hﬂhxm>u

=sup [E, [7(s,a)A(g, 7)]|,
TEQ

. < C7 (s, a) C7(s,a) >5

17(ss @)l Loy 17(5, @)l L)

where the third equality comes from that the direction 7/||7(s, a)| 1, (,) is aligned with the direction
of the maximizer of inner product, and the fourth equality comes from the exact equality condition
for Cauchy-Schwarz inequality. This completes the proof. O

E.4 Proof of Lemma E.4

Lemma Ed4. For any # € 1l and any 7 € ﬁgn where sup_.g_ ||T(s,0)||L,) < US

and sup_ 5 ||7(s,a)|lL, < Uk, and any qi,q2 € Qe,, given an offline data Di.,
{8isai, 4, 85) Y0y, wp. > 1 =6, it holds that

B, [r(s,a) [(q1(s,a) = r(s,a) = vq1 (s, 7)) = (q2(s,0) = r(s,a) = vg2 (s, m))]]

=P (si,ai) [(q1(sis ai) —ri —vq1 (57, 7)) = (qa(si, i) — i — vqa (57, 7))]

. 32‘72 In 8N(€’g5n>56n7H'HL2(A)> 8]/{;0‘7111 8N(€’g5n»’76n7H'HL2(M))
SUs + .

n 3n
Proof. At first, we define a product space

Gz =0z, x Q. X IL (E.6)
equipped with the Lo (1) weighted metric, so that any g € G, 5, can be expressed as

g@ﬂ#ﬁ@:ﬂ&@[@ﬂaw—T—vmwﬁﬂ)—@ﬂaw—r—vwﬁﬂﬂ)
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With some calculation, the Lo (p)-distance in G, 5, can be bounded. That is, for g1, 92 € G.,, 5,
corresponding to 71, q1, g2, ™1 and 7o, ¢}, g, o, the Lo(p) distance between g; and go is upper
bounded as,

lg1(s,a,7,5") — g2(s,a,7,8") || L)
<lmuls, a)(r+yar(s', m) — qi(s, @) = 2(s, a)(r + vaa(s', ™) — 45(s, @)l 1o )
+lIm(s,a)(r +vau(s', ™) — qi(s, ) = 72(s,a)(r +7q2(s", ™) — q2(5, a)) || £ )
<VIri(s,a) = 1a(s,0) | 0wy +Us (L+)llai (s, @) = g2(s,0) || 1)
+ VU 1 (1s') = m2(1s) | Lo ) - (E.7)
Based on (E.7), and following the definition of the covering number in Definition L.1, then we have

N(6057gsn,5n7 ” : HLz(,u)) < N(5795n7 H : ||L2(#))N(57 Qénﬂ H ’ HL2(H))N(5’H7 H : ||L2(#))
where C := U (1 + v +~V) + V. Accordingly, follows Corollary 2 in [16], by some algebra,

24eC?
N (6’ g5n75n7 H ’ ||L2(#)) §€3 (DQB,,L + 1) (DQan + ]‘) (DH + 1) ( :/

D
1
(=
()
where O] = €3 (Dﬁ» + 1) (Do, +1)(Dn+1) (24eC?)P and D = Dg + Do, + Dn.

Next, we apply empirical Bernstein concentration inequality and union bound as in the proof of
Lemma E.2, we conclude that

) Dﬁ{?n +DQ5n +Dn

By [r(s,0) [(q1(s,a) = r(s,a) =1 (s, 7)) = (q2(s,0) — r(s,a) = vg2 (s, 7))]]

— P (si,0i) [(q1(si5ai) — i —yq1 (57, 7)) = (qa(si, ai) — i — vqa (87, 7))]

{7 8N yTen,onsll” 0 [/ 8N sen,onll” L
L 3272 W Gemanliaw) gy g1y BN (Genn I ra0)
U + :

E.8
n 3n E3)
This completes the proof. O
E.5 Proof of Lemma E.5

Lemma E.5. Define the maximizer q© = argmax,cg_ q(s°,7) and the minimizer q" =

argmingcg_ q(s°, ) over the confidence set Q. with both ¢ = q" and q = q" satisfy that
n

Z 7(si,ai) (i + 74 (s;, ) — q(si,a;))

i=1

There must exist an MDP {S,.A, Prax(Prmin), Y, max (Tmin) so} which is identical to the true

environment MDP with P yax (P min) = P: MDP* only except that the reward function 7max("min)
is redefined as

1 ~
— SEn,VTEan.
n

Tmax(sa a’) = QT(Sa a) - ’YES’NIPmax('\s,a) [Z 7r(a’|s/)q7(s’, a/)] ,
a’'€A

T’min(sv a) = £(Sa a) - FYESIN]Pmin("S,a) [Z 7T(CLI|S/)£(S/, a/)] .
a’€A

In addition, the reward function ryax(Tmin) is approximating the true reward, i.e., ||Tmax (s, a) —
7(8,0) || Lo (n) O [|Pmin(s,a) — 7(s,a)|| 1, () is upper bounded by

(7 SN)EVE)' 7 (/ 8N75,_5,' 7
\/2V21n (Genopla) gy 1y M Gen o)

5 En
n + 3n T
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"
for some constant Uso := T for sup g I7(s,a)|| Loy < U3 and SUp, e, I7(s,a)|lL., <

us,.

Proof. Without loss of generality, we prove the lemma for 7,,x, and the results for r,;, can be
obtained in a similar way. It follows from the definition of 7., i.¢.,

Tmax(sv a) = q7(57 CL) - ’YIES'NlPl,,aX(~\s,a) [Z ﬂ—k (a/‘sl)qiﬂ-(‘S/? a/)‘| ) (E9)
a’ €A

we re-arrange the terms as follows:

q7(8,a) =rmax(s,a) + ’YES'N]Pmax('|5»“)

Z W(a’s’)q”(s’,a’)l . (E.10)
a’€A

This is exactly the Bellman equation over the MDP {S S A P a7V Tmaxs so}. It follows the
equivalence between P, and P, we further observe that ¢™ (-, -) is the true g-function for policy
7 in the MDP {8, A, P, 7, rmax, s"}. To show the reward function 7« approximates the true

reward function 7. It follows from Lemma E.2 with ||7(s, a) (17, () < Uprime 2 85 T € Q5. , we have

prime,2

SUp, g, [E, [7(s,a)A(q™, m)]| for A(q, 7) = r(s,a) + vq(s’,7) — q(s,a), is upper bounded by

)

u*\/2‘72 In 8N(E,g5n,55n7|"HL2(;L)) . 2“00“5‘7 In SN(E,Gen,anVH'HLﬂu))

2 n 3n *en
Withsup .5 |E, [7(s,a)A(¢™, 7)]| and Lemma E.3 on ||7(s, a)||2L2(#) < U2 e o> We Obtain
- 2V2 In 8N(5’gsn~56n ’H'HLQ(N)) 2[/[00‘7 In SN(67QE7L,5(;LaH'HLQ(;L)) )
y Lo(p) > n/“prime,2*
IAG Dllzag) < . + - e

Since P2« = IP, and follow the definition of r,,, in (E.9), we have

[7(5: @) = Tmax(8, @) Lo () =

r(s,a) — g7 (5,a) + YEq o (]s.0) lz (d|)T (s, w)]
a’eA

La(p)
=A™, ™) || Lo ()

Combining with the upper bound on ||A(¢™, )| 1, (). this completes the proof. O
E.6 Proof of Lemma E.6

Lemma E.6 (Upper Bound for Version Space Function over 1). On the notations and definitions
in Lemma E.5, where q™ (-, -) and q" (-, -) are the true action-value function under policy T for the

MDPs {S, A, Priaxs s Tmax, 50} and {S, A, Proin, ¥ "min, so}, respectively. Then

— 2e,
||£(Sv a’) - qﬁ(s’ a)”LQ(M) < 1— ’y,
where
2‘72 In SN(QgEnvgén’H'”Lz(u)) 21/{00‘7111 SN(e,gsmgg’H.”sz)) ,
Er = n + 3n + En/z/{prime’27
forUs, > 0.

Proof. According to Lemma E.5 and the definitions of 7,,x and ry,;,, we have the reward functions
T'max and 7y are bounded above over Lo(p), i.e.,

||7'maX(5a a) - Tmin(sv a)HLz(u) :”TmaX(Sva) - T(Sa a) + 7‘(3, a) - Tmin(sv a)HLz(u)

<[Irmax(s;a) = (s, )| Lo ) + [7(s;0) = Tmin(s, @) || Lo ()
<2,. (E.11)
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By the fact that ¢™(-,-) and ¢" (-, -) are the true action-value functions for policy 7 in the MDPs
{8, A, Prax, Vs "max, s° } and {S, A, Prin, ¥, Tmin, s° }, respectively. Then by the definition of the
reward functions 7. and 7,;,, we have

||rmax<s7 a) - rmin(sa a) ||L2(,u)

= H (qﬂ(saa) - 7E5/~Pmax(~\5,a) lz ( |5 ) (5 a )] >

a’'€A
- <(]7r(8,a) _'VES/NIPm;n(~\S,a) [Z ( |s) (3 a)‘|>
a’€A La(p)
=:[|(q"(s,a) = P7q7(s,a)) = (¢"(s,a) = P"q"(s,a))l| L, () (E.12)

where IP™ is the transition kernel under the policy 7. We re-organize (E.12), and obtain
1(g™(s,a) = yPTq7(s,a)) = (¢"(s,a) =y PT¢" (s, @)l Ls(y)
=llg™(s,a) — " (s,a) + YP7(¢"(s,a) — ¢ (s, )l Lo(y)
=T =~APT)(g"(s:a) = g7 (5, @)l Lo
>lq" (s, a) = q7 (s, a) || Lo(uy — V[P (g "(S a) = q7(5,0)) || La(w)
>lq" (s, @) = a7 (s, )| a(wy = VI1(@" (s, @) = 47 (s, @)l Lo )
>(1 =" (s,a) = 7 (s, @)l Lo

where the second inequality comes from each element of IP™ is a convex average of ¢" (s, a) —q™ (s, a).
Combine with the inequality (E.11), we conclude that

2¢e,
1—7'

(1 =g"(s:a) = a7 (s, )l Loy < 267 = [lg"(5,0) = ¢7(5,0)[| Lo () <

We explicitly express the weighted Lo(j2) norm on ¢ (s, a) — ¢™ (s, a), i.e.,

llg"(s,a) — q™(s,a ||L2(u) Z Z (S’Q)]Q -p(s,a) < (12?7) :

acAseS

By the non-negative of the term y(s, a), we conclude that
_ 2¢, .
sup  |¢"(s,a) —q7(s,a)| < L, almost surely for (s, a) with u(s,a) > 0.
a€A,s€S T I—y

This completes the proof. O

E.7 Proof of Lemma E.7

Lemma E.7. Suppose for T € Q, sup, ||7(s,a)|1,(n) < Us and sup, ||7(s,a)|lr.. < UL and
DYy wp. > 15

%

sup, llq(s,a)||L.. <V, given an offline data D1.,, = {s;, a;, 74, s

E, [T(S, a) (r+~q(s',m) —q(s,a)) — AD(7 (s, a))}

- Py (T(Sia ai) (ri +7q (s, ™) — q(si,a:)) — AD(7(si, ai)))

eD max{Dg,Dg,Dn}+1)3(Lu{)2D
é

_ 21n

T UB

§(U2V+>\||D(T(Saa))||L2(,t>)\/
e e? max{Dq,Dgo,Dn}+1)3 (LU )*P
2ULV + A[D(r (s, a)) 72 ) In (- mextPaDaprl e (HE)

3n ’

where L < oo issome bounded Lipschitz constant of D(-), and ||D(T(s,a))||g§(#) =
sup,cq [D(7(s, )|l 1, (u) and [D(7(s, @) |22, = sup,eq ID(7(s, a))l| ..

n
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Proof. Define the product space G :=Q x QxII, and the L, weighted metric
g1 — 92||L2(#)

:\//S 4 |E’r~r(s,a),s’~]?(-\s,a) [91(57 a,T, 3/)] - ]ETNT(s,a),s’N]P(-\s,a) [92 (Sa a,r, S/)]|2du(8 X A)
X

where g1,g, € G for given A > 0 such that g(s,a,r,s') = 7(s,a)(r + vq(s',7) —
q(s,a)) — AD(r(s,a)) for any g € G. To apply empirical Bernstein inequal-
ity, we study the boundedness conditions: (r+~yq(s',7)—q(s,a)) € [-V,V],Vqg €
Q,supreq [7(s,0)|| Loy < UvasuPTeQHT(Sva)lle < UL, Asup,cq ID(7(s,0))l| Loy €
[0, MID(7 (s, aD 25 )s Asupreq ID(7(s, @)z € [0, AID(7(s, a))lIL2 |- By some calculation,

the Lo (u)-distance in g can be bounded. For g1, g2 € g corresponding to 71 X ¢; X 71 and T X ga X o,
respectively, we have

Hgl(s7 a, T, 5/) - 92(5, a, T, S/)HLQ(H)

=|11(s,a)(r +vq1(s',m1) — q1(s,a)) — AD(71(s,a))

— (m2(s,a)(r +vq2(s', ™) — qa(s,a)) — AD(72(s, a)))

<2V||7i(s,a) = (s, a)|| Ly + Us |(r +7q1(s',m1) — q1(s, @) = (1 + 725", m2) — ga(8, @) || Lo ()

FU ||(r +yqu (s, 7) = qi(s, @) — (7 +7gq2(s", m2) — q2(s, @)l Ly () + MD(T1(5,a)) = D(7a(s, @) || Ly ()
<2V|mi(s,a) = (s, a)l Loy + Us | (r +va1(s',m1) — q1(s, @) — (7 + 7g2(s's m2) — g2(s, ) || o ()

+US[[(r +va1(s",7) = q1(s, ) — (1 + vq2(s’, m2) = q2(s, )| L,y + ALIT1 (5, @) = T2(s,0)| L, ()
<2V|mi(s,a) = (s, @)l Loy + VU3 |71 — 72| £y

+Us (1 +)q1(s, @) — q2(8, ) || Loy + AL T1(5,a) — T2(85 @) || Ly (). (E.13)

where the last inequality comes from the D is M -strongly convex function and thus locally Lipschitz
with a Lipschitz constant L < co. Also, we note that

| SugD<T<Sva)) - Olle(M) < L||m*(s,a) — 1||L2(H) < Lmax{1, U3} < LU3,
TE

where the last inequality holds for /5 > 1. The metric distance (E.13) directly leads to the upper
bound for the covering number over G:
N(4C*57g7 ” : HLQ(#)) < N(E,Q, ” ’ HLz(#))N(Eﬂ Q, ” : HLQ(#))N(EvHv H ) ||L2(H))7

where C* := V(2 + U3 ) +UJ (1 4+ ~) + AL. Apply the generalize version of Corollary 2 in [16],
which implies

~ 16e(C*)2\ "
N (e, G| - ||L2(#)) < e (Dg+1) (Do +1) (D +1) (e(€)> . (E14)

where D = Dq + Do + Dp. By empirical Bernstein inequality and a union bound, we have that
with probability at least 1 — 6 and Z = g(s,a,r, s'),

UEP« [g(s, a,r, S/)] - P’ﬂ [g(S’H Ay T4y S;)”

" BNV (€G- o) 2T + AID UB ) 1y BV )
Sl 9 E Var, [Z]In ( 2 N)) + ( o | (7-(57a))||L(x,) I 5
n p f ) 3n
" BN (&G, ]| Y UB ) 1y (Gl s
1 Gl ea)  2(UZV + AID(r(s,)|[ ) In
<= 2> E,[Z?]In ( 5 )+ o 5

)\/2111 SN(e,g,gIILQ(M)) . Q(U;V T )\HD(T(S,Q))H%EO) n 8N(6,g7!-I|L2(;L))
- .

