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Abstract

We propose a new stochastic method SAPD+ for solving nonconvex-concave mini-
max problems of the form min max L(x,y) = f(z) + ®(x,y) — g(y), where f, g
are closed convex and ®(x,y) is a smooth function that is weakly convex in x,
(strongly) concave in y. For both strongly concave and merely concave settings,
SAPD+ achieves the best known oracle complexities of O(Lr, e~ %) and O(L3e~°),
respectively, without assuming compactness of the problem domain, where &, is
the condition number and L is the Lipschitz constant. We also propose SAPD+ with
variance reduction, which enjoys the best known oracle complexity of O(LH?/E_S)
for weakly convex-strongly concave setting. We demonstrate the efficiency of
SAPD+ on a distributionally robust learning problem with a nonconvex regularizer
and also on a multi-class classification problem in deep learning.

1 Introduction

We consider the following saddle-point (SP) problem:

. A
min max L(z,y) = f(z) + (z,y) — 9(y), (1)
where X’ and ) are, n and m dimensional Euclidean spaces, the function ® : X x J — R is smooth
and possibly nonconvex in x € X and p,-strongly concave in y € Y for some i, > 0 —with the
convention that for p,, = 0, ® is merely concave (MC) in ¥, and the functions f and g are closed,
convex and possibly nonsmooth. In this paper, we consider a particular case of nonconvexity, i.e.,
we assume that ®(-, y) is weakly convex (WC) for any fixed y € domg C Y. Weakly convex
functions constitute a rich class of non-convex functions and arise naturally in many practical settings
for machine learning (ML) applications [9, [35]], precise definitions will be given later in Section
[2l In practice, WC assumption is widely satisfied, e.g., under smoothness —see remark [T} most of
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the work in related literature considering nonconvex-(strongly) concave SP problems provide their
analyses under the premise of weak convexity. The problem (1)) with y,, > 0 is called a weakly
convex-strongly concave (WCSC) saddle-point problem, whereas for yi,, = 0, it is called a weakly
convex-merely concave (WCMC) saddle-point problem. Both problems arise frequently in many
ML settings including constrained optimization of WC objectives based on Lagrangian duality [22],
Generative Adversarial Networks (GAN) (where x denotes the parameters of the generator network
whereas y represents the parameters of the discriminator network [[13]]), distributional robust learning
with weakly convex loss functions such as those arising in deep learning [[14, 35]] and learning
problems with non-decomposable losses [I33]].

There are two important settings for (I): (i) the deterministic setting, where the partial gradients of ®
are exactly available, (ii) the stochastic setting, where only stochastic estimates of the gradients are
available. Although, recent years have witnessed significant advances in the deterministic setting
[6} (17, 119} 1231 24, 25/ 133, 136}, 138]]; our focus in this paper will be mainly on the stochastic setting,
which is more relevant and more applicable to ML problems. Indeed, due to large-dimensions and
the sheer size of the modern datasets, computing gradients exactly is either infeasible or impractical
in ML practice, and gradients are often estimated stochastically based on mini-batches (randomly
sampled subset of data points) as in the case of stochastic gradient-type algorithms.

There is a growing literature on the WCSC and WCMC problems in the stochastic setting. Several met-
rics for quantifying the quality of an approximate solution to (I)) have been proposed in the literature.
A common way to assess the performance is to define the primal function ¢(-)= max,ecy L(-,y) and
measure the violation of first-order necessary conditions for the non-convex problem min,¢ y ¢(z).
Given the primal iterate sequence {z };>o of a stochastic SP algorithm and a threshold € > 0, a
commonly used metric is the gradient norm of the Moreau envelope (GNME); indeed, the objective
is to provide a bound K such that E[|| V¢ (xr)||] < e forall k > K, where ¢, denotes the Moreau
envelope of the primal function ¢ —see Definitions and[5] Another commonly used natural metric
is the gradient norm of the primal function ¢(-) [4}[17] 16, 26| [37]], abbreviated as GNP, where the
aim is to derive K. such that E[||V¢(zy)||] < € for all & > K. Other metrics such as the notion of
e-first-order Nash equilibrium (FNE) and its generalized versions also exist in the literature [32}33]].

When using any of the aforementioned metrics, the ultimate goal is to establish a bound on the oracle

(sampling) complexity, i.e., ZkKZSO by, where by, denotes the batch-size for iteration £ > 0. For the
WCSC setting, it crucial to note that GNME, GNP and FNE metrics are all equivalent in the sense that
convergence in either of them implies convergence in the other two metric for WCSC problems [23].
In this paper, for the WCSC setting, we adopt both GNME and GNP as the main performance
metrics to analyze our algorithms; indeed, in Theoremwe show that, when the non-smooth part
f(-) =0, we can convert a GNME guarantee to a GNP guarantee by incurring only little additional
cost compared to the computational cost required for the GNME guarantee, and the overall worst-case
complexity (in terms of worst-case dependency to the target accuracy €) remains the same for both
metrics. When the non-smooth part f(-) # 0, we also obtain similar guarantees and show equivalence
between the metrics based on GNME and the generalized gradient mapping. On the other hand, for
the WCMC setting, we provide our guarantees in GNME metric as ¢ is not necessarily differentiable
for this scenario. Moreover, our work accounts for the individual effects of L, Ly, Lyz and Ly,
i.e., the Lipschitz constants of V,®(-,y), V,®(z,), V,®(z,-) and V,P(-,y) (see Assumption [2),
respectively, instead of using the worst-case parameters L £ max{ L, Lyy, Lyg, Ly, }, while the
majority of related work ignore the influence of these block Lipschitz constants in their analyses. We
emphasize that using the worst-case parameters will lead to a theoretically conservative step sizes,
and this phenomenon has been validated in the work [43]].

Contributions. Table[I|summarizes the relevant existing work for WCSC and WCMC problems
closest to our setting. More specifically, in Table[I] for the stochastic setting, we report the (oracle)
complexity with respect to the GNP and GNME as the performance metrics for WCSC and WCMC
problems, respectively, and the batch-size (number of data points in the mini-batches) required at
every iteration. We also report whether the method is based on a variance-reduction (VR) technique.
VR-based methods mentioned in Table [1| use a small batch-size b’ all iterations except for few,
where they need a large batch-size b > b’ once in every q iterations. The period ¢ is equal to
the number of times small batches are sampled consecutively plus one, and it is also an algorithm
parameter. Therefore, for VR-methods, we report the batch size as a triplet (o', b, ¢). In the column
“Compactness", we list whether achieving the specific complexity requires assuming compactness of
the primal and/or dual domains.