<(UzV + AID(7(s,)) | 2o, 3n

(E.15)
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We set e = O(ﬁ), and combine with the upper bound for covering number in (E.14) and

ID(7(s, )25,y < LU3. it follows similar arguments in the proof of Lemma E.2, by some
algera, we conclude that

E, [T(s7 a) (r+~vq(s',m) —q(s,a)) — AD(7(s, a))}

-Py (T(sia a;) (ri +vq (s;a m) — q(si,a;)) — AD(7(s;, ai)))

(eD max{Dg,Dg,Dn}—‘rl)s(Lu;)QD
é

_ 21n
SUSV + ND(7(s, a)) ”[ngj(u))\/

Ty D max{Dq,Dgo,D 1)3(LUT)2P
| 2LV + AID(r(s. )| ) In (meDo.Do.pube (D)
3n :
This completes the proof. O

n

E.8 Proof of Lemma E.8
Lemma E.8. Given an offline data D1 .,, = {s;, a;,7;,8,)}1,, forany T € Q,

[P D(7(si, 1)) — Eu[D(7(s, a))]]

21n (eDs'z<Dsz+1))g{1vL}u;)2Dﬂ . 2|[D(7(s,a)) 7% n <6D9<Da+1))g{1vL}u;)2Dﬂ

<|D<T<s,a>>|€§<m\/

holds wp. > 1 — 6.

n 3n

Proof. We equip the space G” such that g(s,a) = D(7(s,a)) for any g € G with the Lo
weighted metric. To apply empirical Bernstein inequality, we study the boundedness condi-
tions: sup,cq [|7(s,0)llL,) < U3, supreqlIT(s,a)l[L. < U, supreq [D(7(s,a))lLon) €
[0, [|D(7(s,a))] [Lnj(ﬂ)],supTeQ ID(7(s,a))||z.. € [0,[D(7(s,a))||7® ]. By some calculation, the

Ly (p)-distance in G can be bounded. For g1, go € G corresponding to 71 and 7o, respectively, we
have

g1(s;a) = g2(s,a)|| Loy = | — D(71(8, @) + D(72(s,@))| < AL[|71(s,a) — T2(s, @)l L)
(E.16)

where the last inequality comes from the I is M -strongly convex function and thus locally Lipschitz
with a Lipschitz constant L < oo.

N(AC e, G% | o) SN lraw)

where C* := UJ L. Apply the generalized version of Corollary 2 in [16], which implies

de(Cr)2\P®
N (€GP L) < e(Da+ 1) (<150 ©.17)

By empirical Bernstein inequality and a union bound, we have that with probability at least 1 — 6,
following proof of Lemma E.2, by some algebra, we have

[PnD(7(s:, a:)) — Bu[D((s, a))]]

)

21n (2P NIVEIEP0 9| r(5, )|, In (Pt vERE )
<ID(r(s, )z \/ : + e

La(p) n 3n
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E.9 Proof of Lemma E.9

Lemma E.9. Given an offline data D1.,, = {s;,ai,7i,8;)}1, for any T in a subset of Q, i.e., Q
such that sup & ||7(s,a)||L, () < C for some constant C > 1, then it suffices to ensure

B Vol(G” Vol(G”
M(CE - 1) 2In YUED | [D(r(s, 0))]| 58 In Y

ZD(T(sivai)) Sf + HD(T(&G))H?;(H) " 2 3
i—1

where Vol(GP) = (eP2(Dq + 1)) ({1 vV L}UZ)?Pe.

b

Proof. In this proof, we first convert the upper bound from Y., D(7(s;, a;)) to E,[D(7(s,a))]. In
the second part, we leverage the strongly-convexity of D for upper bound ||7(s, a)|| ., (,)- It follows
from Lemma E.§8 and apply the norm triangle inequality, we have

3

ol(GP ol(G®
2In YT D(r(s, a))[[5 In Y

Eu[D(7(s,a)] < ) D(7(si; ai)) — (7 (s, @)l 250

n 3n
1

7

o

Il
-

D(7(s;,0a:)) — €. (E.18)

According to the zero value of detection function D(+) and its non-negative property functions, i.e.,
D(1) = 0 Then we immediately have
Ey [D(7(si,0)] < Y D(r(si,a:)) —en == [Bu[D(r(s5,00))]| < D D(r(si, i) — e,
i=1 i=1
Furthermore, we have |E,, [D(7(s;,a;))] — E, [D(0(si, @:))]| < Yoiy D(7(s4,a;)) — &, where
70(-,-) = 1, such that E, [D(7o(s,a))] = 0 Motivated by the Lipschitz continuity of ID(-), we
construct two target functions in order to facilitate the proof,

D°(r) i= -, [D(r(s, )] B(r) == B, |  (r(s,0))” = Dir(s.)|.

Since D(7) is M-strongly-convex over 7, which implies that 15)(7) is concave, which implies that
ID(7) is M-strongly-concave with respect to 7 and /E,, [(-)?]. Then

(D°(7) — D°(10))

E, [(TQ(S,CL) — T(s,a))z] < 2

M
2(E, D —E,[D
= E, [(ro(s,a) — 7(s,a))?] < (B | (T(S’a))]M nl (TO(S’G))D. (E.19)
According to the definition of 7y, by some algebra, we have (E.19) is equivalent to
2E, [D(7(s,a 2E, [D(7(s,a))| + M
E.[(1-7(s,a)?] < w = |I7(s,0)||7, 0y < — [D( (M )l . (E.20)

According to (E.18), then we have [|7(s,a)|7,,) < (2(CZ, D(7(si,a:)) — €5,) + M)/M. By
some algebra, where we solve for C' = ||7(s, a) ”%2(;0’ then we conclude that

»
. M(E 1) " \/W ID(r(s, 0))]|42 n YA
D i) S———(— D ’ .
; (1(si,a4)) 2 +ID(7(s, ) 2500 n + 3n

This completes the proof. O

E.10 Proof of Theorem 4.1

Proof. In this proof, we aim to bound the regret J(7) — J(7) for 7 is return from (6) in maintext.
First, recall that we have a consistent confident set of value estimates as

Q., ={qeQ: sup |[n'> 7(si,a;)(ri + " (s}, m) = q"(si,0:))| <en},  (B21)
TE€Q5, i=1
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with the uncertainty control on important-weight class
Qs = {7‘0/ sup ||7o|lq for 7o € Q: £, (D, 7)) < 5n} . (E.22)
To €EQ

We can rewrite this confidence set Q. as

Q. = { sup [0 7(si,a0)(ri + 947 (s, ™) — ¢ (s1,0:))| < n, VT € ﬁan}-

TEQS, i=1
Now, for any fixed policy = € II and ¢,,, 0, we define the maximizer and minimizer in Q.
as ¢™ and ¢", ie., the maximizer ¢™ := argmaxgco,_ q(s°,7) and the minimizer q" =
argmingco_ q(s°, ) over the confidence set Q. , so that the follow inequalites hold, for any
T € ﬁgn,

n . . o (e o
EZT(S“CLZ) (T’HF’Y!I (5177() q (Szaaz)) <e, (E.23)
n = 1—7x
1 = 7(si,a;) (ri +v¢" (s}, ™) — q" (s, a4
1y (50, a) (ri + 790" (57, 7) = 4" ( ))‘Sgn_ 20
n 1—7

In addition, it is obvious that, forany A > O and 7 € ﬁgn andq € Q. ,

1 n T(Sia a’i) (Ti + VQ(S;a ﬂ-) (S’La al Wl Z 57,7 a?, |

n = 1—7
l Z T sl) a’L TZ + ’YQ(S'L" 7T) q(Sl7 a’l)) + )\ l Z D(T(S“ a’l)) S En + )\571 (EZS)

where the last inequality comes from the conditions (E.21) and (E.22). According to the definition of
the discounted return, J () = ¢”(s%, 7r) for any 7 € I, then we have

J(m) = J(7) = J(m) = ¢"(s°, ) < J(m) = ¢"(s°, %) < J(7) = ¢" (s, ).

where the second equality from ¢™ (s°,7) is the lower bound of ¢™ (s°, %) for 7 € I, and the last
inequality comes from 7 is the maximizer with respect to pessimistic value estlmate. According the
evaluation error Lemma E. 1, and note that g™ (s°, 7) is the upper bound of ¢™(s°, 7), thus we have

T(m) = J()
=Jtr) =)
(s ) — (")

F(0,7) — () + J(x) — (0, )
0y (a0 B [ () ~ T (s, 0)
g (0,m) <q< 0m) + . )

1—
Ea- [r+7¢" (s', ) — ¢" (s, a)]
v

+ (q”(som) +

T ) ) — g(so,w)
:IEd’r [T‘(S, a’) + ’Y£ (S/, 77) - £(57 a)] _ Ed" [T(57 CL) + 7‘17 (5 7T) B q7(53 a)]
L—n L=y
_Ear [(r(s,a) +vq" (', 7) — ¢"(s,a)) — (r(s,a) + vq" (', ) — ¢ (s, a))]

L—n
7H§d"r [A(W, 7T) - A<£7 W)]
= T
where we use the notation A(q, ) = q(s,a) — r(s,a) — vq(s’, 7). Based on this, it is sufficient

Ear [A@7,m)-Ad",m)]
1—y

)

to bound the

in order to bound the regret J(m) — J(7). To proceed the proof,
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we define admissible implicit exploratory distribution as p that satisfies the condition on uncertainty

p(s,a) — o . .
) ||y us < SUp_cg, 17(s,a)||Ly(uy := Us. With this
implicit exploratory distribution, we can decompose the regret error over p as,

control (7) in maintext, i.e.,

E A7)~ Ag"m)] B [(853 77 (5,0)) (@ ™) - AT m)]
-y B 1—7

€Ir1

+

E, [Tj’/ﬁ' (s,a) (A(q™,m) — A(q7, w))} , Bar [A(GT,7) — A(g™,m)] —E, [A(F, ) — Alg", )] |
1—7 11—

erry errs

(E.26)

Qs,, . . . Qs = . .
where T/ 18 the importance-weight estimator that To/u € Qz, , with the definition as

(s im amin B, (220 - r(s.0)) (G - A

rel-hull(Qs,) p(s, a)

" m)|,

where Ir-hull(Q5 ) is the linear hull of the function class ()5 . Note that, we use the linear hull to
enhance the expressivity of the function class over 7 and more robustness to the function approxima-
tion error. With the above error decomposition, we bound the major three terms erry, errs and errs
subsequently.

Bounding err;. Intuitively, the term err; is introduced by the function approximation error. Due

to the construction of uncertainty control class ﬁgn, the function approximation is well-controlled,
almost cannot be detected under small importance-weight class, i.e., 7,, is small. We explain this in
the following. According to Cauchy—Schwarz inequality,

em =, | (220 s.0)) [ (3@ m - )|

<8, [[22 o 0| (@@ - 2t ) |
<\[E [(ZE ) |yl [Ha@m - )Y
12— 18 (50 ST ) — A -

erryg
€IT11

On this point, it suffices to bound the terms err;; and errjs.