Ref. Complexity Compactness  VR-based Batchsize

Weakly Convex-Strongly Concave (WCSC) problems

*Rafique eral. [33]  O(e*log(e™ 1)) (n, n) X O(1)
Yan et al. [39] O(e *log(e™1)) v, y) X O(1)
TYang et al. [4T] O(LkZe™™) (,n) X O(1)
Lin et al. [23] O(Lrie™) n,y) X O(rye™?)
Botand Bohm [@] ~ O(Lrje™*) (n, n) X O(rye™?)
‘Huangeral. [T7]  O(kSp; te™® v O(kye ), O(k2e™2), O(rye !
getal. [17) ~(/{yuy(e ) (n, n) (kye "), O(rye™ "), O(rye ")
8Huang e al. [16] O(Ll'sn;"r’e"s) ¥, y) v O(\/Fy)
Luo et al. [26] O(Lﬁfj’e*?’) . y) v O(rye™ ), O(ﬂ§€72)v O(rye 1)
. Xuaal 3] 0 Olhmye™ 0y  Olkyel!), Olsye ®), Olwye™')
SAPD+, Theorem|3 O(Lrye™*) (n, n) X O(1)
SAPD+, Theorem_4_ O(Lfﬁf,sfg) (n, n) v O(kye™ ), O(rye™2), O(e™1)
Weakly Convex-Merely Concave (WCMC) problems
Rafique et al. [35]] O(L3e % log®(Le™2)) ¥y - O(1)
Bot and Bohm [4] O(L°%e™®) (n,y) - O(1)
(_Linetal @ OWLP®) oY) om .
SAPD+, Theorem]—S-I O(LSE’G) (n,y) - O(1)

Table 1: Summary of relevant work for WCSC and WCMC problems. For the column “Compactness”, we
use y and n to indicate when the results require compactness and when do not require it, respectively; the first
argument is for primal domain and the second is for dual domain. For batchsize, we use (b', b, q) format for
VR-based methods to state small batch (b'), large batch (b), and frequency (q) employed within the algorithm.

Table notes: *For WCSC setting, [35] assumes ®(-, ) £ ¢' (-)y is weakly convex and g(-) is strongly convex.
fIn [39], £ = ® and P need not be smooth, rather second moment of stochastic subgradients is assumed to
be uniformly bounded. When @ is L-smooth, ®(-,y) and ®(x, -) are Lo-Lipschitz, the results in [39] imply
O(Lgrie™* log®(y/RyLa/€)) complexity. $3The complexity results reported here are different than those
in [17,[16]]. The issues in their proofs leading to the wrong complexity results are explained in Appendix I. The
notation O ignores logarithmic factors.

To make the comparison of our results with the existing work easier, we provide the results in the
table for the worst-case setting, where «,, = ML and we report the e-, x,- and L-dependency of the

complexity results for the existing algorithms. That being said, our results have finer granularity in
terms of their dependence to the individual effects of L, Ly, Ly, and L,, as we mentioned earlier.

Our contributions (also summarized in section [I) are as follows:

* We propose a new stochastic method, SAPD+, based on the inexact proximal point method (iPPM).
In this framework, one inexactly solves strongly convex-strongly concave (SCSC) saddle point
sub-problems using an accelerated primal-dual method, SAPD [43]]. In Theorem 3] we establish an
oracle complexity of O(Lk,e~*) for WCSC problems, and unlike the majority of existing work
we do not require compactness for neither the primal nor the dual domain. To our knowledge,
our bound has the best x, dependence in the literature; indeed, prior to this work, without using
variance reduction, the best known complexity was O(Lnie*‘l) shown in [41]]; hence, we establish
a O(k,) improvement.

* We propose a variance-reduced version of SAPD+ in Theorem For WCSC setting, SAPD+
using variance reduction achieves an oracle complexity of O(Lnye’3) —this bound has the best
e-dependency in the literature to our knowledge, and among all the methods with the O(e~?)
complexity, our approach has the best condition number, «,, dependency; indeed, prior to this
work, the best known complexity was O(Lx3e™?); hence, we establish O(x,) factor improvement.

* For the WCMC case, our proposed algorithm SAPD+ results in O(L3¢~%) complexity, which is the
best to our knowledge, improving the best known complexity by log® (L/€?) factor.

* Finally, we demonstrate the efficiency of SAPD+ on a distributionally robust learning problem and
also on a (worst-case) multi-class classification problem in deep learning.

Notation. Throughout the paper, || - || denotes the Euclidean norm. Given f : R" — R U {oo}
a closed convex function, prox,(z) £ argmin,, f(w) + 5x|/w — z||* denotes the proximal

map of f. Given random w, let @z@(x,y;w) and @yfb(x,y;w) denote unbiased estimators
of V®,(z,y) and V®,(z,y). Moreover, given a random mini-batch B = {w;}?_;, we let

V. ®5(z, y)=1 2?21 V.®(z,y;w;) to denote the stochastic gradient estimate based on the batch
B, and we define V, ® (-, -) similarly.



2 Preliminaries
We start with describing the notion of weak convexity.
Definition 1. . : R? — R U {400} is y-weakly convex if x + h(z) + %||z||? is convex.

Definition 2. A differentiable function h : R — R U {400} is L-smooth if 3L > 0 such that for
Vz,2' € dombh, |Vh(z) — Vh(z")| < Lijz — /||

Remark 1. If a function is L-smooth, then it is also L-weakly convex.

Remark [T shows that weak convexity is a rich class containing the class of smooth functions. In the
rest of the paper, we consider the SP problem in (I). Next, we introduce our assumptions.

Assumption 1. f: X — RU {400} and g : Y — R U {400} are proper, closed, convex functions.
Let ® : X x Y — R be such that (i) for any y € domg C Y, ®(-,y) is y-weakly convex and
bounded from below; (ii) for any x € dom f C X, ®(x, ) is p1,-strongly concave for some fi,, > 0;
(iii) ® is differentiable on an open set containing dom f x dom g.

Assumption 2. There exist Ly, Ly, > 0, Lyy, Ly > 0 such that |V, ®(z,y) — V., 2(Z,7)| <
Loallw — 2| + Laylly — g, and [V @(2,y) =V, @(Z,9)|| < Lya |z — 2| + Lyylly — yll for all
z,z€domf C X, andy,y € domg C ).

Assumption [T] allows non-convexity in = while requiring (strong) concavity in the y variable. As-
sumption [2]is standard in the analysis of first-order methods for solving SP problems. It should be
noticed that when L., = L,,, = 0, the problem in (IJ) can be solved separately for the primal and
dual variables; hence, it is natural to assume L, L., > 0.

Suppose that we implement SAPD, stated in Algorithm I] on the SCSC problem

. Ha + 2
L(z, - 2
e £l = el @

for some given p, > 0 and zy € X —strong convexity follows from L(+, y) being y-weakly convex.

We make the following assumption on Algorithm 1 SAPD Algorithm
the statistical nature of the gradient noise

as in, e.g., [15, 11} 43].

1: Input: 7,0,0, i, To, yo, N

2 B(z,y) « B(z,y) + B |z — o
Assumption 3. Given arbitrary xo € X  3: Go <=0
and p, > 0, let {xy,yr} sequence 4 fork=0,1,2,...Ndo }
be generated by SAPD, stated in Algo- Sk < Vy®(zk, yr; wy) +~9‘1k
rithm [1} running on @). There exist 6: Ykt < ProX,,(yk + odr) ~
0z, 0y > 0 such that for all k > 0, the 7: Tht1 < IN)I‘OXTf(xk - Tvz¢($kayk~+1§w7§))
stochastic gradients V ; ®(x g, Yr11; wi), 8: Grt1 < Vy@(@rs1, Yrr1;wi ) — Vo, yus wy)
@yq)(xk,yk;wg) and random sequences 1%:_ gljtf(::‘t,(j gn) = LY )
{wiEte, {w} Yk satisfy the conditions: i PUBLEN, UN) = N 2ak=0 (Thi1, Uit

(i) E[V2® (@, yrr1; wf) |2k, Yhr1] = Va®(@k, Yrr1);

(ii) B[V, ®(xy, yr; i) |wr, yr] = Vy®(xk, yr);
(iii) B[|Va®(@r, yri1;0F) — Ve®(@h, yhsr) | 22r, yeia] < 02
(iv) B[V, ®(xr, yi; wf) — Vy®(@r, yi) |2 |2n, ye) < 62

Assumption [3] says that the gradient noise conditioned on the iterates is unbiased with a finite
Varianceﬂ Such assumptions are common in the literature, e.g., [S, [11,/43]], and are satisfied when
gradients are estimated from randomly sampled data points with replacement.

For WCSC minimax problems, a commonly adopted definition for e-stationary is based on Moreau
envelope, e.g., see [23| 39]. It is inspired by Davis and Drusvyatskiy’s work [9] for solving weakly
convex minimization problems. For the sake of completeness, we briefly review this idea below.
Definition 3. Let ¢ : R? — R U {400} be y-weakly convex. Then, for any X € (0,7~1), Moreau
envelope of ¢ is defined as ¢ : R? — R such that ¢x(z) £ mingex d(w) + 55 ||w — 2|2,

"When we run SAPD, stated in Algorithm |1} on @]}, we use the convention that @mff(xk, Yh+1; Wi ) £
Ve ®(zk, Yrt1;wi) + (e +7)(Tk — Zo).



Lemma 1. Let ¢ : R? — R U {+00} be a y-weakly convex function. For any given A € (0,y71),
da(+) is well-defined on X. Moreover, Vx(x) = A~!(x — prox,,(x)) for v € X; hence, ¢y is

A~ Y-smooth, where prox, ,(z)£ argmin,,c y{¢(w) + 35 [lw — [|*}.

Definition 4. Under Assumption let ¢, ¢° : RT — R U {400} such that ¢(x) = max,cy L(z,y)
and ¢°(z) = ¢(x) — f(x) forx € dom f, i.e., ¢°(x) £ max,cy ®(x,y) — g(y) for v € dom f.

Remark 2. Under Assumption since ®(-, y) is y-weakly convex for any y € dom g, ¢*° is y-weakly
conve)\ﬂ' hence, ¢ is also y-weakly convex. Note that

prox, (=) = argmin{¢(w) + 55 [|w — z||*} = argminmax L(w,y) + 2 [lw —z[|>.  (3)
wEX wex YeY
Furthermore, when p, > 0, ¢* is differentiable on dom f.

In the following definition, we introduce the notion of e-stationary with respect to the GNME metric.

Definition 5. A point x. is an e-stationary point of a y-weakly convex function ¢ if |V o (zc)|| < e
for some X € (0,77 1). Ife = O, then x. is a stationary point of ¢.

Thus, from Lemmal|I] computing an e-stationary point z for ¢ is equivalent to searching for z. such
that ||z — prox, ()| is small. Recall that for any A € (0,7~ "), prox,4(z) is well-defined and
unique. We also observe from (3) that prox,,(-) computation is indeed an SCSC SP problem. To
compute z such that ||z, — prox,4(z.)| is small, it is natural to consider the iPPM algorithm —e.g.,
see [18]]. A generic iPPM generates {x };>¢ such that z5! ~ Prox, 4(xf), i.e., proximal steps are
“inexactly” computed for ¢ > 0, starting from an arbitrary given point 29 € X.

In the next section, we describe the proposed SAPD+ method, an iPPM algorithm employing SAPD to
inexactly solve the SCSC subproblems arising in the iPPM iterations.

3 The proposed algorithm SAPD+ and its analysis

The convergence and robustness properties of SAPD for SCSC SP problems are analyzed in [43]].
For the WCSC SP problems, as we explained in the previous section, the main idea is to apply the
iPPM framework as stated in SAPD+ (see Algorithm [2) which requires successively solving SCSC SP
problems. In the rest, the counter for iPPM outer iterations is denoted with ¢ € Z, . At each outer

iteration ¢t > 1, we inexactly compute the prox map, i.e., x(t)ﬂ R prox, ¢(x6), which is well-defined

for A € (0,71); hence, to derive our preliminary results, we fix A = (u, + ) ~! for some given
fte > 0 —thus, £(z,y) + L= ||z — 2§||? is SCSC in (z, y) with moduli (4, 11,,) and has a unique
saddle point. Consider the following SCSC SP problem:

minmax £1(z,y) 2 f(z) + O (x,y) — g(y), where O (x, )20 (x, y) + L2
TEX yeY 2

= zb]1%. (4)

- T
EV e will construct {zp}i_, C dom f o e A e orithm
y inexactly solving (@) at each outer it-
eration ¢ € Z, through running SAPD  1: Input: {r,0,0, 11}, (20,40) € X x Y, {Ni}:>0 € Z*
for N; € Z, iterations —we will spec- 2t fort =0,1,2,...7"do
ify N; € Z, later. Next, we briefly 3 if VR-f1lag == false then

t4+1  t+1 t ot
explain the main step of SAPD+ with g else(xo Yo' ) <= SAPD(7, 0,0, piz, T, Yo, No)
VR-flag=false. The statement in line : t+1 41 t ot
Bt Algorithm[Bmeans that (261 y¢*1) 6: (26", y6"") + VR-SAPD(T, 0,0, p1e, b, yb, Vo)
- g - o % 7 end if
is generated using SAPD, where is dispa-  8: end for

lyed in Algorithm[I]-indeed, SAPD is run
on (@) for N, iterations with SAPD param-
eters (7, 0,6) and starting from the initial point (z, y). To analyze the convergence of SAPD+, we
first define the gap function G* for ¢-th SAPD+ iteration:

t A t N Lyt
g(x,y)—?gggﬁ(x,y) glelgﬁ(w,y)- 5)

Recall that £ is an SCSC function; therefore, i) it has a unique saddle point denoted by (z¢, 3! ), and
it is important to note that 2. = prox, 4(zf) for ¢(x) = maxyey L(z,y) and X = (v + pz) 15 i)

*One can argue that ¢°(+) + Z|| - ||* is a pointwise supremum of convex functions.



for any (z,y) € dom f x dom g, the following quantities are well-defined:

zt(y) £ argmin £ (2, y), y«(z) £ argmax L' (z,y')= argmax L(z,y). (6)
' €X y'ey

y' ey
Thus, it follows that G'(x,y) = L' (z,y.(z)) — L' (zL(y),y). Moreover, for (z,y) € dom f X

dom g, we also define G(x,7) £ sup,rcy L(z,y') — infprex L(2,y). Assumptionensures that
G is well defined.

Next, we first provide our oracle complexity in the GNME metric under the compactness assumption
of the primal-dual domains; later, in section[3.I] we show that under a particular subdifferentiability
assumption compactness requirement can be avoided.