Bounding erry;. It follows the definition of p, it observes that H %

= U; < Ux. Also,
T

. . . . ﬁg. ~ Qg
since the importance-weight estimator 7, °» (s,a) € Qz, , so that HTp (s, a)‘

< Uj3. Due to
La(p)

In

the non-negativity of p(s, a), (s, a) and T:l/u (s, a) for any s, a over the support of y, we can obtain

the upper bound
| (fe5 - o) | smn o | (22) ] [ e)])

< min{(u;)27u132rime,2}‘ (E27)

Bounding err;s. It follows from the norm triangle inequality, we have

€IT12 :HA(F, 7T) - A(i? 71—)||L2(H) < HA(qu 7r)||L2(lL) + ”A(£7 7T)||L2(,u)'
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According to (E.23) and (E.24), and it follows from Lemma E.2 over the product space §., 5, =
Oz x Qg xII. Accordingly, for ¢ € Q. and 7 € II, we have sup E,[7(s,a)A(g,m)] S e
for

_ 1
TEan n

9 + €n,

= B8N (€,Ge,, ,5m: I . = B8N (€,Ge,, ,5m:l- .
) ) V21n (6 n,én | HLz(;)) Z/{;OVIH (6 s I ”L2(;))
en =Us n + 3n

The above inequality also holds for ¢™ and ¢™. Then, as ||7(s,a)| £, () < Uprime,2 for 7 € Qz, . it
follows from Lemma E.3, we have || A(¢7, )| £, ) + |A(@™, ™) || £y (u) < 265, /U3, which implies

u;el”l‘lg 5 S}L. (EZS)

Combine with the bounds in (E.28) and (E.27), we conclude the upper bound for err;:

V21n 8/\/’(6,95”,5n ,H-HLz(u)) U*Vin SN(€7g5n,5n 1\|'\|L2(H>)
*,2 4+ —= 5

5
n 3n

+éen

(E.29)

Bounding err,. It first observes that T[?/Z" € Ir-hull(Q5,), and (1 — v)errs <
SUD_ ¢l (@5, ) E, [7(s,a) (A(¢™,7) — A(¢™,7))]. Before we proceed to bound, we first shows

the equivalence between the 7 €  and 7 € Ir-hull(2) when measuring the statistical complexity for
any linear functional Ajinear () With respect to 7. That is Sup, ¢ir.nun(q) |Pinear(-)| = SUp,eq [Minear ()|

Let’s consider any 71 € Ir-hull(2), i.e., 71 = >, B;7;, where 7; € Q forany i and 3, |3;| = 1. For
any Njinear(+) and any 71 € Ir-hull($2), we have that

h (Zﬁm)‘ = Zﬁzh(ﬁ)

As (E.30) holds for any 71 € Ir-hull(2). Take maximum over 7' € Ir-hull(£2) on the LHS, we have

|hlinear(TT ) | -

<> 1Bl b (m)] < sup [h(7)] (E.30)

sup ’h[inear(TT)‘ < sup |h(7)]. (E.31)
71 €lr-hull(2) TEN

On the other side, as €2 C Ir-hull(€2), it is easy to observe that

sup |h1inear(TT)| 2 sup |hlinear(7—)‘ . (E32)
71 Elr-hull(2) TEN

Combine (E.31) and (E.32), we conclude for Micar(-), SUD terhun(e) |Pinear(71)| =

SUp;cq |Plinear(7)| . Note that ﬁEu [7(s,a) [A(¢™,7) — A(q™, m)]] is linear in 7 due to T is

the weights over average Bellman error A(-) which enjoys the linearity, and belongs to hjinear(-),

therefore the above derivation can be applied. According to the equivalence between 2 and Ir-hull(2),
to quantify the statistical error is sufficient to bound

sup E, [7(s,a)A(q7, )] — inf  E, [T(S, a)A(q”,w)}
r€lr-hull(Qs,,) T€lr-hull(Qz,,) -
= sup E,[7(s,a)A(¢7, )] — inf E, [7(s,a)A(¢",m)].
7'655” T€EQG, 7
CIra1 CIr22

Let Tmax and T, be the optimizer of erry; and erraq, respectively. And we define an auxiliary
objective function, which leverages the convexity of D(-) over 7. That is,

n

PuLo(7,0) = 3 [rlss,00) (i 94 (s1,m) = als 1)) = AD(r (s, ),

=1
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for m € ﬁgn, q € Qc, . We make the decomposition:
€ITg] — €IT22 :E,u [Tmax(sa a)A(q7, W)] - IE# [Tmin(sa G)A(Fa W)]

€Irray

+E, [Tmin (s, a)A(¢™, 7)) — E, [Tmin(s, a)A(q", 77)] .

errag
And therefore, to bound errp; — erras, we are sufficient to bound errs; and errss.
Bounding errs;. It follows from Cauchy-Schwarz inequality, then we have

erra; < \/IEH [(Tinax (5, @) — Temin (5, @))2] By, [(A(7, 7))?]. (E.33)

eIra11 €Ir212

Bounding erry;;. Recall Lp(7,q) = E,[7(s,a)(r +vq(s',m) —q(s,a)) — AD(7(s,a))].
For fixed ¢ € Q. and 7 € Qz ., we show Lp(r,q), is AM-strongly con-
cave with respect to 7 and E,[(-)?)]. Let us consider an counterpart for Lp(T,q),

ie, L3(r.q) = Lo(r,q) + 22E,[(r(s,a))?], so that we have L{(r,q) =
E, [r(s,a) (r+vq(s',m) — q(s,a)) — A[D(7(s,a)) — & (7(s,a))?]]. Since D(-) is M-strongly
convex with respect to 7, so L3 (7, ¢) is concave, which implies that £p (7, ¢) is AM -strongly-concave
with respect to 7 and E,,[(+)? ] It follows from the strongly-concavity, and plug-in Tyax, Tmin and ¢7,

2(Lp(Tmax; 47) — Lo (Tin, 47))
AM '
This implies it is sufficient to bound Lp(Tmax, ¢*) — Lp(Tmin, ¢7) for bound erra;;.
Lp(Tmax> ™) = L (Tmins ¢7) = Lp(Tmax, 4) — PrLlp(Tmax, ¢7) + PrLp(Tmax; ¢7) — PrnLo(Tmin, ¢7)
erra111 CIr2112
+ PnLp(Tmin, ¢7) — Lp(Tmin, ¢7) -

€Ir2113

E, [(Tmax(s, @) — Tiin (S, a))g] < (E.34)

It follows from Lemma E.7, with the defintion on the boundedness of I class
terms, ie. [D(r(s)IE™ = supeq, ID(r(s,a)lrgy and [D(r(s, )™ —
SUp_ g ID(7(s,a))| L., the terms erra111 and erra112 is upper bounded by

)\/2 In (eP maX{DSZ7DQ,§L)1‘[}+1)3(LZ/{;)2D

=(UsV + D (r(s, a)) 527,

Q(UPrime7ooV + )\HD(T(S, CL))Hggme) ln (eD maX{Ds’l,DQ=(SDH}+1)3(LZ/[;)2D
3n

According to (E.25),as ¢ € Q. and T € (NZ(;", thus erra112 < 2(e,, + A, ). Therefore, combine
with erraq12, we conclude that

n

+

b

2 ~ 263
E, [(Tmax(s, @) — Tmin (S, a))ﬂ < SN (52 +en + )\O’n> = (E.35)

Bounding err»;,. First, it observes that the density ratio class ()5" is upper bounded with respect
to weighted Lo (u) norm, i.e., SUp, g I7(s; @)l Loy < U3 Tt follows from Lemma E.3, we have
US|A(G™, )| Lo () = SuP, e By [7(s,a)A(q™, m)]| < en, where the last inequality comes from

g™ € Q. and (E.21). Therefore, we conclude that

verrag < —sn (E.36)

It combines with (E.35), (E.33) and (E.36), we have

263

< u 7 (E.37)
2

€IT21

28



Bounding erry;. We first observe that E,, [Tmin(s, @) A(q7, 7)) — E,, [Tmin(s, @) A(¢", 7)| =
E, [Tmin(s, a) (A(q7, m) — A(q", 7T)>] . Then it follows from Lemma E.4 and I(E.21), with the
norm triangle inequality, we can conclude that

errgg < Erll. (E38)

Now we summarize the bound for erry throught combining the upper bounds on (E.37) and (E.38),
we have

1 . 3972 1n 8N(Evgsn,§6n7”'”112(;0) 82/{;0‘7 In 8N<Evgzn‘5;;7”'HL2(;L))
erry < —— (U +
1 n 3n

en | 2e3
En 25800 ). E.39
T Vo T 5) (E.39)

Bounding errs. In the following, we proceed to bound the term errs. First, we make the decomposi-
tion as follows:

(L—verrs = Y [da(s,a) — p(s, )][A(q7, 7) = A(¢", )]

ac€A,seS

= Y La,sa)-pls.a)z0}dx (5, @) — p(s,@)][A(GT, 7) — A(g", )]
acA,seS

+ Z ]l{d,r(s,a)fp(s,a)<0} [dﬂ(saa) - p(87a)][A(q7a 77) - A(ia 77)]
a€A,s€S

§ Z ]l{d,((s,a)—p(s,a)<0} [p(s7a) - dﬂ'(s7a)”A(q7a 7T) - A(ia 71')|
a€A,seS

CIT31

+ Z ]l{dw(s,a)fp(&a)ZO} [dﬂ(sva‘) - p(Saa)][A(qiﬂa 7T) - A(£7 7T)] .
ac€A,seS

CeIr3o

Next, we bound the terms errs; and errsy separately.

Bounding errs;. We first observe that 1iy (s.a)—p(s,a)<0}[P(5,0) — dx(s,a)] =
(p(s,a) — dx(s,a))", and we have

CIr3; = Z ]l{dﬂ(s,n,)—p(s,a)<0} [P(S, a) —dr (37 a)] [A(Fv 7T) - A(i? W)]
a€A, seS

= > (p(s,a) = dn(s,a)) " [A(qT, 7) — Alg", )]
a€A,s€S
= ]E(p(s,a)—dﬁ (s,a))t [A(qu TF) - A(qﬂ-a ﬂ-)}

By the condition that ||7(s, )| £, () < U3, and it follows from Lemma E.3,

VEAAG )2 or /B, (A7, 7)?)

_ 8N (€.9¢, 5,01l _ 8N (9., 5,00
*\/Vzln ( en,on Lz(u)) ULV In ( en.Zn Lz(“))

Us . + T + U5\ JE

< . E.40
N Uz (E.40)
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Since || ﬁ%i Z) 220y < Us and (p(s,a) — dr(s,a))" €10, p(s,a)] for any (s,a), we have

E(/)(s,a)—dw(s,a))Jr |A(q7’ 7T) - A(i, 7T)|
<E,[|A(q™, m)[] + E,[|A(q", 7)]]

k, [f’( NG >]+E,L[ (50) A (g, )

(s, a) (s, a)
p(s,a) p(s,a)
H,u(s,a) HL2(#)HA(Q 71—)||L2(lt) + ”,LL(S,(J,) ||L2 ,LL)HA(q 7T)HLQ(;L)
V 5 gsn on ” HLQ(}L)) 22/{* Vln 8. (Eygsn,&nv‘l'HLQ(u))
<U; 8 + —= = 8 + Us\/2o. (E.41)

Bounding errs>. We now bound the term errss. It observes that

eIr3e = Z (dﬂ(87 a) - p(S, a))+ [A(£7 7T) - A(q?v W)]
acA,seS

= Y (dals.a)  pls, @) (- vPT)AGe e,

a€A,seS o

where A=_ = = ¢™(s,a) — ¢" (s, a). We make the decomposition with respect to yi(s,a) > 0 and
(s, a) =0, that is

€IT32 = Z ﬂp,(s,a)>0 (dTr(57 a) - p(87 a))+ (H - 'YIPTF)AqT’—ﬂ
acA,seS

+ Z ]lu(s,a)=0 (dﬂ'(sﬂ a) - p(57 a))+ (]I - fYIPﬂ-)Aqiﬂfg
a€AsES

< Z ]lu(s,a)>0 (dﬂ(sv CL) - p(S, a))Jr (H - ’YIPW)Aqi"fﬂ
acA,seS

+ Z n(s,a)= O (S,G) _P(Sva))+ (I[—’}/IPW)A(I?_Q
acA,seS

It observes that, for state-action pairs (s,a) € S x A with u(s,a) > 0,

[(T=APT)AZ_ | =lva™(s",m) — q7 (s, a) = (vq" (5", ™) — ¢" (s, )]
<@ (s',m) = g7 (s',m)| + [q7 (s, a) — ¢" (s, a))

— - 2e,(1+
< s 147 [F(s0) - ¢ (s,0)] < 20T

)
a€A,seS,u(s,a)>0 - 1-— ¥

where the last inequality comes from Lemma E.6, and ¢, is defined in Lemma E.6 with some
modifications adapting to ¢; and €5 in (E.21) and (E.22), and the function class G, 5, . Therefore,
we have

5 En
n * 3n Tup

N 1Je on Il L N. 1T ey onll” L
\/2‘72] 8 (Eg n,0n I HL2(I)) o2Uu. ‘f] 8 (eg n,on Il HLQ(} ))
Er =
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where U, > 0. Next, we have that

2e.(1 47y
errze < Z ]ly(s,a)>0 (dﬂ'(sa a’) - ,O(s, a’))jL 1(7 )
a€A,s€ES v
+ Z ]lu(s,a):O (dﬂ(57 a) - p(s, CL))+ (H - VPW)AF—ﬂ
a€A,seS
2e-(1 4+~
< Z (dﬂ'(s7a’) —p(s, )>+ 1( )
-7
a€A,seS
+ Z ]lu(s,a):O (drr(57 CL) - p(S, a>)+ (I[ - ’YIPﬂ)Aqifﬂ
a€A,seS
2e,.(1 4+
2 S s,) ol )
-
acA,seS
Y Tuearmo| (da(s,0) = pls,a) " (1= 7P ) A |
a€A,seS
51: > (de(sia) = p(s,a))"
acA,s€S
+ Y Lua=o| (@x(s,0) = pls,@)) " (L= YPT)Agr_ys -
a€A,seS
Optimizing errs, for the set contains {p : || Z Ezzg | o () < U3}, we obtain the tight bound that
errsy S min { Z 1,65,0)=0 ( (dr(s,a) = p(s, a))+ (I- ’YIPW)AF—Q)
p:|| ZEZZ; || Lz(u)gug a€A,seS
F1 Y sl | (E42)
a€A,sES

Combine the upper bounds (E.41) and (E.42), and we summarize the upper bound for errs as follows:

1 [7rm ™ (evgsn,a;,u'luﬂm) U~V In 8N<e,gsn‘e§,||~\u2<u>)
errs S—— | U + an
n

+ min { Z ]lu(w):o((dﬂ(s,a) — p(s, a))+ (- WIP”)AF,g)

| (s, a) % .
{p‘ “(S)HV)HLZ(M)SMQ} a€A,s€S

$ ST (dalsia) — p(sa))* } +u;@>.
’yaEA,SES
(E.43)

According to the calculation of N (€, G, 5., || - [|1.,(,))» and use the notation Vol(©) for the function
class complexity, i.e., Vol(©) = (e? max{Dq, Do, Dri} + 1)3({1 V L}U3)?P where D = Dq, +
Dg + Dri, we set &, as: €, = O(n~'/2U3 (/In{Vol(©)/8} + UL /zg) for ensuring the best ap-
proximator for ¢ is in Q. . According to Lemma E.9, we set &,, = O(n /23 L\/In{Vol(©) /3 } +
M (UF — 1)?) The set up for 7, is to ensure sup,cq. 17(s, @)L, < U3, where U3 € [1,U3).
And Then it follows from the regret decomposition (E.§6), and the upper error bounds for erry, erry
and errs in (E.29), (E.39) and (E.43), by some algebra and if we ignore the high-order fast terms, we
conclude that, w.p. > 1 — 4, Then it follows from the regret decomposition (E.26), and the upper
error bounds for erry, errs and errs in (E.29), (E.39) and (E.43), by some algebra, w.p. > 1 — §, we
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T

J(r) — JF) < %o (5{1 + \/<1 YUz + L]’\?) max{(c0)"/?2, (0)*/4}

—+ min {E(dﬂ-—p)+ [1M:0(H—’YIPW)A(TW_£(S;G) +]lu>0€£l]}>,
GRIER
(E.44)

where &7 = Uz (V + L)/In{Vol(©)/6}/(nM) + /UZ (V3 + V2L)/M (In{Vol(®)/6}/n)i +
U (V. + L)In{Vol(©)/§}/n and &F = 1—y)"Y(V + L)y/In{Vol(©)/6}/n
+ ULV /U3)In{Vol(©)/§}/n). Furthermore, if we ignore the high-order fast terms using
a big-Oh notation (’N), by some algebra, we conclude that

_ 1 (. I {Vol(©)/5 Coe
Jw) — J() < Mo(%ww\/ nVOOVOL e o () /2, (c0)) (B49)

In{Vol(©) /5}] }) |

+ min {IE(dﬂ_p)Jr [1—o(I— 7IPW)Aq771(5, a) + 1,50y ,
{oll2l, <t}

n

(E.46)
where we use €, denote constant terms depending on z. This completes the proof. [

F Proof of Corollary 4.1

Proof. To complete the proof, it is sufficient to choose a particular p® such that H ﬁ ‘

L) <Ujto
2(p
obtain a regret as the upper bound for the regret in (E.44). For any comparator policy 7°, since

min {E(dﬂ.op)+ [1,—0(I— VIP”)A(I??Q(S, a) + 1,5083] })
{p:HEHLNMSZ/@}

By o poyt [Lu=0(l = YP™)Agr_gx (5,0) + 15083

T —qT

therefore when we set p® = d,o which satisfies the condition that Hﬁ‘

w < U3, because
La(p
7w € II(U7 ) based on the definition of II(14] ). In this case, it observes that

E(go—poyt [Lu=o(I = YP™)Agr_g=(s,a) + 15063 =0

Then we have

I = @) < 720 (5? + \/ (1 Uz, + Lj\;) max{(e0)"/2, (sg>3/4}> (1)

with the assumption that e € (0, 1], we have max{(c0)'/?, (0)*/*} = (¢0)'/?, and therefore if
we ignore the high-order fast terms, we conclude that

m{v:#ﬁ;hr\/(l +Uz, +U§o/M)EQ>'

J(r®) — J(7) < %6 (u;(v + L)

O

G Proof of Corollary 4.2

Proof. On the condition of Corollary 4.1 and set g = 0, we can follow the proof of Corollary 4.1,
and obtain the regret bound in (F.1) but with the modification as, w.p. 1 — 6,

I(°) = J(7) < T O(ED)
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for & = U5(V + L)/In{VoI(©)/6}/(nM) + /U3 (V® + V2L)/M(In{Vol(©)/5}/n)% +
UL(V 4+ L)In{Vol(©)/§}/n. Welete = E'/(1 — ), and we solve this equation for n, by
some algebra, we obtain the sample complexity:

he O <( Us(V+ L)/VM)?  UgV2(V + L)/M)*T U (V + L)) " v01(e)> |

e2(1 — )2 e133(] — ~)1.33 £(1—7) 5
This completes the proof. O
H Proof of Theorem 4.2

Proof. To complete the proof, it is sufficient to set p = d™ and we can obtain the regret following
the proof of Corollary 4.1 witheg = 0, i.e.,

I(a) = JF) < O,

where £ = U3 (V + L)/In{Vol(©)/6}/(nM) + /U3 (V3 + V2L)/M(In{Vol(©)/6}/n)% +
UL (V + L) In{Vol(©)/0}/n. As d™ = p, so that ||[d™ /u(s, a)| 1, (u) = Tam s, = 1. Therefore, it
is feasible to set U3 = U7, = 1, and this completes the proof. O

I Proof of Theorem 5.1

I.1 Proof of Lemma 1.1

Lemma L1. For k € [K], suppose ¢" € Q and 7% € Q such that ||7%(s,a)|| 1, < C1 and
17%(s,a)||r.. < Co where the constants Cy > Cy > 0, it satisfies that

%Z?zl (s, a5) (Ti + ¢ (ngk) — " (si, ai))
I—x

|§5.

for some € > 0. There must exist an MDP {S, A, P, v, Tk, so} which is identical to the true

environment MDP {S, AP vy, r, so}: MDP* only except the reward function r (s, a) is iterative
based when Py, = P, which is defined as

ri(s,a) = ¢"(s,a) — YEg p(|s,0) [Z 7 (a')s")q" (s, a’)} :
a’'€A

In addition, such reward functions, for any k € [K], are approximating to the true reward,

22 1n SN(G’Q'“;J\'”@(M)) . 20,V In 8N(Evgk-5\|'\|L2<m)

n 3n

[rx(s,a) —r(s;a)| L2 Scl\/

+ e,

where GF := QF x Q xMforr* e QF. And q" is the true action-value function under the policy T"
in the MDP {S, APy, 1y, SO}.

Proof. Following the definition of r, we observe that

qk(sa a) :rk(sv a) + ’}/ES’N]P(~\S,¢1) [ Z 7Tk (a,|8/)qk(s/a a/)‘|
a’€ A

=1%(5,a) + VEg P, (]5,0) lz 7rk(a'|5’)qk(s’,a’)] : (L.1)
a’€A

The second equality comes from P, = PP for any k. Thus the equation realizes a Bellman equa-
tion over the MDP {S, A, Py,v, 7y, s’} for the policy 7*. Further, this implies that ¢*(s, a) is
the corresponding true action-value function. Following the proof of Lemma E.2, for the MDP
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{8, A, Py, v, 71, s°} and we define the subset of 7% with || 7% (s, a)|| 1, () < Ch, ||7(s,a) ||, < Co
as (2% Then we have

sup ’IE [T *(s,a) (r(s,a) + " (S/,Trk) — qk(s,a))]‘

TheQk
2772 In T Mlzaw) 0, 1 SV lzan)
=G + : +e.
n 3n
Since ||7%(s, a)| 1, () < Ch. it follows from Lemma E.3, we have
G \/IE (s,a) +7g" (s, 7%) — ¢¥(s,a))’] 12
72 NI ) g0 g1y V(a6
<Ci 0 + 3 +e. (1.3)
n 3n

Due to the equivalence P, = IP, we have

(s, a) = ri(s; a)llL2 ) =

T(Sa a) - qk(87 a) + ’yEs’N]Pk(-\s,a) Z ﬂ-k (a/‘8/>qk(sl? Wk)]

a’€ A L2()
2
—VEl(r(5.) + 90" (5, 7) = ¢*(5,))")
7210 M aw) g0 gy PG o)
<t : + 2 +e€.
n 3n
This completes the proof. -

1.2 Proof of Lemma 1.2
Lemma L.2. Define
g™ = inf supE,[(q(s,a) — B™q(s,a))?].
qeQ

P
Under Assumption 1-3 in maintext, for any m € II,7 € Q and q € Q, given an offline data
D1 = {8i,ai,7:,85) 1, thenw.p. > 1 — 6,
[Pn7(si,ai) (ri +9G" (si,m) — " (si,0:)) | < €,
for

I Yel(©h)

en =(3V2UFV + 2v2N|D(7 (s, ) |5 y) || —>—

n

6U T + AN||D(r(s, a))||V8 ) In Yo
N DGO W

where Vol(01) = (eP max{Dq, Do, D} + 1)3({1 vV L} )P for D = Dq + Dg + Dr1.

Proof. First, we plug-in ¢™ into E,,[7(s,a)A(¢™, m)] for any 7 € Q, where A(q,7) := r(s,a) +
vq™ (s',m) — ¢"(s,a). According to Cauchy—Schwarz inequality,

|Eul7(s,a)A(G", 7)]| < EL[l7(s,a)||A(G", ) \/JE [72(s, a)|E, [A%(g™, )] <U3 \/Zg.
(1.4)

where the last inequality comes from the weightd Lo (1) boundedness over 7 and Assumption 1 in
maintext on realizibility error over Q. It then follows from Lemma E.7,

Ey |7(s,0)A(g, ™) = AD(7(s, 0))] —Pn<7(si,ai)Ai(q,7r)—)\D(T(si,ai)))‘ <ein
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where A;(q, ) :=r; +vq (s;, ) — q(s;,a;) and €1 ,, denotes the upper bound of the inequality in
Lemma E.7. With the norm triangle inequality,

E, [T(s, a) A, 7) — AD(r(s, a))} —P, (T(si, ) A (@7, 7) — AD(7 (s, ai))) ’

>

P, (T(si, ) A (77, 7) — AD(7 (s, ai))) +E, [AD((s, a))]‘ _

B (s, )G )|
This indicates

P, (T(si, i) Ai(G", ) — AD( (s, ai))) +E[AD(r(s,a))]| < e1m + U \Ea
where the inequality comes from (I.4). Apply Triangle inequality again, the above inequality implies

Pn (T(Siaai)Ai(aﬂaﬂ-) < +Z/[g\/<5+517n

If follow Lemma E.8 and plug-in € ,, from Lemma E.7, by some algebra, we conclude that

P, AD(7(s;,a:)) — E, [)\]D)(T(s, a))]

In Vol(OT)

<(3VRUFV + 2V2AID(r (s, @)1 £5) || —>—

~—

Pn(T(Suai)Ai@ﬂﬂT

6UT T + AN|D(r(s, a))[|VB ) In Yo
N DGO

This completes the proof. O

1.3 Proof of Lemma 1.3

Lemma L.3. Define
q" := inf supE,[(¢q(s, a) — B"q(s,a))?],
qeQ P

for some admissible distribution p. Under Assumption 1-3 in maintext, for any m € 11,7 € Q) and
q € Q, given an offline data Dy., = {8, a;, 14, 8;) }y, thenwp. > 1 -,

Vol(eT)
2In —5

n

[y [7(s,0) (r(s,0) + 73" (s',7) = T (s, 0))]| < 2(2U5V + 2V2A[D(7 (s, 0))[1%,.)

4(2UTV + 4N|D(7(s,a))||¥B In Yel©h)
A LUCRITTAIE. Sy

where Vol(©1) = (eP max{Dq, Do, D} + 1)3({1 vV L}U3)?P for D = Dq + Dg + Dry.

Proof. According to Lemma E.2, for any ¢ € O, 7 € II, 7 € {2, we have
B [7(s,a) (r(s,a) +vq (s', ) — q(s,a))] = P [1(s4, a5) (ri +vq (85, 7) — q(s4,a4))]]

o Vol(©1) 1. Vol(eh)
n 3n

As this holds for any ¢ € Q, thus it must hold for g which is in Q with approximation erorr €g. Then
by trainagle inequality, we have

By [7(si, ai) (r(s,0) +7q" (s, 7) = @7 (s, @))]| < |Pp [7(si, ai) (ri + 7" (55, 7) = T (5, 04))]|

= Vol(ot r vr1.. Vol(of
2772 In YO L 2V %.

T n 3n
According to Lemma 1.2, we conclude that
_ UB 2anOlg@T)
ST T
[y [7(5,a) (r(s, 0) + 437 (s',m) = T (5, 0))]| < 2(25V + 2V2AID(7(s, ) [ ) \| ————
— of
A(2UTV + AN|D(7 (s, a))||{B ) In YeLOD
LA ID(r(s, )l ) 222
3n
O
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1.4 Proof of Lemma 1.4

Lemma L4. Suppose P,D(7(s;,a;)) < 2 for some 7 € Q and €2 depends on n but it is not
necessary to be 0. Then, w.p., > 1 — 6,

1 2 1n Yell@) LU UT In YU
HT(S,CL)H[Q(M) < \/M{Lug\/ né ) 23n 5 _|_4/25]2+\/M}.

where L is the local Lipschitz constant.

Proof. To proceed the proof, we first convert the upper bound for P,ID(7(s;, a;)) to the upper bound
for E, [D(7(s;,a;))]. According to Lemma E.8, we have

Eu[D(7(s,a))] S PuD(7(si,a:)) + €5, 1.5)
where

200 YD 9 D(r(s, )|} In YU
e, = ID(r (s, a)I72 né + T .

for Vol(GP) = (eP2(Dq + 1))({1 vV L}UZ)*P2. Tt follows the inequality in (E.20) and combine

D o
with (1.5), we have HT(s,a)HQLZ(N) < W

To simplify the notation, we define

ol(GP Vol(GP
o1 _ 2, 2D(r(s, @) 72 In *E
" n T 3n ’

According to the Lipschitz continuity of D(-) with local Lipschitz constant L, we have
I7(s,a)l|7, () < ID(r(s, )5 nen” +2(e02 + &) + M < LUZeRt +2(e5? + ) + M
PN L2 (p) = i < o

LZ/[T ©,1 2 M
= [I7(s, )20 + <M) I7(s: @)l Loy — 37 (07 + &) — 37 <O

Therefore, it suffices to solve the root of

Lu‘f‘ <,1 9 M
2 2, .D _
17 (s, @)1,y + (M) I17(s; @)l Loy + g7 (En" +en) + 77 =0,

and we conclude that

\/7”7_(5 a’)HLz(u) <LU T O ! + 25%2 25]],]2 + VM

21 Vol(GP) LU, Z/[Tl Vol
gLug\/ nn5 +2 +\/25D+\/

where the last inequality comes from the Lipschitz continuity of ]D)() This completes the proof. [J

I.5 Proof of Lemma 1.5

Lemma LS. Define

ot = argma {507+ ] S o) (o) = 13— 2057 | - A (r(sn)

T A —nl

. 2
for qN’Tk = infeeo E, [(q(s,a) - B”kq(s,a)) ] Then for any each iteration k € [K|, the maxi-

mizer TF(s;, a;) at k-th iteration satisfies that

« Vol(Of
P.D(7F (54, a;)) <(1 7) o + (31/171_/—&—2\/5)\“]1))(7(3 a)l|7Z ) 21 E; .
n i, i) > 2 1—~ 2 ’ La(p) n
2(3ULT + 2\ D(7 (s, a))|| ¥ ) In YLOD
( [D(r ?En NIEE) 5 Jru(;@),

where Vol(01) = (eP max{Dq, Do, D} + 1)3({1 vV L}3)?P for D = Dq + Dg + Dry.
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Proof. To proceed the proof, we first define a constant 7 (s, a) := 1 for any s, a, and we observe that
* n
c ,
qk(so, Wk) -+ sup {(1—W)n‘ ZT(Si, a;) (qk(Su ai) —ri — Wk(sga Wk)) ‘} - /\fn(Tf(Sn Gz‘))
T i=1