Assumption 4. dom f and dom g are compact sets.
Theorem 1. Suppose Assumptions[I| 2| Bl andHhold. Let j, ==, 0 =1, 7,0 and N be chosen as

— 4 _8 S 1 1 1 2 o 1 1 2
N =38max{Z o) memid o o e b o sl w7
@)
Then, for any ¢ > 0, when VR-flag=false, SAPD+ guarantees e-stationary,
ming—g,... 7 E[[|[Vor(zh)|] < € for T > 96G(xf,y0) - & + 1, which requires C. stochas-
tic first-order oracle calls in total where
2

2
C. :O((m““”‘f”‘“y} + m"“‘”“’“”)w et 4 (61 + @)72 : 5*4)g(x8,y8),

My N Hy

Proof. See appendix [A] for the proof. O

Remark 3. Since E [mini—o,._ 7 ||Vor(zh)|]] < ming—o, 7 E[[|[Vor(zh)
in Theoremalso hold for achieving E[mintZO,wT IV (m6)||] <e

Remark 4. For any y € dom g, since ®(-,y) L,,-smooth, it is necessarily L,,-weakly convex;
hence, v < Lg,. To get a worst-case complexity, let

L = max{Lyy, Ly, Lyz, Lyy}, £y = Ly, 6 = max{d,,d,}, v= L. (8)

|, the guarantees given

0,0
Our oracle complexity C. in Theoremcan be simplified as Cc = O (max{l, i—;}%)

In fact, Li et al. [21] (see also [42)]) provide a lower complexity bound for a class of first-order stochastic
algorithms that do not use variance reduction. The lower bound for finding e-stationary points of smooth WCSC

1
problems in GNP metric is Q(LAy(\/Fye > + k™)), where Ay 2 ¢(x0) — mingex ¢(x) and xo is an
arbitrary initial point.

Consider ¢ = f + ¢° as given in deﬁnition For A > 0, the map G, : R? — R defined as
- 1. - s
G (Z) £ X[az — prox, (w — V¢ (m))] )

is called the generalized gradient mapping and its norm is frequently used in optimization for assessing
stationarity (see e.g. [10]]). Theorem[I] provides guarantees in the GNME metric. Theorem 2] shows
that given ., an e-stationary point in GNME metric (see definition[3) in expectation, we can generate
Z such that E[||GA(Z)]|]] < € for some A > 0, i.e., an e-stationary point in generalized gradient
mapping metric, within O(1/€2) SAPD iterations. Indeed, when f(-) = 0, this metric and the GNP
metric are the same.

Theorem 2. Suppose Assumptions[I| 2} Blhold, and x., an e-stationary point for the ~-weakly convex
function ¢(-) = maxyecy L(-,y) in expectation, i.e., E[||Vox(xc)|]] < § for some fixed X € (0,7~ 1)
is given. Then, there exists some T, 0,0 — see eq. (33) in appendix|[B| such that initialized from .,
SAPD, stated in Algorithm|I| can generate & such that E[||GA(Z)|| < € within @(6%) stochastic
first-order oracle calls, where ¢°(-) = maxyecy ®(-,y) —g(y) sothat p = f+¢° asin Deﬁnition

Proof. See appendix |B|for the proof. [

Remark 5. Based on Remark the random vector x. in Theorem IZ| can be chosen as xly where
A . . . . .
t. = argming<,<r [|Vor(zh)|. However, since t. can not be computed in practice, we provide

an alternative method in the appendix to generate a point x. such that E[||V ¢y (x.)||]] < € within
~ L g 0" 0 Lk, 62g 0, 0
O ( Ry e(;‘vo Yo) + Ry E‘l(wo Yo)

stochastic first-order oracle calls — see Theorem|7|in appendix



3.1 Relaxing the compactness assumption

In Theorem|[I] we assume that dom f and dom g are compact sets, e.g., f(-) = 1x(-) and g(-) =
1y (-), where X C X and Y C ) are compact convex sets. In this section, we show that SAPD+ can
also handle unbounded domains under the following assumption.

Assumption 5. For f and g closed convex, suppose 3By, By > 0 such that inf{||s¢|| : s; €
O0f(x)} < By forall x € dom f and inf{||s4|| : sq € 0g(y)} < By forally € domg.

Remark 6. Assumption[Sholds when f is an indicator function of a closed convex set (not necessarily
bounded) or for f : RY — R U {400} such that dom f is open and f is Lipschitz. Two important
examples for this scenario are: (i) f(-) = 0, (ii) f is a norm, e.g., {1-, {2-, or the Nuclear norms.

The existing work based on iPPM framework either require compactness, e.g., [39], or some special
structure on L, e.g., [35]. This is also true for VR-based methods, e.g.,[[16} 26} 37]]. To our knowledge,
ours is the first one to overcome this difficulty and strictly improve the best known complexity
bound for the WCSC setting without compactness assumption; moreover, the same idea also works
simultaneously with a variance reduction technique that will be discussed later (see section[d). Finally,
the same trick for removing compactness assumption for the WCSC setting also helps removing
the compactness assumption for the primal domain in WCMC setting and we still improve the best
known complexity for this setting as well (see section ).

Remark 7. In [23]], when f = g = 0, boundedness of dual space is required while AssumptionP)is
a weaker requirement. Furthermore, based on the discussion with the authors of [39], compactness
of the domain is needed for their proof to hold. In [I7], the sub-level set {z : ¢(x) + f(x) < a}
is required to be compact for all o > 0. There are simple convex functions that do not satisfy this
condition such as f(x) = max{0,z}. Bot and Bohm [4)] use milder assumptions than [23|] without
requiring compactness; however, their complexity is the same as the complexity of [23|].

Theorem 3. The result of Theorem([I| continues to hold, if one replaces the compact domain assump-
tion, i.e., Assumption |} with Assumption[5]

Proof. See appendix [E] for the proof. O
Algorithm 3 VR-SAPD Algorithm

4 Variance reduction 1: Input: 7,0,0, jiz, w0, yo, N, b, b5, by, g
20 ®(z,y)  D(z,y) + 57 o — @o]?
Variance reduction techniques have  3: Let 85,5 be random mini-batch samples with |Bf| = |By| = b
been found useful for solving SCSC  4: wg @ycbgg (%o, ¥0), S0 < wo
problems in finite sum form, e.g., 5: for k > 0 do
[34] —see also [3] using Richardson-  6: Yk+1 < Prox, (yx + odi)
Romberg extrapolation in solving  7:  if mod(k, ¢) == 0 then
SCSC problems with noisy gradi- §: Vg @Iélgi (Tk, Yrs1)
ents to obtain improved practical 9: else
performance. 10: Let Z}? be random mini-batch sample with |Zj;| = b,
In this section, we equip SAPD+ with i; endvi; = VoPzp (@ Yir1) = VaPrp (h-1, ) + v

SPIDER variance reduction tech- 13; Tt = Prox, ;(z, — Tur)

nique [12], a Var'lant of SARAH (31} 14: Let Bj 1.8, ., be random mini-batch samples with
31] More precisely, for inexactly IBE ,|= BV, |=b

solving SCSC subproblems given . ifﬁéd(k +k1+(11 ) = 0 then

in @), we propose using VR-SAPD | - Wit ¢ VB (Trr1,Yest)
as stated in Algorithm Note Y Pk

: 17: else
X? bSﬁf’ 25 er?}I]) 1gyist;_;?ir§§5bzf;iz: 18: I:et i be mini-batch sample withJI}j Ll =18
small batchsizes of b, and b/, for 19 Qi1 = Vy@ry (@41, Y1) = Vo oy, (2h,yr)
the rest. We prove that SAPD+ us- 20 W1 — Wk + Grt1
ing variance reduction, i.e., with 21:  endif
VR-flag=true, achieves an oracle 22  Sk+1 ¢ (1+O)wis1 — Owr
23: end for

complexity of O(Lk2e™?); hence,
we show an O(k,) factor improve-
ment over the best known complexity in the literature to our knowledge.