>q*(s°, 7%) + sup {(lc*v)n‘ iT(Si, a;) (¢" (si, ai) — ri —vq" (i, 7)) ‘ — A (7(si, ai))}
i=1

=g (s 7) + sup {ufwl‘ iT(si,ai) (7" (51, a5) = s =77 (s, 7) ) | = )\fn(T(si,ai))}
)+ g<> (7" (s0000) = ri =™ (s, 7)) | = A (78 (51, )
> (80, 7%) + ﬁ iz:;m(si,ai) (@ (s1v00) = 7 = 47 (53,7 ) | = M (o(5i, )
() + 2_) (7" (siva) =7 =77 (51,75 ) | = =V,

where the last inequality comes from the boundedness condition on ?]“k, and the non-negativity of
the second term. Based on this, we further have

An (TF(si,a)) — 7 (s, 7%) — sup

T

(] Srtowad (7w = a7 7)< 7.

which directly implies with Lemma 1.2,

1 ~ o - 21n Vol(O1)
& (7h(s1,01)) <5 (W + 1o 7{(:%z/fzv + 2V2A(D(7 (s, a)) [ 7,,)) —
2(3UTT + 2\||D(r (s, a))||VB ) In YD
n (83U ID((s,a))[IE2) 5 +u;\/gz>.
3n
O
L6 Proof of Lemma 1.6
Lemma L6. For k € [K], the following inequality holds, w.p. > 1 — 6,
1 K
? Z {J(ﬂ-k7 {Sa A7 IPk:a Y5 Tk 50}) - J(ﬂ-k)}
k=1
% Vol(©1)
V EQ c * Y 7 prime 2 11’1 5
Sl—V + T (3U2V+2)\|\D(T(s,a))|Lz(ﬂ)) -
_ ) :
2(3Usold3 V + 2X|[D(7 (s, a)) |[77™€) In YoLE) N ) 1
= ol A/ O | MU O(—).
where UF € [1,U), can be choose via controlling X\ and ¢, and
HD(T(Sva))'er;l?;) = SupT:HT(s,a)\|L2(H)§L[2* ||D(T(sva))”L2(/L)) and ||D(T(s,a))||PL"ZW -

SUD 1 (s,0)]11, oy <ttg ID(T(5,@) Lo, and Vol(©T) = (e” max{Dq, Do, Dn} + 1)*({1 Vv
L}Z/{g)ﬂjfor D =Dgq+ Dg + Dp.
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Proof. To facilitate the proof, we first define some useful optimizers as follows:

qr (8077Tk) + WEM [T(Sv a) (EI7T (s,a) —ri —vq" (3/7 7Tk))] - )‘EH[D(T(S7G))]}

;= arg max { min {q(so,ﬂ'k) + {(1_0*7)n’ im(siaai) (q(si, ai) = ri —~q(s}, 7)) ‘ - )\fn(T(Sivai))}}}

(
Tf ‘=argmax {qk(so»ﬂk) + ﬁ’ ;T(Siaai) (qk(5i7ai) —Ti— ’qu(sgaﬂk)) ’ — A& (T(Si7ai))}

g

T

According to Lemma 1.1, ¢* is the true action-value function with respect to the MDP

{8, A, Py, v, 7k, s°}, therefore we have,
(Trk; {87 A7 ]Pka YTk, SO}) - J(ﬂ-k) = qk(SO’ ﬂ—k) - J(ﬂ-k)‘
Based on this observation, it suffices to upper-bound the following term,

¢"(s°, 7*) — J (")

<q*(s°,7%) + sup

} 27(8i7ai) (¢"(si, a5) — i — vq" (s}, 7*)) ’ — X (7F (54, a1))

(1- 7)n —
+ 2 (FF (51, a0)) — T (%)
<q"(s° +Sup{ — (ZT si>a;) (q"(si, a:) — ri — v¢" (57, 7%)) ‘ —/\fn(T(Si,ai))}
=1
) —

+ A6 (PR (s, i) — I (x), (1.6)

Follow the definition of ¢* which is the minimizer of
) c* 2
q(s”, Wk) +sup {’ ZT(Si, a;) (Q(Sm@i) — i —vq(s;, Wk)) ‘ — A (Tll)(sizai)) }
v (A=)l
Therefore, for Zj’rk in function class, we have

qk(soa Wk) + 51T1p {(1_0*7%‘ iT(Si; a;) (qk(si; a;) —ri— qu(s;, Wk)) ‘ — A (T(Si, ai))}
=min {q(SOaﬂk) + SlTlp {(1_0*)71' Zn:Tw(Si,ai) (Q(5i7ai) —Ti— ”YCI(SQJT]C)) ‘ - Agn(T(Siyai))}}

v i=1

<q (s, 7F) + 07’ Zn:Tf(Si,ai) (Tk(sz’,ai) — i =G (s, ) ‘ = A (7 (54, 04)



By this, we have (1.6) is upper bounded by

k

Tk(sovﬂk) JFSEP{ 7(si, ai) (T'(Si,az‘) - T ’Yf}ﬁk(sgvﬂk» ‘ - )\fn(T(Si,az‘))}

(1- ’v)n‘ —

K2

+ >\€'ﬂ (;k(sia al)) - J(ﬂ-k)

* n

W‘ ;Tw(%ai) <Zlﬂk(3i7az‘) —r;— ’W}Tk (S;,ﬂ'k)) ’}

+ Aén (Fk(sz‘, a;)) — J (")

k

< (0,7%) +sup{

ZTk (s°,7*) = J(7*) + sup {(16*‘ ZT(Si, ai) (a”k(si,ai) —Ti— 75“(%”%) ‘}
e T nl=
Az
+ A&, (?k(si, ai)) .
T
Bounding A;. According to Lemma E.1, we have
Byt [T (5,0) = (s5,0) =47 (s, 75)] _ 07 (5,0) = r(s:0) =97 (/s ™) | a)

A =

1—7x 1—7
As 7F € I and thus d”k is an admissible data distribution, it follows Assumption 1 in maintext, it
follows

Nﬂ.k ~7!‘k
g™ (s.a) = r(s,a) =G (s',7%)|| (gor ) _ \VFe

1—7 “1—7

Thus, we have A < E

Bounding A,. According to Lemma 1.2 and 1.4, with a proper choice of A and ¢* in the proof of
Theorem 5.1, we can have a well-controlled uncertainty concentrability coefficientl/5. Replacing 7
with 7%, we then have

SITIP {(1_02)71‘ iT(Suai) <‘Trk(5i7ai) - T ’Y‘Trk(sga”k)) ’}

N 1y Yel©h)

{ (3V2U3V + 2V2\|D(7 (s, a)) |27 )| | ——2—

c
<
—1

- La(p) n

_ . .
6ULV + AX|[D(7(s, a)) ™) In YeUO)
+( [ID( (?m DITS) " un o b

where U3 € [1,U3) and [D(7(s, )7} = SUPrr(s.a)ls, o <us D(T(s,a))l L2, and
ID(7 (s, a))lI T = SUP~r(s,0)l11, 0 <tz IP(T(5,0)) |2

Bounding As. Follow a similar argument in Proposition 1 of [28] and the definition of 7*, by some
algebra, we have, for any (s, a),

o1 [ (r(s,a) + 4T (s 7) — 7 (5,0)) \ |
@) ( 1) ﬂ '

It follows from Lemma 1.3, for any (s, a) such that u(s,a) > 0, we have

Fk(s7a) =

k k
r(s,a) + 4" (s',7") =@ (s,a)|

- Vol(©1) 74 L) Vol(©T)
<(V 4D 2In ~=2 +uoo(v+ A) In 2242

Aﬂ_k
Usor/E0 :=€T .
i 3 + U/ €
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And thus for any (s;, a;) where i = 1, ..., n, we have

1 N k k 1 P
1 —’YC (T(sivai) +q" (sgvﬁk) -q" (si»ai)) N .

This directly leads to
+

(1—W))\§n( sl,aZ ZD(

We note that for sufficient large n, we have c*egf — c*UU3 \/€g and thus

ek + .

)t (SE )| {(m/)1 (e uwu?*@)r

Al =7) Al =7)
As D' is monotonic increasing, and since % > 0,, so (D) (%) > 1, and
according the property of divergence function D’(1) = 0 thus

1 UUS o T 1 UUEJES
o) (SRR o (),
(1—7) (1—7)

for sure. This immediately implies that

ot [T\ oo - (et CUSUSES
D(“”’ 1<A<1—7>>>_>D<(D) ayD)

Therefore we conclude that
1, UUS o 1
A 5)\]1))(]1))’ 1(2)+(’) —).
For sufficient small realizibility error |/€g, and ¢* =< A, for bounded U, and /3, and also by the
monotonicity of (') ' (-), we have
1, CULUS (SYe) —1 UOOZ/G Sye)
D) (29 (DY —= ).
) (o) = ) ()
According to the local Lipschitz continuity of D and D’ due to strongly convexity, we have
1 UsUs 1 UsUs
o (@) S0 ol (07 (B1E9))
(1=7) (1=7)
_1  UscUs\/
—)\ ‘ID) ((]D)’) L (Z‘EQ)) - o’
(1=7)
_1  UscUs\/
S)\L‘(]D’) L(A=T2VEQy 1’

(1-7)
U U
(1-7)

where L is some Lipschtiz constants, and then we conclude that

<SAL

~

1 _
Combine the results on bounding Ay, A, and A3, we have

A3 SO (AZ/I us W) + 0(7) (17)

« ~ ) 9] Vol(OT)
I3 {8, APy 7'} — I (1) £ 22 4 7{(%*V + 2D (s, ) [ ) || ————

“1—x La(p) n

2(3UUFV + 2X\||D(7(s, a primey 1) Vol(e)
(8Uuclly [ (3; M)W =5 s oo +@<W ;Y2 7>+O(f)

n

As the above upper bound holds for any k € [K], this completes the proof for
% ZkKZI {J(ﬂ-ka {SaAka577TkaSO}) - J(ﬂ-k)} U
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1.7 Proof of Lemma 1.7

Lemma L.7. For any w € 11, and define the normalized negative entropy as

Hegen(7(-]5)) = Y _ m(als) log(m(als)).

acA

Then we have

K
D (mw(ls) = 7 ]5), 6% (5,)) < Hnegkni(7(:15)) = Hvegrens(7°(:]5))
where 70(-|s) is the initial random policy for algorithm run.

Proof. To prove this Lemma, we use mathematical induction. Suppose the inequality holds for the
round (K — 1), 1i.e

(m(:[s) =71 ([s), 4" (5,)) < Hnegem(m(-[5)) = Hnegm (7°(:5))

K
> (w(ls) =7 ]s),d"(s,))
k=1
K K
:Z<7T(| Z k+1 k(87')> _HNegEnt(ﬂ-('|8)) +HNegEnt(7T('|S))
k=1 k=1
K K
< Z (Tr41(s) Z T Cls),a"(s))
k=1 k=1
— Hegbnt (T 41 (¢5)) + Hegeni (7 (-[5))
K—-1 K
= <7TR+1(~‘S),(]}€(S,~)> - <7Tk+1('|s)’qk(57')>+<,’Tf(+1(‘|s)7qk(87')>
k=1 k=1
- HNegEnt(WK+1('|5)) + HNegEnt(W("s))
K-1 K-1
=Y (TraCl9):d"(s,)) = D (7). () + (g (1) 6 (s, -)
k=1 k=1

- <7Tf<+1('|5)7 qk(s’ )> - HNegEnt(Wf(+1('|5)) + HNegEnt(W("S))
SHNegEnt(WR+1('|5)) - HNegEm(WO('|S)) - HNegEnt(WR+1('|S)) + HNegEm(W('|3))
=Hnegkn (T(-])) = Hnegn (7°(-]5))-
This completes the proof. O
1.8 Proof of Lemma 1.8

Lemma L.8. For any policy , it satisfies that

R
Z T —7%(-]s),q"(s,)) < 21/2VK log | Al
k=1

Proof. Following the definition of the Bergman divergence in terms of negative entropy, we have that

DNegEntropy(Wka 7rk+1) :HNegEnt(ﬂk('LS)) - HNegEnt(ﬂk+1('|5)) (18)
— (VHNegbn (7" ([s)), 7 (| s) = 7F1(s)) - (1.9)
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By the second-order Taylor expansion on HNegEm( *(-|s)) and evaluated at 7%+ (-|s), we have

HNegEnt(Wk('|s)) =HNegknt (T k+1 <VHNegEm( k+1( |s ))a”kus) - 7Tk+1('|5)>
+ %(Wk('IS) - 7Tk+1('|8))TV Hinegtnt ()11 (-[$)) (7 ([ s) — 751 (-]s)),

(1.10)

where 7,1 (+|s) lies on the line connecting 7" (+|s) and "1 (-|s). With (1.9) and (I.10), we do the
subtraction, then it obtains

1
DNegEntropy(ﬂ-ka 7Tk+1) = i(ﬂ-k(|s) - 7Tk+1('|s))Tv2/HNegEm(ﬂ-ka71('|S))(7Tk("8) - 7rk+1('|8))'
Then we proceed to bound
(T*(]s) = 7" (]s), 4% (s, ) @L11)

</ (5, )TV 2 Mgt (a1 (-15))¥ (5, )
: \/(Wk('|5) — (- [8))T V2 HNegbnd (x| -1 ([8)) (¥ (+]s) — whH1(:]s))
= \/2q TV ,HNegEnt(Trka 1( | ))qk(sa ')DNegEntropy(Wk7Wk+1)

< v 2CHq HLoo \/DNegEntropy(Wk7Wk+1)7 (1.12)

where ( is defined in Algorithm 1 maintext, which indicates the projection rate. Next, we aim to
upper bound \/ DiegEntropy (7%, mE+1). Follow the soft policy improvement Lemma 2 in [15] that

7#+1 is the global maximizer of Z]Z,:1<7T("S), ¢*'(5,-)) — Hxegm(7(-]5)). By

k k
0="> (7¥(|s),q" (s,)) — Hnegem(7"(]5)) - (Z<w’f“<-|s>,qk’<s, ) = HNengrk“(ws»)

k=1 k=1

k
B <7~«<.|3) — 7 [5), Ve D (7" ]s). ¢ (5,0)) — HNegEm<wk+1<-|s>>>

k=1

k k
- ( Y (1), (5,)) = Hivegem (7" (-]s)) — (Z (T ]s), 4" (5,)) — HNegEm(?T'““HS)))

k=1 k=1
k
- <7rk('|8) - 7Tk+1('|5)7 Var Z <7Tk+1("3)a qk/ (5,7)) — HNegEm(Wk+1('|3))> ) .
By ¥+ is the maximizer of ZZle (m(-]5), " (5,-)) — Hnegent(7(+|5)), then
k
Vi 2 (@ ()0 (s, ) — Hxegen (757 (1)) = 0.

k=1
This implies that

k k
Z )> %NegEnt : (Z k+1 S, )> - HNegEnl(ﬂ'k+1('|5))>

k'= k'=1
k k
Z )> HNegEnt : (Z k+1 57 )> - HNegEnt(Wk+1('|8))>
k'=1 k'=1
k
- <7r’“(~s> — 7 ]5), Ve > (7 (), 4% (s,4)) — HNegEm<w’“+1(~|s))> )
k'=1
k k
= (7 Cls),d" (5,)) = D@ C19), 67 (5,)) + Hegem (75T ([5)) — Hnegtm (7F(-]5))

k'=1 k'=1

_<”’“<-> 7 (|s), Va Z 1 ]s), " s7~>>>‘<w’“<-s)—w’““(-s>,mNegEm<w’““<~|s>>>-

k'=1

42



k k k
Z <7Tk( k+1 s, )> < <7Tk(-|8) k+1 Z k+1
k'=1 k'=1 k'=1
Thus we have
k k
Z <7Tk('|s)7 qk (57 )> HNegEnt ‘ ( k+1 S, )> - ,HNegEnt('/Tk+1('5))>
k'=1 k'=1
<HNegEm( T ([5)) = Hnegam (77 (-|s)) = (7" (-[s) = 7" (-]s), Va Hegem (7" (-]5)))
DNegEntropy(ﬂ-k 7T-k—"_l)'

This implies that

k
Diegpuropy (7 (1), 71 (-]3)) < D (1 (-]s), 6% (5,)) — Hrvegem (7" (1))

X
Il
_

=N " (7 s), ¢ (s,-)) — Hnegen (757 (+]5))
k=1 . |
- (7" (|s), 4" (s,-)) = HNegEnt(Wk(‘|5))>
k=1
B <7Tk(|5) - ﬂ-k+1('|3)’ qk(sv )> :
Since

k—1 )

ST Us), 0% (5, 7)) — Hegend T 15))

P

- k—1
- ( (7*(15), 4" (s, ) —HNegEm(WkHS))) <0

Then we have

DNegEnlmPy(Wk('|s)77Tk+1('|s)) < - <7Tk('|s) - 7Tk+1('|s)7qk(8ﬂ )>

Combine with (I.12) and boundedness condition on ¢-function, we have

— (7 1s) = THCLs), (5, )) VRV (L (ls) = 7w (Js), 0¥ (s, )
<\J2UV (a1 () — 7(]s). (5. ).

Solving the equation
2 _
(T (|s) = 7" 1), " (s, )" = 20V (a"([s) = 7" ([5), 4" (s, ) = 0.
We obtain that

— {7k (-[s) — 7" T(]s), " (s, ) < 2V (1.13)



Then we proceed to bound

o
gl
:]
|
>]
’c,?
N
INA

\gls

~
A
=
~—
Ry
Z
@
m
=

k=1
K
+ (7 Cls), 0¥ (5, ) — Hovegem (7 (-]5))
k=1
K
— (Z <7rk( |S),qk(8 )> HNegEnl( ( |S)))
k=1
Leverage Lemma 1.7,
K
Z 7w — 7" ( )> < HNegknt (T(+[5)) — HNegEnt(ﬂ'O('|5))
- K
+ Z <7'rk+1 S, )> HNegEnt( ( ‘S))
k=1

k=1

Z )} = Hegbm (7 (- |s>>>

<7T"“+1 ) = Z )

1
H egEnt( ( | )) +HNegEnt( ( |S))

<’“+1 ) = Z )

HNegEnt( O(|5))

WMN

I
WMN

Combine with the inequality (I.13), we have

K K
_ 1
Z <7T - ﬂ-k("s)7 qk(sv )> < Z CQV - THNegEnl(ﬂ-O('ls))
k=1 k=1
<CEC2VE —log ).
|A]
Minimizing the (~*(2¢2V K + log | A|) over (, we set { = k;f;él and thus

R e
Z 7 — ¥ ) <\/2V K log |A] + log |A|
=1
=2./2V K log | A|. (L14)
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1.9 Proof of Lemma 1.9

Lemma L.9. For any policy w, the average regret

I_( —
! 24/2V log|A
f ; {J(ﬂ-7 {S7A’ Pk,’}/,’l‘k750}) - J(Trk; {87A7 IPk;,”Y,T‘k7SO})} < \/\/E

Proof. To faciliate the proof, we denote EF[-] is the expectation taken to the system of iterated MDP
{S APy, v, Tk, so}. It follows the definitions of the discounted return, we have

K
{ Z J(Tf', {SaAka577rk’a SO}) - J(ﬂ-k7 {S,A,]Pk,'Y,'I"k, 50})
k=1

=

E LB m) = (s, )] & S B (6 (s ) mCls) — 7 (s))]

1—7 1—7

As the dynamics of {S, A, Py, 7,4, s°} is identical to {S, A,IP,v,7,s"} except for the reward
functions. Therefore,

LS B (65 (s, ) m(Cls) — 7 ()s))]

L=y
g, |2 Xk (s ) mls) =7 (19)) ] _ 2y/2VIog[A
-~ T VK1)
where the last inequality comes from Lemma [.8. O
1.10 Proof of Lemma I.10
Lemma L10. For any k € [K], we have
1
Slip {MEM [7(87 (L) (’I"(S, 0,) + ’qu<8/, ﬂ-k) - qk(87 a))} }
]- (7 rime 2 hl VOI(@T)
<1__7{2@U§V—%2XEMT@,@)i@wﬂ 4445£47
A(ULUST + 2|[D(7(s, a)) || n Yol
UV + D DRV o
NLUSYEEN Vo ViU VU U5 (1 v 1
+o<f”> VoMt | o Vel +7))+o<”)+o(),
c c n n n Vn

where Vol(01) = (eP max{Dq, Do, D} + 1)3({1 vV L} ) for D = Dq + Dg + Dr1.

Proof. To complete the proof, it suffices to show

Sl:p {(1_17)71‘ zn:T(shai) (qk(si,ai) —Ti— ’qu(séﬂrk)) ‘}7
i=1

is upper bounded for any k € [K]. To facilitate the proof, we define

~k . k0 k c o o k A
T .arginax{q (s7,7m%) + WE” [T(S»a)(q (s,a) =ri —q" (s',m m - m
and define
Ay = g"(s% ") + sup {(1—7)71’ ZT(Siaai) (¢" (s, ai) — i — " (s}, 7)) ‘}
T i=1
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Then obviously we have
Al :Al — )\gn (;k(Si, al)) + >\£n (}lk(si, (Ll))

n

) ’ ZT(Smai) (qk(Si,ai) — T = ’qu(SéaWk)) ‘ — An (T(Siaai))}

X C
qu(so’ 7('k) + sup {(1
T i=1

y)mn
+ )\gn <7~'k(8i, ai)).

where the first inequality comes from 7" is not the maximizer of
c* -
W‘ ;T(si,ai) (qk(suai) i “qu(sgvﬂk)) ‘ - )‘gn(T(Sivai))'
By the definition of ¢* (-, -), then we have
c* -
qk(SO’ Wk) + sup {@‘7)”‘ Z 7 (84, i) (qk(Si, a;) =i — 7qk(s;, Wk)) ‘ — A (T(Si, ai))}
T i=1
+ A (7~'k (Si, ai))

=min {q(soﬂrk) + sup {
-

q

7‘ T(si,a;) (QO(Shai) — Ty — ’Y‘J(S;:a Wk)) ’
(L=)nl=

— X (T(Si,ai))}} + A (F¥ (4, a4))

As @™ (-,-) belongs to the function space associated with ¢, so

« n

(-
min {q )+ sup {(1_07)71’ ;T(Suai) (q(si, ai) — ri —q(s}, 7)) ’ - Afn(T(Suaz‘))}}

Saﬂ ( ’, ) +5UP {(1_67)71‘ Z:T(Siaai) (aﬂk(si,ai) -7 —’YTk(SQJTk)) ‘ - )‘gn(T(Sivai))}

where the last inequality comes from the second inequality comes from the non-negativity of &, (+).
This immediately implies that

Ay Sark(soaﬂk) +sup {ﬂcv)n‘ ZTT(Siaa/i) (Tk(siaai) - T WTk(ngﬂk)) ‘} + )‘gn(;k(sivai))
T B i=1
7 ¢ - ~rk ko k ~k
<V +sup 7‘ > T(siai) (q (sisa;) —ri —q" (sj,m )) ‘ + A (75 (54, a4)).-
» L(L=)nl =
Follow the proof of Lemma 1.6, we have

C* n Aﬂ_rk Aﬂ-k
Slip {(1_7)”’ ;T(Siaai) (q (Siaai) —Ti =79 (ngﬂ'k)) ‘}

o ~ , I Yeler)
<5 W{(zzusv+2A||D(r(s,a)>|‘£;“€i)) —

n

— rime f
2(3Unsls V + 27 D(7 (5, @) [7°) In Yol
3n

+ uoou;./eg} = €3,
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for Vol(©1) = (2 max{De, DQ, Du} + 13({1V L}U5)2P for D = Dg + Do + Drr. And by
inequality (I.7), we have A&, (7% (si, a;)) S O (MUscll3 /EQ) + (’)( — ). Then, we conclude that

" (s, 7*) + 5171p {(1_6’ (54, a4) (qk(si;ai) —Ti = ’qu(séﬂrk)) ‘}

nl =
<53n+0<>\u %f) +O(%)

With the boundedness condition on ¢*(s°, %) € [V, V], by some algebra, then

stip {(1_0*‘ zn:T(Si, a;) (qk(si, a;) — i — ’qu(slivﬂk)) ’}

3

Y)nl4

<ezn+O (/\L{ U F) + 0(7) + V. (I.15)

Therefore, we can conclude that

Slip {(1_17)71‘ zn:T(Si,ai) (qk(si,ai) —Ti = Wlk(sliv”k)) ‘}
i=1

1 — rime QID%QT)
<7 { BBV + 2AID(r (s, a) I\ ——
2(3Us UV + 2D (7 (s, a))|[57) In YD)
( 3 [ (37(1 NITe) D P (L16)
AU, 1 1%
vo (M5 ) o L

According to Lemma E.2, we have for any 7,

ﬁ‘ﬂiu [T(s,a) (¢"(s,a) —r(s,a) —vg" (', 7"))] ‘

n

Sm‘ ZT(si,ai) (qk(si,ai) — = Wlk(sg,w’“)) )

LI /2V21n%(9”+2umu5171n%@”
1—7 2 n 3n

VU UE VU UL (1 +7) V
n n

+O( )+ O(
Combine with the bound (I.17), we conclude that

1 k(. —k k
sip {MEH [7y(s,a) (r(s,a) +vq"(s', 7*) — ¢"(s,a))] }

)+ o2,

<sup {i,y)’E“ [m(&a) (qk(s, a) —r(s,a) — vqk(s’,wk))] ’}

v (1

1 07 rime 2In Yol(o1)

Sl_v{2(2u2*v+2)‘]])(7(57a))%z(u)) n °
A(ULUST + 22D (7 (s, a)) || In Yol
UtV + R DT N
AU v VU U3 VU Uz (1 1% 1
+0<f”>+*+0( 2) + 0 2 +”>)+0(7)+0(>.
c c n n n Vn
This completes the proof O
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I.11 Proof of Theorem 5.1

Proof. Let the policy 7 be the output of the penalized adversarial in Algorithm 1 of maintext. In this
proof, we aim to bound the regret

J(r) — J(7).

First, we note that 7 is a mixed policy over {Wk}kf(zl, then we follow Theorem 1 in [57] to decompose

the discounted return of 7, i.e., J(7), that is, J(T) = & Zle J(7*). Based on this, it suffices to
bound

N\H

=S I ==Y (7 ™). (L18)

k=1 k=1

N\H

By Lemma 1.1 for that the learned ¢-function at the k-th iteration ¢* is the true action-value function
under the policy 7% in the iterative MDP {S, A, P, 7,75, s°}. The regret (I.18) can be further
decomposed as follows:

K K
1 1
=2 (Jm) = J(@*) = 2= >0 (I {S APy 7, 8°)) = T ()
k=1 k=1
Ay
1 K
b= S (I {8 AP 5}) = T (55 {8 A P, )
k=1
Aj
1 K
+fz(J(W)—J(ﬂ;{S,A,lPk,%rk,so})) (1.19)

~
Il
-

Ag

Based on this error decomposition, it suffices to upper-bound the above three terms. In analysis, first,
A is the regret over true MDP and iterative MDP for policy 7*. Second, A, is the regret over policy
7% and 7 under iterative MDP. Third, Aj is the regret over true MDP and iterative MDP for policy .
In the following, we bound each term subsequently.

Bounding A;. According to Lemma 1.6, we have A is upper bounded by

o ~ ) In Vol(e1)
-~ { (T + 2AID(r (s, ) e )y 2

Ay <
n

2(8Useldg V -+ 20 ID(r (s, a)) ) In YO
(3ol I (37(1 MW= s ves (1.20)

+0 ((1 + Mooclly) \/5:) +O0(—=). (1.21)

\/ﬁ

Bounding As. For this term, it is concerned with the optimization error. According to Lemma 1.9,
our algorithm achieves a no-regret oracle, and the optimization error can be minimized by increasing
the rounds of optimization, i.e., increasing bar K.