24: Output: (Zn,yn) = % Zf::ol (Tht1, Ykt1)

Y 1 S i yiyh
Here, we use Vycbtgg (@, yx) to represent B4 D wieny Vy®(xr, yy; 97"), where BY = {97 };-; is

the mini-batch with |B}| = b and we define V@i (z1, yr+1) similarly. In addition, Ziy = {w}"'} and



7Y = {wy"} with |ZF| = b, and |Z}| = b}, denote the small mini-batches for generating @yétzz (Tk, Yr)
and @Ié}z (zk,yr+1). When we run VR-SAPD on a generic subproblem as in (2), we use the
convention that ?Z@Bi (@h, Yrs1) = @ztbgz (@k, Yrr1) + (pe + ) (Tr — 20).

Throughout this section we make a continuity assumption on the stochastic first-order oracles similar
to [17, 16} 26, [37].

Assumption 6. 3L, Ly, Lyy, Lyy>0 such thatVz,z € dom f C X and Vy,y € domg C Y,

||@y<l)(x,y;w) - @yq)(fa Y; W)” < Lyme - i"” + Lyy”y - 37”» w.p. 1,

- - (10)
[Va®(z,y;0) = Vo ®(Z, 4 )| < Laallz = || + Laylly = gll,  w.p. 1.

Assumption 7. Consider SAPD+ with VR-flag = true. We assume (i) for any k > 0, the random
mini-batches B, By, Ij} and I}; consist of independent elements, and B’; is independent from Bg;
(ii) for i € {k — 1,k} B, I} are independent of (x;,yi+1), and By, I, are independent of (x;, ;).
Remark 8. For finite-sum type problems of the form min, max, % Soi, ®4(z,y), we can set the
stochastic gradient according to V,®(z,y;w) = V.8, (x,y) and V,®(z,y;w) = V, 0, (z,y)
where w is uniformly drawn at random from {1, . .. ,n}. Therefore, if mini-batch samples are drawn
Sfrom {1,...,n} uniformly at random with replacement; batches will be independent of the past
iterates satisfying Assumption|[7}

Theorem 4. Suppose Assumptions mp@ and[7|hold. Moreover; either Assumptiond|or Assumption
holds. Let i, =y, 0 = 1, and 1, 0, b and N be chosen as follows:

= (LyﬁLm+2fy+2(q—1)((L”’”+27)2 + mL?’z))*l, N:2(1+C)max{% —1, L 2

k)
Hyo

b, Hyby
L2, 10L2,\\ ' 14462 17~y
= (2L Lys +2(q — 1) =22 vy b> T 36002 — b |.
o ( vy T Lyz +2(q )(ryb;JF 11D, )) ) = [max{ ~ yﬂy}ez—‘

(11
For any € > 0 and parameters b, b;, q € N*, when VR-flag = true, SAPD+ guarantees e-stationary,
ming—o_. 7 E[[|[Vor(zh)|] < € for T > 288G (xf, yg) - 2, which requires T(Nb/q+ N (b, + b))
stochastic first-order oracle calls in total, where

, + 2w 2
bl 72 bl Yy Hhy by pg bk yiy

(12)

N:O(maX{Lyx+Lx:c qLi, | qLje Ly+Ly.  qli qLiy}>
v

Proof. See appendix [Hfor the proof. [
Remark 9. For any y € dom g, since ®(-,y) Ly,-smooth, it is necessarily L,,-weakly convex;
hence, v < L. To get a worst-case complexity, consider the setting in B), and let b, = bfu =0.
Then, Theoremimplies that setting b = O(Fiyg), N=0(ky+ry %), and T = O(%@yg)) leads
to Nb/q+ Nb' = (’)(/-cyg +ro o HRyb + qu). Thus, setting q = / ni,, and b/ = /bk, leads to the oracle
complexity of T(Nb/q+ NV') = O(K,ig . %@yg)).
Remark 10. The results in Theorem || continues to hold under a weaker form of Assumption[6|as in
[26/37], i.e., we replace eq. (I0) with
E[|V, (2, 5:0) = Vy@(3,5:0)|°] < 2Lyellz — 77 + 2Ly lly — 311
E[|Va®(z,y30) — Va@(@,5:0)|°] < 2Leollz = 3ll” + 2Lay lly — 51,

S Weakly convex-merely concave (WCMC) problems

In this section, we state the convergence guarantees of SAPD+ for solving WCMC problems. In
particular, we will consider (I)) such that f(-) = 0 and x,, = 0, i.e., ®(x,-) is merely concave for
all z € X. Instead of directly solving (I) in WCMC setting, we will solve an approximate model
obtained by smoothing the primal problem in a similar spirit to the technique in [30]]. More precisely,
we approximate () with the following WCSC problem: given an arbitrary § € dom g, consider

minmax £(z,y) £ &(x,y) — g(y), where (z,y) £ b(a,y) — L[y — 5| (13)
zeX yey 2



Theorem 5. Under Assumptions consider (1) such that f(-) = 0, u, = 0, and Dy =
SUDy, y,cdom g 11 — Y2 |< 0o. When either Assumption || or Assumption |5 holds, for any given
€ > 0, SAPD+ with VR-flag = false, applied to (13) with fi, = ©(e?/(LD3)), is guaranteed
to generate x. € X such that E[||Vox(z.)||] < € for X = 1/(27) within O(L3e¢~5) stochastic
first-order oracle calls.

Proof. See appendix [G]for the proof. O

6 Numerical experiments

The experiments are conducted on a PC with 3.6 GHz Intel Core i7 CPU and NVIDIA RTX2070
GPU. We consider distributionally robust optimization and fair classification. In the rest, n and d
represent the number of samples in the dataset and the dimension of each data point, respectively. In
this section, SAPD+ means calling SAPD+ with VR-flag=Ffalse, and SAPD+VR means calling SAPD+
with VR-flag=true.

Distributionally Robust Optimization (DRO). First, we consider nonconvex-regularized variant
of DRO problem [[11128] 20, 26| 43| [40] which arises in distributionally robust learning. Let {a;, b; }7_,

be the dataset where a; € R? are the features and b; € {—1, 1} are labels. The DRO problem is

, 1 ¢
(DRO): min max ; yili(@) + (@) = 9(y), (14)
where £;(z) = log(1 + exp(—b;a; x)) is the logistic loss, f(z) = n >0, 1122@«2 is a nonconvex

regularizer 2], g(y) = 3m2lny — 1[|%, and Y £ {y € R% : 1Ty = 1} — here, 1 denotes the vector

with all entries equal to one. This problem can be viewed as a robust formulation of empirical risk
minimization where the weights y; are allowed to deviate from 1/n; and the aim is to minimize
the worst-case empirical risk. We perform experiments on three data sets: ¢) a9a with n = 32561,
d = 123; ii) gisette with n = 6000, d = 5000; 7i7) sido0 with n = 12678, d = 4932. The
dataset sidoO is obtained from Causality Workbenckﬁfwhile the others can be downloaded from
LIBSVM repositoryﬂ