A, < 2V 2V 1og Al 122)
VE(1—7)

Bounding A3. To bound A3, it suffices to bound J () T {S, A, Py, v, i, s°} , forany k € [K].
we define admissible implicit exploratory dlstnbunon as pk that satisfies, which essentially can be
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induced and controlled via penalization on the detection function through A in Algorithm 1, i.e.,

J(m) = J(m; {S, A, Pr, v, 7k, 8" }) (1.23)
=q"(s", ) — J(m; {S, A, Py, v, 15, 8°}) = Ear 075, 0) Ik_(:’a) sTUUL
1 1
=B |2 5,0) < (s, < 9075 - T 75 0) = () < 907 (5,7)]
Aszq Asz
1
+ T ’YEdﬂ 4" (s,a) —ri(s,a) —vq" (s,m)]. (1.24)

Aszs
Accordingly, we can make a mirror decomposition as in the proof of Theorem 4.1. The difference

is, instead of controlling the uncertainty level through constrained set {23 , in this penalization
adversarial algorithm, the uncertainty level is controlled via penalization. To proceed with the
proof, we first study and connect the penalized uncertainty control to constrained uncertainty control.
According to Lemma 1.4, we have

1 21n Yollg?) LU U In YoIG2)
7(s,a)|| () < m{Lug\/néH 23n 8 —&—\/25”7?2—1—\/M}. (1.25)

where we can determine £ using Lemma 1.5. This implies that we can well control \ even in the

penalization adversarial estimation to control the uncertainty level in the form of ||7(s, a)| 1, (. for
T € Q,ie., ||7(s,a)||,u) < Us for Uy depending on A. Throughout the rest of the proof, it is
sufficient to proceed with the condition on ||7(s, a)||z, .y < Us.

Bounding As;. We define the Q sub-class that Q = {7 : || (s, a)|lryny SUS, T € Q}, and define a
importance-weight estimator over pg:

B [ (25— r6.0)) [67(5.0) = o) =07,

Then we make the following error decomposition for A3, as

By =B | (258 60 7 (50) = ) = 205,

Tp/u(8,a) := argmin
retehan(@) L 7

B (1. 0) 47 (520) = (s 0) = 907 (5,7

1
B [ (88 — o ul5,0) la7(5,0) — s @) 075, )
< —
Az
e Bl a) a7 (s ) — el a) — 30" (s, m]-
T€l-hull(Q,Cr p, UZ) Y
Az

Bounding A3q;. Follow the definition of 7, in Lemma 1.1, it observes that
qﬂ(sv CL) - rk(sv CL) - ,.qur<5’ 7T) :T(Sa a’) - Tk(sa a)
:7"(8, a) - qk(sa a) + ’YES/N]P(~|S,G) [ Z 7rk (a‘/|sl)qk(5,7 al)‘|
a’eA
=r(s,a) +v¢"(s',7") — ¢* (s, ). (1.26)
Then to bound Az it suffices to bound
By |85 = 70 ju(s,)) [1(5,0) +9¢5(5, ) = ¢¥(s,0)]]
1—7 ’
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It observes that

By [(s,a) (*(s,0) = r(s,0) = 74" (s',7))] |
s =
-E, [T(s,a) (qk(s, a) —r(s,a) — vqk(s’,wk))} ’
“s =
E, [7(s,a) (r(s,a) +v¢" (s, %) — ¢"(s,a))] ‘
— =

Then we apply Lemma .10, with control on 7 as U3 for Ly boundedness and Usol45 for L. Then,
we have

sup
-

{Eu [7(s,a) (r(s,a) + v¢* (s, 7%) — ¢"(s,a))] } <
1—7 -

where ¢, is the upper bound as in Lemma I.10. Now, as ||7(s, a)|| 1, () < U3. According to Lemma
E.3, we have

(s, ) + 964" 7% — ¢*(s. )l _ el w2
(1=1) T Uy '
Pr(s,a)

Also, due to the non-negativity of :( and 7,, /,(s,a) for any (s, a) over the support on j, we

have

s,a)

o (55 st [ o (25) ]} o

By Cauchy-schwarz inequality, and combine with inequalities (I.27) and (1.28), we conclude that

, pr(s.) ) >
min {E“ [( u(&’a) ) ] ,UQ} i
4,/

=g

1—7 us "

Az < (1.29)

We can plug-in €2 to complete the upper bound for Azy;.

Bounding Aj315. According to (1.25). The supermum boundedness condition for 7 can be identified
over the class Ir-hull(2):

17(5,0) || Lo <Uslhs. (1.30)

for some constant U/, as described in [56]. It follows from Lemma [.10, under the boundedness
conditions on 7 in (I.30), we can conclude that

Agip < €2 131)

where &9 is defined as the upper bound term in Lemma I.10.

Combine with the upper bounds on Agy; and Agzqs in (1.29) and (1.31), we have
Agl < 6?1’/ + 62.

This completes upper bounding Ag;.
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Bounding A33—A32. According to the error decomposition (I.24), it remains to bound —A32+A33.
We have the upper bound on

(1= 7)(Ass — Ag)
= IEd"’ [qﬂ—(sa a) - Tk(sa a) - ’7q7r(87 ﬂ-)] - Epk [qﬂ'(sa a’) - Tk(sa a’) - ’yqﬂ'<s> ﬂ-)]
Ass Azz

= Z ]l{dw(s,a)—pk(s,a)ZO} [dﬂ'(’S? a) - ,Dk(S, CL)] [qﬂ- (57 a’) — Tk (57 a) - ’Yqﬂ— (Sa 77)]
a€A,seS

+ > L (ea)—pp(sa)<0y[dn(s, @) = pi(s,a)] [¢7 (s, a) — ri(s, @) — 7g" (s, 7)]
a€A,s€ES

< S T toaputesnr <o} k(5 0) — da (5, @)] [47(5, 0) — 45, 0) — 7" (5, 7))
a€A,seS

Aszz1

+ Z 1{d,r(s,a)fpk(s,a)20}[d‘ff(87 a) — Pk (Sa a)] [qﬂ(sv a) - rk(‘g? (Z) - ,qu (8’ ﬂ-)] .
acA,s€S

JARED
Bounding A33;. First, we observe that

Agz1 = Z ]l{pk(87a)—d7r(8,a)>0}[pk'(Sv Cl) - d‘ﬂ'(Sv a)] [qﬂ-(sa CL) - Tk(sa CL) - ryqﬂ'(sv ﬂ-” )
a€A,seS

which is equivalent to > 4 .5 (pk(s,a) — dr (s, a)) " [q7(s,a) — (s, a) — vq™ (s, 7)]. We ap-
ply change of measure for shifting to the distribution over y, i.e,

Y. (ou(s,a) = dals,@) " [a"(5,0) = rils,a) = 94" (s,m)]

a€A sES
s,a) —d(s,a +
- Z {(Pk( ’ /)L(S(i)( ) [q" (s,a) — ri(s,a) —vq™ (s, 7)] 'M(S,a)}
a€A,seS )
—d(s.aNT
(pk(s,al)i(s ‘i’f)( = g™ (s,a) = (s, a) = 4" (5, ™) o) (1.32)
’ La(u)

As for any implicit exploratory distribution py,, we have (py(s,a) — dx(s,a))" < pi(s, a) for any
s, a, thus we have

s,a) —dr(s,a + S,a . N
(Pi(s,a) G a)( ) < ”f((sa)) < min{lh,, U3}, (133)
HAS, La() HAS, La ()
where Us ,, = ’ p:((jf)) ) Upon the inequalities (1.27), (1.26), (1.32), and the observation (1.33),
’ 2(p

we conclude that
min{uQ,Pk U3 }5i

Agsr <
331 > Z/{S

Bounding A332. With respect to the on-support and off-supprot region: (s, a) = 0 and (s, a) > 0,
we have the following decomposition,

Agp= D Lyayso(de(s,a) = p(s,a))" [a7(s,a) = rils,a) = vq" (s, m)]

acA,seS
A3zl
+ Z ]lu(s,a):o (dTr(Sv CL) - p(S’ Cl))+ [qﬂ-(sﬁ Cl) - Tk(sa a) - ’Yqﬂ'(sv T‘-)} .
ac€A,seS
JAREL S
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Bounding A3321. According to (I1.26) and (1.27), we have

M ) sl et
{(s,a)eSxA:pu(s,a)>0} (1 - ’Y) u2

Then we conclude that
+ €n
A3321 < Z (dﬂ'(‘S,a)*p(Sva)) JZ
a€A,seS 2
The term Agsgso is the off-support extrapolation error. Therefore, we conclude that
el
Agsn < Y ( — p(s,a))" L? + Aszaz.
acA,s€S

In the following, we conclude that

Azz — Azo
<mm{”2bf;w“2 ben S« ~p(s,a))" 24
2 ac€A,seS 2
+ Y Luay—o (de(s,a) — p(s,a)) " [ (s,a) — i(s,a) — v¢" (s, 7)]
a€A,seS
min{ls ,, ,Us et ed
e BN S () — pls )
2 a€A,seS 2
+ Z (s,a)= Od (S Cl) [qw(sa Cl) - Tk'(Sa a) - Vqﬂ(& ﬂ')]
acA,s€ES
Combine with the bound on A3q, we have
indU. Uz 4 4
Bg <etr &3 4 Do Uilen S (g () - ps,a)) 2
us us
acA,seS
+ Z ]l;t(s,a)=0 (dﬂ(sv a) - P(S, a))+ [qﬂ-(sa a) - Tk‘(sv a) - ’yqﬂ-(sa ’/T)} (1.34)

a€A seS

According to the regret decomposition in (I.19), and the upper bound on A; in (I.21), the up-
per bound on As in (I1.22), and the upper bound on Ajz in (I.34), by some algebra, we set

= O(v/nV /(\LU3 In{Vol(©7)/5})). we set A as the solution of X = 2E,/&; which depends on
U3 in order to ensure the L (1) norm for uncertainty control. It follows from Lemma I.4 and Lemma

L5, we have & = O (VMU + (max{Us, UL}V + LUs)/In{Vol(61)/5} /n)?) and &, = O(V +
(1 = )7 2Us (V2 + ALV) /In{Vol(61)/6} /n + UL (V3 + ALV)/In{Vol(67)/6} /n +
(MAZeq + VUL (1 — 7)e%?)) /(1 — 4)?)°®). Plug-in the choice of X and ¢*, by some alge-

bra, if we further ignore the high-order fast terms using a big-Oh notation O and set eg =0, we
conclude that

J(m) = J(R) < iﬁ(%MQ)Q@HLIH{VO](@TW}+ Vlog |A|

n K
K ¢z In{Vol(©1)/s}
ok V., L
T 22 Bt 1 (870~ ) e )
where Ay = {pi + [ 55| Ly <UST, QV AL Qﬁ%/ A,z are some constant terms, and the function

class complexity Vol(@T) (eP max{Dq, Do, Dri }+1)3({1V L}U3)?P for D = Do+ Dg+ Dr1.
This completes the proof. O
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J Proof of Theorem 5.2

J.1 Proof of Lemma J.1

Lemma J.1 (Covering number for Qg, II,, and Q). For any ¢ € (0, 1], the covering number for Qg,
IL, and Q. satisfy the following conditions:

[/ d
N (e V: Qo (diam) | - 1) < (W . 1> |

. 2diam,y, d
N(g;le (dmmw)»” : HLz) < c +1 )

dediam,, > d
— 41 .
€

N (it aiam,) | - 2.) <

Proof. In this proof, we calculate the covering number over the class Qp, IL,, and €.

For Qj. It follows the definition of Qp Qy (diamg) & {(s,a) — (¢(s,a),0)} . with |||z, < V.
Thus Qg (diamy) is a Euclidean ball with radis V. As ¢(s, a) is a d-dimensional feature space and
6 € R4, it follows Lemma 5.7 in [56], we have, for any € > 0,

o ) < (24 1) Vol(©, (diamy))
N (5/\/, Qp (diamy) , || - ||L2) < Vol (Q’9 (diamy)) 7

where || - |7, is the pair norm of || - ||, and Qj (diamy) is the corresponding ball in || - [|7 ) norm.
We take the balls Qj (diamgy) = Qg (diamg), then we obtain

9 d
N(&, QG (dlamg),” . ||L2) < (V +1> .

For (2. It follows the definition €, (diam,) &f {(s,a) = (¢(s,a),¢) | ||¥||z, < diam, } and a
similar argument as in the calculation on €2, we have

. d
. 2diam
A 68ty @iy - ) < (2524 1)

For IIy. To apply the standard results in a Euclidean ball, we need bound, for any wj, w2 where

— T llL, = \/fs |1 (¢|s) — m2(:|$)|2dP(S). with respect to some

lwr — wallL, <

probability measure P. First, we observe, for any (s,a) € S x A:

T (a]8) — T, (als) = exp(log(me, (als) — T, (als))) = exp(log(me, (als) /7w, (als))).
Follow the definition of the policy class I1,,, we denote ¢(a, s,w) = exp({¢(s,a),w)) and ¢(-, s,w) =
Joeaexp((¢(s,a),w)), forany s,a € Sx A. Forany s, a, as [|¢(s,a)||r, < 1, by Cauchy-Schewarz
inequality, then we have

exp(log (7, (als)) — log(mw, (als)))
= exp(log(my, (als) /7, (als)))
t(a, s wl) (-, 8, wo)

= 1
exp( Og( L( S W1 (Cl, 87w2)

N

—xp (1o (150 3) [ (e @0 5.0 )} )
<exp (tog (xp(len ~ wallna) [ (ra(@s)expllor - all)}) )

= exp (log (exp(|jw1 — wallr,) exp(|lw1 — w2|l£,)})) -
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Now, it suffices to bound exp (log (exp(||w1 — wa||L,) exp(|jw1 — w2||L,)})), and by the exponential
inequality, we have for ||w; — wa]|z, < 0.5,
exp (log (exp([lwr — wal|z,) exp([lwr — w2llz,)}))
< exp (log (exp([lwr — wallL,) (1 + (e/2)[|wr — w2l|z,)}))
=[lwr — wallz,) (1 + (e/2)[|wr — wallL,) -
This directly implies that 7,,, (a|s) — mw, (a|s) < e|lw1 —wa|| L, T, (@]s) Shuffle wy and wo, we have
T (a]8) — Ty, (als) < ellwa — w1 || L, T, (@]s) and therefore we obtain

1Ty = Tuwall Loy < sup  |mo, (als) — mu, (als)] < 2efjwr — walL,-
ESxA

s,a

as T, , Ty, are probability density function with integration 1. This completes the proof. Now, we
apply the standard covering number arguments in Lemma 7 of [56] over Euclidean ball of w, we have

: dediam,, ¢
N (&1L (diamy) || - [|2.) < { ——— +1)
This completes the proof. O

J.2 Proof of Theorem 5.2

Proof. We follow the error decomposition as in the proof of Theorem 5.1, according to identical
MDP Lemma I.1, we have the error decomposition

(J(m) = J(*))

= -

NERANE

(J(Tl'k; {S,AJPk,’y, ri(s,a), 80}) — J(ﬂ'k))

= =
=

Il
I

€IT1

==
[~

(J(TI’; {S,A, Py,v, (s, a), 50}) — J(Wk; {S,A, Py,~, (s, a), 50}))

B
Il
—

erra

=il =
()=

(J(TF) - J(TF; {S“A» IPk,’y,Tk(S,a),SO}>) :

=~
Il

1

errs

As in the analysis in the proof of Theorem 5.1, we can well control A\ even in the penalization
adversarial estimation to control the uncertainty level in the form of ||¢(s, a)TwH La(u) < Uy for
Ty € §1y for some constant L{g. Also, we define the produce space G = IL, x Qg x €y, so that

g(s,a,m, ") = 1y(s,a)(r(s,a) +vqo(s', m0) — qo(s,a)) — AD(7y(s,a))

forany g € G. It follows the steps on calculating the complexity of the product space, e.g., (E.14) in
the proof of Lemma E.7, we plug-in the covering number in Lemma J.1 and apply Corollary 2 in
[16], by some algebra we have

~ d
. 48¢C?V diam,,diam,,
N(E7g7 ||||L2(IJ«))5 <1+ c i > .
We set e = O(C2/\/n) for some C' > 0, and obtain
N (@ IV,6, | o) S (1 + ey/nVdiam,diam,, )" . a.)
which implies that
N6 | o) S (1 +ev/n(1 v L)Vdiamydiam,,) . 1.2)
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Bounding err;. According to Lemma 1.6 and follow the (I.21), we obtain

*

c ” 2ln w
Iry;
em <7 { (3UV + 2AID(r (s, )[4 )

n
N 2(3ddiam¢‘7 + 2)\[|D(7 (s, a))||g§mw) In —8N(E"g’g'”L2("))
3n ’
uy diam,,
where HD(T(&G‘))HLi(M) = SupT:HT(s,a)HLQ(H)SZ/{]z' ||D(T(S7a’)>”L2(#)9 and ||]D)(T(Saa))||Li:w =

SUD |7 (5,a) | . () <UL ID(7(s,a))| L., - As D is M-strongly convex function and thus locally Lips-
chitz with a bounded Lipschitz constant L < oo, then we have

. 7 I GCARTA))
erry S - ( (USV + ALUY) 5

. 2(ddiamy,V + ALddiamy) In el Gl NP )

J.3)

n

J.4)
3n
Plug-in the covering number in (J.2), we conclude
= . . d
* _ In{8 (1 + 1V L)Vdiamydiam, )" /§
erry 518_ ((UérV + )\LZ/lg)\/ {8 (1 ey ZL . ) /%)
. 2(diamydV + ALddiamy) In{8 (1 + ey/n(1 v L)Vdiam,diam,,)* /5}) 05
3n ' '

Bounding err;. According to Lemma 1.9, we achieve no-regret policy optimization oracle, and thus

<27V2‘7/10g|/l|. (1.6)
T VE(1-9)

Bounding errs. For any 7 € I, following the definition of errs we have

€ITo

errs =— (J () = J(m; {8, A, Py, v, (5, 0), 5°}))

==
M) >

e
Il
—

K
1
:f Z (qﬂ-(SO)Tr) - J(ﬂ-v {SaA7IPka’Y7rka 30}))
k=1
1 i Ear [q7(5,7) = ra(s, @) — 4" (5, 7)]
K 1—7
k=1
1 K Egr {qﬁ(s,a)Tﬁk —]P”k¢(s,a)T9k}
= , Jd.7
K I; 1—7v

where the last equality comes from a similar derivation as in (I.26). Therefore, it suffices to bound
T k T
Ear |¢(s,a) O —P™ ¢(s,a) Qk‘
L—n
for any k € [K]. According to Lemma .10, and the covering number Lemma J.1, it immediately
obtains

; (d.8)

1 T , T T
b =B [0(5,0) 4 (1(5:) + 9005, 7) 01— 6(5,0) " 00|
- . d
< 1 i <(UgV ALl \/ln{8 (1+eyv/n(lv Lszlamwdlamw) /6}

N 2(ddiamy V' + ALddiamy ) In{8 (1 + ey/n(1 V L)Vdiamd,diamw)d /5}) N 1%

3n '
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As [|¢(s,a) "Y1, () < UF < 0o, we apply Lemma E.3, then

By |p(s,a) O —P™ ¢(s,a) 94 1 _ In{8 (1 + ey/n(1 v L)Vdiam,diam,,)? /5}
< (V+AL)
11— 1—7v n
diam,, 2(V + AL) In{8 (1 + ey/n(1 v L)Vdiam,diam,,)* /5} v
uy 3n Ul

= &(c", A\, n).
According to Lemma E.2 and (I.15) with covering number arguments in Lemma J.1, it observes that

> i [¢(3i7 ai) O — P~ o(s;, ai)TQk}

R < E(c*, A\ n)
S [elsia)” (00 =0 =1, 00 ()7 (@ )6 (a) 0]
— ni=7) <E&(c*, A\ n)
::Z?:l [QS(S“%)TGM} < E(c*, A\ n).

where 6 is the coefficients for linear representation of (s, a), and (s’) is the low rank decomposition
for transition kernel [19]. This implies

< (1 —=9)&(c", A\ n).

Lo

H\J %ZW(%MW(S% a)16™

=1

Then by Cauchy-Schwarz inequality, for any s, a, we have

6(s,a) G™ | <[|¢(s,a) G™ |1,

=ll¢(s.a)" Q/W@MW@Mmr%iZW%MM%Mthz
SW@J'% wmww%mmwmwiZw%mmwmmﬁm
i=1 i=1
<65, )" | - S 0ls0,a)(s ) D 1a(1 — MEE A m).
=1

Then we have an upper bound for (J.8),

Egn

o(s, a)TQk — IP”kqb(s, a)T(‘)k’
1—v

<Eg~[[|¢(s, a) \l ‘
<Eg~ [\l d(s,a)" ( ‘

B(si,a0)$(si,a:)" 1) 7 L.]E(c™, A m)

S
M:

S
M=

[0(si,ai)p(si,a:) ")) (s, a) | E(c", A n).

1
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def

To facilitate the proof, we use the notation ||z||s 2T (2)"! . According to Lemma 32 in [63],

we obtain the upper bound for E 4= {H(b $,a)]5- } as follows:

3

Ear [[16(5, )52 | =Ear [ bs.0) (- Z[as(si,ai)qs(si,am])1¢(s,a>‘

Pt
<\ | Ear - Tlli (sirai) suai)T])%(&G)]

g\ trace (Edw [6(s,a)p(s,a)"] (% i;[(b(si,ai)(ﬁ(si,ai)w)_l)

< | (dy, p)trace( %an b (55, 0:)b(si, ;)" ;zn: (55, a5) b1, a1) 1))~
—/e(dy, pd. _ _ 1.9)

T T
where ¢(dr, ft) = SUD cRa 2};&&?3{;&5’375 Based on this, we conclude that

errs < \/t(dr, p)dE(c*, A, n). (J.10)

\ye combine the upper bounds in (J.5), (J.6) and (J.10), and we set c* =
O(¢/n/dIn{(1+eyn(1V L)Veye,)/6}) and set A = A(cy(UY)) for cy{U} =
SUD {43 (5,0) T4bl| 1y (o <UL} ||| .., by some algebra, we conclude that
1 \/ U, 1) d(V2 + VAL In{8 (1 + ey/n(1 v L)Vdiamydiam,,)* /5}

T

1 \/(L(dﬂ, 1)d)°-5V2 (ddiamy,V + ALddiamy, ) /UY In{8 (1 + ey/n(1 V L)Vdiamwdiamw)d /6}

/1 —
w/ - 0)d ddiamy, 2(V + AL) In{8 (1 + ey/n(1 v L)Vdiam,,diam,,)" /5} N 2/2V log | A
1— Ul 3n VE(1—-7)

If we ignoring the fast term and let K >> log |.A|, we have

1 \/ U, 1)d(V2 + VAL)2 In{8 (1 + ey/n(1 v L)Vdiamydiam,,)* /5}
- .

J(m) —J@") <

n

n

J(m) = J(7") <

1-—- n
(J.11)
For ¢ € {¢ : [|¢(s,a) "¢ ,(.) < U}, we can observe that
(s @) "l ) Strace(E,[6(s, a)é(s, a) ' ])[|6]|, (1.12)
<trace(E,[¢(s,a)¢(s,a) " ])dey {UsY}. (J.13)

It combines with (J.13) and (J.11), we conclude that
J(m) = J(7")
<min{trace(EM[q§(s, a)P(s,a dc¢{ Y (dr, p)d}
~Y 1 _
. \/ (V2 4+ VAL In{(1 + e\/ﬁ(l V L)Vdiam,diam,,)?/5}
n

\/mm{/-@2 AUy, o(dr, p)d} \/ (V2 + VAL In{(1 + ey/n(1 V L)V diamdiam,,)? /3 }
1—7~ n ’
where r = trace(E,, [¢(s,a)¢(s,a) ']). This completes the proof. O
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K Additional Related Works

Offline RL. The domain approaches of offline RL include fitted Q-iteration (FQI; [10, 46] ), fitted
policy iteration [2, 26], Bellman Residual Minimization (BRM; [3, 11, 9], and actor-critic [21, 22, 15].
We refer the reader to [29] for more comprehensive discussions on the topics of the offline RL. In the
aforementioned mainstreams of works, ours is closely related to the actor-critic. Actor-critic methods
are a hybrid class of methods that mitigate some deficiencies of methods that are either purely policy
or purely value-based; in modern RL, they are widely used in practice [58, 59]. A standard framework
in actor-critic methods is that actor supervises the policy to improve in order to maximize its values
estimated by the critic, value function. From a high-level point of view, this connects our bi-level
structured optimization to actor-critic methods. In our framework, the upper-level components make
decisions, i.e., searching for a policy maximizing the pessimistic evaluation based on the lower-level
outputs, i.e., the uncertainty-controlled confidence set of value estimates. Therefore, our works
demonstrate the advantages of actor-critic-type methods in offline RL from a bi-level reformulation
perspective.

Minimax learning. In a seminal work, [32] proposed the first minimax estimation procedure requiring
two function approximators, one for modeling the marginalized importance-weight function, and the
other for modeling the value function. This method becomes particularly efficient in estimating the
discounted return when the offline data-generating distribution aptly encompasses the distribution
invoked by the evaluation policy, thereby avoiding the significant issue of exponential variance in
the horizon, a notable drawback of importance sampling [43, 30]. The ripple effect of this method
has led to a surge of interest within the RL community [61, 54, 18, 38, 33, 49, 65]. Intriguingly, our
bi-level policy optimization aligns with this trend of minimax learning, where we build a confidence
set for policy evaluation using the marginalized importance-weight. In particular, algorithmically, our
low-level component is most related to the value interval learning in [18]. They provide a minimax
interval for quantifying the value bias involved in the discounted return under function approximation
settings. However, they only handle the function approximation errors but do not quantify the
statistical uncertainty, as well as no uncertainty control is performed. In contrast, our work yields a
confidence interval that concurrently incorporates the bias introduced by function approximation and
uncertainty stemming from sampling. This also provides a basis for the operations at the upper level
in our bi-level structured optimization.

Conservative value estimation. Following the principle of pessimism in the face of uncertainty,
a significant portion of recently proposed offline RL methods rely on on estimating conservative
g-values for optimizing the target policy, with the constraint or regularizer serving to limit deviation
from the behavior policy [24, 25, 39, 23, 14, 27, 28]. For our work, we also following the pessimistic
principle for value estimation. The major differences between ours and the existing works in this
mainstream are two-fold. First, with uncertainty control through favoring the policy close to the
behavior policy, our algorithm also ensures the consistency of the value estimates. This consistency
guarantee plays a key role in our method to ensure no overly pessimistic reasoning. Second, from a
high-level point of view, our algorithm has a bi-level structure, and more close to actor-critic-based
methods. In contrast, the aforementioned works are more close to approximate dynamic programming
[23].

L Statistical Learning Tools

In this section, we introduce fundamental concepts from statistical learning theory, as outlined in
[1, 55]. We begin with the concept of the covering number. This metric quantifies the number of
spherical balls of a specified size required to encompass a designated space, allowing for potential
overlaps.

Definition L.1 (Covering number). Let (C, || -||) be a || - || normed space, and H C C. The set
{b1,b2,. .. by} is a e-covering over H if H C UM B (b;, €), where B (b;, €) is the sup-norm-ball
centered at b; with radius €. Then the covering number of H is defined as N (e, H,| - ||L,) =
min{n : 3 e-covering over H of size m}.

A widely recognized method for examining the generalization capability of statistical learning models

involves the use of the VC-dimension. This dimension not only characterizes uniform convergence,
as detailed in [55], but also asymptotically dictates the sample complexity of PAC learning [5].
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Definition L.2 (growth function, VC-dimension, shattering). Let H denote a class of functions from
X to {0, 1}. For any non-negative integer m, we define the growth function of H as
Iy (m) := [, max H{(h(x1),....;h(xm)): h € H}|.

3oy Tm

IFI{(h(z1),...,h(zm)) : h € H}| = 2™, we say H shatters the set {x1,...,xm}. The Vapnik-
Chervonenkis dimension of H, denoted VCdim(H), is the size of the largest shattered set, i.e. the
largest m such that Tl (m) = 2™. If there is no largest m, we define VCdim(H) = oo

For a set of real-valued functions, like those produced by neural networks, the pseudo dimension serves
as an intuitive measure of complexity. This dimension also suggests similar uniform convergence
properties and was introduced by [42].

Definition L.3 (Pollard’s pseudo dimension). Let F be a class of functions from X to R. The pseudodi-

mension of F, written Dz, is the largest integer m for which there exists (1, ..., Tm,Y1,---Ym) €
X™ X R™ such that for any (by, ..., by) € {0,1}™ there exists f € F such that

Vi:f(x) >yi<=b =1

In the end, it’s worth noting that the pseudo dimension extends the concept of the VC-dimension to
real-valued functions.
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