Parameter tuning. We set the parameters according to [40, 26l 20], i.e., , « = 10, m; = 1073,
ny =1/ n2. We compare SAPD+ and SAPD+VR against PASGDA [4]], SREDA [26], SMDA, SMDA-VR [17]]
algorithms. As suggested in [26]], we tune the primal stepsizes of all the algorithms based on a
grid-search over the set {1073,1072,107!} and the ratio of the primal stepsize to dual stepsize,
i.e., 7/0, is varied to take values from the set {10, 102,103, 10*}. For all variance reduction-based
algorithms, i.e., for SAPD+VR, SREDA, SMDA-VR, we tune the large batch size b £ |B| from the set
{3000, 6000}, and the small batch size b’ £|I| from grid search over the set {10, 100,200}. For the
frequency parameter g, we let ¢ = b’ = |I| for SAPD+VR and SMDA-VR (as suggested in [17]); for
SREDA, when we set ¢ and m (SREDA’s inner loop iteration number) to O(n/|I|) as suggested in [26],
we noticed that SREDA does not perform well against SAPD+VR and SMDA-VR. Therefore, to optimize
the performance of SREDA further, we tune ¢, m from a grid search over {10, 100, 200}. For methods
without variance reduction, i.e., for SAPD+, SMDA and PASGDA, we also use mini-batch to estimate the
gradients and tune the batch size from {10, 100,200} as well. For SAPD+ and SAPD+VR, we tune the
momentum 6 from {0.8,0.85,0.9} and the inner iteration number from N = {10, 50, 100}.

Results. To fairly compare the performances of algorithms using different batch sizes, we plot loss
against epochs in X-axiﬂ In fig. |1} we plot the average loss against the epoch number based on
30 simulations (runs). The standard deviations of the runs are also illustrated around the average
in lighter color as shaded regions. We observe that SAPD+ and SAPD+VR consistently outperforms
over other algorithms. For a9a, gisette, sido0 datasets, the average training accuracy of SAPD+
are 84.06%, 95.41%, 96.43%, and of SAPD+VR are 84.33%, 97.69%, 97.46%, respectively. The best
performance for a9a, gisette, sido0 among all the other algorithms are 75.92%, 93.07%, 96.43%,
respectively. More importantly, we observe that as an accelerated method, SAPD+VR enjoys fast
convergence properties while still being robust to gradient noise.

3http://www.causality.inf.ethz.ch/challenge php?page=datasets

“https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html

San epoch is completed whenever an algorithm does one pass over the whole data set through sampling
mini-bathes without replacement.



Figure 1: Comparison of SAPD+ and SAPD+VR against PASGDA [4]], SREDA [26], SMDA, SMDA-VR [[17]]
on real-data for solving eq. (T4) with 30 times simulation.
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Figure 2: Comparison of SAPD+VR against other Variance Reduction algorithms, SREDA [26]],
SMDA-VR [17] on real-data for solving eq. (T3)) with 30 times simulation.
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Fair Classification. In the context of multi-class classification, Mohri et al. [27] propose training a
fair classifier thorough minimizing the worst-case loss over the classification categories. In the spirit
of [32,[17], we adopt a nonconvex convolutional neural network (CNN) model as a classifier and set

the number of categories to 3, resulting in a minimax problem of the form:
3

3
min ryneaf}(;y,&(m) g(y), s.t. ;yl =1,4,>0,Vi1 (15)
where x € RP represents the parameters of the CNN, and ¢1, /5, {3 correspond to the loss of three
categories whose details are given in appendix g(y) = 2|yl|3 is a regularizer with 17 > 0. We train
(T3] on the datasets to classify: i) gray-scale hand-written digits {0, 2, 3} from MNIST; i7) fashion
images with target classes {T-shirt/top, Sandal, Ankle boot} from F-MNIST; iii) RBG colored images
with target classes {Plane, Truck, Deer} from CIFAR10. For both MNIST and F-MNIST p = 43831,
n = 18000 and d = 28 x 28 x 1, and for CIFAR10 p = 61411, n = 15000, and d = 32 x 32 x 3.

We let the regularization parameter 7 = 0.1 as suggested in [17]. We compare SAPD+VR against
the other VR-based algorithms SREDA and SMDA-VR over 30 runs.We tune the primal stepsizes of
SAPD+VR and SREDA by a grid search over the set {1072,5 x 1072,10~2} and the ratio of primal to
dual stepsizes, i.e., 7/0, is chosen from {10, 102,5 x 10%,103}. For SMDA-VR, the primal and dual
stepsizes are 102 and 1075 as suggested in [[17] —we also tried stepsizes bigger than the suggested;
but, it caused convergence issues in the experiments. We set the large batchsize |B| = 3000 and the
small batchsize |Z| = 200 for all algorithms and data sets; the frequency ¢ = 200 is used for SAPD+VR
and SMDA-VR, and we tune ¢ for SREDA taking values from {10, 50, 100,200}. The momentum 6
for SAPD+VR is tuned taking values from {0.8,0.85,0.9} and inner iteration number is tuned from
N = {10,50,100}. For SREDA, we tune the inner loop iteration from {10, 50, 100}. Fig. [2]shows
that SAPD+VR outperforms the other VR-based algorithms clearly in terms of both the average loss
and the standard deviation of the loss.

7 Conclusion

In this paper, we considered both WCSC and WCMC saddle-point problems assuming we only have
an access to an unbiased stochastic first-oracle with a finite variance. This setting arises in many
applications ranging from distributionally robust learning to GANs. We proposed a new method
SAPD+, which achieves an improved complexity in terms of target accuracy e for both WCSC and
WCMC problems; moreover, our bound for SAPD+ has a better dependency to the condition number
ky for the WCSC scenario. We also showed that our algorithm SAPD+ can support the SPIDER
variance-reduction technique. Finally, we provided numerical experiments demonstrating that SAPD+
can achieve a state-of-the-art performance on distributionally robust learning and on multi-class
classification problems arising in ML.
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A ]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A The general construction used in the proof of Theorem

In general, the proof of Theorem 1| can be divided into two parts: (1) inner loop and outer loop
convergence analysis, (2) combining these results to derive the overall complexity.

* We first study the convergence properties of Algorithm|I]for solving the SCSC subproblems
in eq. @). In Lemma[2} we provide guarantees for the inner loop iterates using the expected
gap function as our metric.

* Since the convergence guarantee for the inner loop is provided in terms of G, we also
consider the relationship between G*(zf, y§) and GNME, i.e., ||V, éx(x})]|. Indeed, Lem-
mas[3|4] and[5]allow us to translate the expected gap result of inner loops to the convergence
in terms of GNME for the outer loops. In Theorem [6] we provide the convergence result
in the GNME metric and state the requirements on the parameters to be able to derive the
complexity bound in Theorem I}

* In Lemma 6] we provide a particular step size rule for solving the SCSC subproblems in
eq. (@), and we use this specific choice to compute the overall complexity for solving the
WCSC problem eq. (I by using SAPD+.

A.1 The construction for the convergence analysis

Based on Lemma the key step for establishing SAPD+ convergence is to bound ||z, — prox; 4 (),
where ¢(r) £ max,cy L£(z,y) forevery # € X and A = (v + p1,,) L. To achieve this, we first give
a bound on the gap function G at the -th outer iteration.

Lemma 2. Suppose Assumptions|1] 2} B hold. Given {N,}1>0 C Z., let {a}), y§}i>1 be generated

by SAPD+, stated in Algorithm 2| when VR- fLag=false, initialized from (z§,y3) € dom f x dom g
and using T, 0,0, u, > 0 that satisfy

Hy (0 —=1)Lyz (0 —1)Lyy 0
0—1)Ly, -1}, —0Lys
(0Dl 2 o0 - ”
(6 —1)Ly, 0 S - —6Lyy

0 —0Lys —0Ly,y e

for some o € [0, %) where L., & Ly, + iy + . Then for all t > 0, it holds that

MT,U,Q M H —_
E 65 ™) < Y20 (B2 (ot (4547) — 2f)7] + 2B s 05*") — 1)) + Zrirs,

N 4
(17)
where N; € NT and M, 59 = max{ﬁ, 4:—40‘9},
— o 1 _ 1+26
Erof =T <:T1079 + 2) 240 (:T%e + 5 ) 55,
0(140)L,,
B2 0 2 (1 + ‘W) , (182)
0(1+0)L,,
2Y 0= (143040014 0)Lyy +700(1 + 0)LysLay) (1 +260) + % (18b)
Proof. For easier readability, we provide the proof in a separate subsection, see appendix [C| O

The following lemma provides a relation between G¢(z§, yf) and Gt (x5, yi ™).

Lemma 3. Under the premise of Lemma2|and AssumptionH| for all t > 0,

MT,O',G MT,O',Q =
(1 - N> EG* (6™ u6™ )] < —5 7 EIG" (26, 50)] + Eroo-

t t
Proof. Ttis shown in [39, Lemma 1] that

Ha I
T 12iw) =17 + G lye (@) — ' < G'(,y) + G2, y)
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holds for all (z,y), (2’,y’) € dom f x dom g. It is important to note that since dom f and dom ¢
are compact sets, (T7) implies that E[G* (x5, y4™)] < oo. Furthermore, since G*(-,-) > 0, we also
have E[G* (x5, ybt!)] > —o0; hence, —00 < E[Qt( bt yé“)} < oo for all ¢ > 0. Then (T7) and
above inequality with the choice of z = :z: Ty = y , o' = zb, y' = y§ together yield the desired
result —one can subtract M* Sl BIGH(x ”1, yé“)] from both sides E[G! (25T, yiT)] is finite. [

For the sake of completeness, we state |39, Lemma 8] below, which will be used in our analysis.
Lemma 4. [39, Lemma 8]. Under the premise ofLemmafor any b1, e € (O 1)andt >0,

1
G (b u™) = (1 S ()Gt t+1,yz;+1>) - e e — e,
y b1 2
Y + j
Gl bt > plal) — dlab) + T b2,
Gl ) = 122t 2 - ettt — b,
2 2( )
(19)

hold w.p. 1, where x, = prox, ,(xf).

Recall that we aim to control xf, — prox,(zf) as it directly determines V¢, (zf), and we also have
|2 —prox,, (zf)|| = ||z —2L]|. Thus, in the following result, we bound E[|zf — 2% ||%]. Moreover,

this result will also help us construct a telescoping sum for analyzing the convergence of {z}:>0 to
a stationary point.

Lemma 5. Under the premise of Lemma |2| and Assumption/gl for any 1,82 € (0,1), and
D1, P2, ps > 0 such that py + p2 + ps = 1, it holds for all t > 0 that

(1 o M) ’Yp352 [

N llzo — @]

<MREE (G b ys)] — (1- 522 ) (1 - HTM% - 1))E 0 )]
+ (1 — ﬂ) p2lE [(]5( 0) — qb(wé“)]

1 M: 5,6 B
+§(1 N )(pl(vﬂtz)ik

(20)

. 2
p2(v+ pe) £ Pav 5

. JE ™ —517] + Zra

Proof. Using Lemmaand Gl Yyt = (p1 + po + p3) Gtz ybth) Teads to

v+ e Pr v+ pg B2
E[gwﬂ,yé“)]_—(pl b ) (bt — b2

2 1-p 2 2(1 - B2)
L1
+p1 (1 _ %(E _ 1)) E [gt-&-l(x(t)-i-l’yé-i-l)}
+oE [6(e5™) — 6(25)] + s 2B [l — 7]

Then, combining this inequality with Lemma[3]yields the desued result. O

Finally, in the following result, we establish a preliminary convergence result for SAPD+ under
compactness assumption stated in Assumption 4}

Theorem 6. Under the premise ofLemmaEI given T € Z, suppose Ny = N forallt =0,...T
for some N € Z, suchthat N > (1 + ()M, . ¢ for some ¢ > 0, and the inequality system,

W—(l—%‘e)m(l—vz“w(a—l))go, (21a)
(’y+ux)(p1£151 —p2) + Py - <0, (21b)

has a solution for some 31, B2 € (0,1) and p1,p2,ps > 0 such that py + ps + p3 = 1. Then, for
A=(v+ ,ugg)*1 under Assumption the following bound holds for all T > 1:
T

1 2)? 1 _
Z (19 (b)1?) <2 +<2]§ZB§“> (T +1Q(£8798)+:T,a,9>. 22)
t=0
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Proof. Since dom f and dom g are compact sets, E[G! (z, y§)] € Rexist fort = 0,...,T, ie.,
—oo < E[G (2, y§)] < oo for all t. Therefore, if we sum up equation (20) from 0 to T, we get

T
S (1~ Mgee) WP g — ot 7

t=0
< —M;vgﬁgo(xg,yg) — (1 - L]*\}:ﬂ)pl <1 _at . > E [T+ (zT+1, yT+)]
T-1 Y+
M, 50 M. 50 x t+1 t—‘rl t-‘rl
e >>> g
t=0 < N Nem vy \b 97 )]
T-1
+ (1 - MJT\}Z’Q) p2o(xg) — (1 - e 9)p2E [p(zg )] + P2 (MT 20— NT,LS) E [¢(zfh)]
=0
part 1
- Yt+ue B Y+ B
Mro z 1 @ 2 +1 2
1 ,9) -
+§( 7 (pl 5 T—5 P 3 +p372(1ﬂ2)) (a5 — 2)1%]
+ ( + 1)57,0,0

(23)
Thus, using Ny = N fort = 0,..., N, it follows from the conditions in (Z) that

1 ZT Y3
Ir,o, 2
T+1 (17 N 9) ; [HIB*SEHF]
t=0

I My, 0.0 .0
ng"]E 1G° (20, y0)]

1 0 +pa (1
- 77 (1) m (1 -G 1)> E[67 ™) o4

p2 (1 Yz
(THN)]E [6(20) — B(ag )] + Er o

+

1 — £rob
L' Mi,0-000 0 p2< N) 09 +=
_ngg (x07yo)+T—Hg(x07yO)+:Ta°‘79’

which follows from (i) Gr1(zg yyg ) > 0, (i) ¢(af) — d(zg ™) = ﬁ(ﬂ?o,y*( 0) —
L(xg ™ ye(zg ) < LG,y () — Lag T y0) < supyrey L(a8,y) — inforex L(2',y))
G(x3,v3), and also from the fact that (2Ta) implies (1 — ﬂ) 1 (1 — Yths (E 1)) > 0.

o
Then dividing both sides by (1 - %) %2& gives us

1 T
1 3l — b @5)
t=1

: 1 (1= S502)
M:60,0,,0 0 N

< ( 20 G0 (ad y)) + —— LG

(1— =22l)yps o N T +1 T+1

21 +<) 1
— Cwpsh (TTlg(%vyo) +2, Ue)

0.0 —_
o, yO) + :T,U,G)v

where the second inequality follows from G(z9,49) > G°(23,43), and for p; € (0,1), we have
N > (14 {)M; .. Finally, we get the desired result using Lemma O

A.2 A particular parameter choice

We employ the matrix inequality (MI) in eq. to describe the admissible set of algorithm parameters
that guarantee convergence of Algorithm|I] i.e., inner loop of SAPD+ when VR-flag is false. In
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this subsection, we compute a particular solution by exploiting the structure of MI in eq. (T6). This
particular solution is for solving the SCSC subproblems in eq. ().

Lemma 6. Forany j, >0, let L., = Ly, + 7 + pio. Suppose 0 =1, and 7,0 > 0, satisfy

1 1
< - <
T Ly + Lys’ 7= 2Lyy + Lya

Then {1, 0,0, a} is a solution to (16) for &« = Ly, + Ly,.

(26)

Proof. 1t follows from the choice of 7 and o in (26) and § = 1 that a sufficient condition for (T6)) is
given by the following smaller matrix inequality for o = Ly, + L

yy»
% - L/zz 0 _Lyx % - L/zz 0 _Lyac
0= 0 L_a —Ly,|= 0 L Lyo— Ly, — Ly, £ M+ M,
—Ly —Lyy « —Lya —Lyy Lys + Lyy
LI, 0 —Ly 0 0 0
where M; £ 0 0 0 and My = [0 L —Ly.—Ly —Lyy |. Therefore, the
—Lyx 0 Ly 0 —Lyy Lyy

Schur complement conditions together with eq. @ imply M7 > 0 and My > 0, respectively. Thus,
My + My = 0. O]

A.3 Proof of Theorem

Proof. Using the results we derived in the previous two subsections, we are now ready to provide the
proof of Theorem T}

For the inner loop iterations, Lemma|[6]ensures that eq. holds for our {7, o, 8} choice in eq. (7).
For the outer loop, if we set V as in eq. (7) and

1 19

11 4 1
b1 161 D2 323 b3 32» ﬁl 5» ﬁQ 2» C 32a ( )

all assumptions of Theorem [§] are satisfied, i.e., both the inequality system eq. (ZI) and N >
(14 ¢)M- 40 hold.

Specifically, because 11, = v and § = 1, we have M, , 9 = max{;%, %} Therefore, we know

that N > (1 + ()M, , ¢ is trivially true. Moreover, using M, , /N < (1 + )71, it follows that
eq. li holds for p, =y, p1 = %6 and 51 = g, ie.,

M, M, L1 33 133 1 1
,79_(1_]\},0)“(1_77( 1)) = B _

N B

Moreover, it is trivial to check that eq. (2Tb) holds for the parameter values given in eq. (27).

= —7——:0
32 N 327321+(¢ 32

Since all assumptions of Theorem [f]are satisfied for parameters chosen as in eq. (7) and eq. 27)), if
we substitute eq. into eq. (22), if follows that

1 T

1
—_— E O117] <4 —_ 9 40 = .
P72 B Vo] <87 (770008 48) + =)

T+1

Thus, for any € > 0, the right side of the above inequality can be bounded by € when

48 0 0 €2 — €2
— < — 48V 59 < —. 28
T+1g(x07y0) = 27 ’7 ,0,0 2 ( )

Note that because Z, ;9 = T (Ex co T %) 52 +o (: + %) 55, a sufficient condition for the

—r,0,0

second inequality in eq. (28) is that

[\

62

000, < T (29)

€

24y7(1 + 282, 5)02 < T 2oB+ 2=Y
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Moreover, recall that =7 |, and ZY _ , are defined in Lemma for § = 1, they can be simplified as
follows:

= ,0=1+0Ly,, E?U’e =3(4+20Lyy +270LyyLyy) + TLyq.

T,0,0

Because the choice of {7, o} in eq. (7) implies that

TLy, <1, 7Lgy <1, oLy, < oLy, <1,

)

DO | =

we can upper bound =7 |  and = =Y o0 as follows:
= =Y
‘—‘T,J,O < 2’ —r,0,0 < 22.

Therefore, with the choice of {7, ¢} in eq. , we have a sufficient condition for eq. as follows:

2 _ € 2 _ €
120v71d; < R 112800, < R
Indeed, the above condition is trivially satisfied by our choice of {7, 0} given in eq. (7). Therefore,
the second condition in @ i. e 487HT o6 < 5, holds for the choice of {T o}in eq . Thus,
from the first inequality in eq. (28| , we get mmt_oy___’T E[|Voa(z)]|?] < € for
T > 96G(x3,y3) - 5 + 1. (30)
€

Note that from Jensen’s inequality, we have (E[||[Vx(z))[])? < E[[|Voa(z)|?] for all ¢t =
0,...,T; hence, it follows that min;—q 7 E[|[Vor(zf)|]] < € for all T € Zy satisfying (30).

Flnally, to show the complexity result, recall that N = 33 max{-L }. Using the the choice of
{r,0} ineq. (7) we derive that

’YT’#U

N O(max{Lm,VLyz,Lzy} g maxlon Lun} | (% ﬁ)l),

Hy v Hy

Moreover, since SAPD+ requires N'T" oracle calls in total, combining (30) with (3T)) leads to O(e™*)
bound on C as stated in Theorem [I] which completes the proof. O

€1V

B Proof of Theorem 2 and preliminary technical results

Suppose Assumptions I} 21 Blhold. Given ., an e-stationary point for the y-weakly convex function
¢(-) = maxyey L(-,y), ie, E[[[Vor(zo)|]] < § for some fixed A € (0,771). Let ¢(-) £
maxycy (-, y) — g(y) so that ¢ = f + ¢°. In this section we show that initialized from z, and
using appropriately selected step size parameters, within @(}2) stochastic first-order oracle calls,
SAPD, stated in Algorithm|1} can generate Z such that E [||G ()| < e, where generalized gradient
mapping G is defined in (9).

Lemma 7. Suppose Assumptions hold. Given some (x9,1o) € dom f x dom 9, consider the
SCSC problem in @) for some i, > et {x, i t >0 be generated by SAPD, stated in Algorlthml

initialized from (x, yo) and using T,0,0 > 0 that satisfy

T =)+ ke 0 0 0 0
0 %(1_ %)+Ny (%_1)Lyz (% —1)Lyy 0
G2 0 (4= 1)Lys 1-r, 0 —0Lya | =0 (32)
0 (% = 1)Ly, 0 1 _a %Ly
0 0 —8Ly, 0Ly, a

for some o € [0, 1) and p € (0,1), where L, £ Lyy + piy + 7. Define ¢(x) = maxycy L(z,y);
and let & = proxm(xo) for X = (pe + )" and y.(&) = argmax, ¢y L(&,y). Then for all
N € Zy, it holds that

1 ) 1 A
E[(= = pe)llzn =3l + (- = ) lyx = 5. (@)]
T o
1 1 0
N 7 o =T
<o (Hhoo =817 + Tl — D) + 12 (120082 + 022,52,

where 2% o and =Y, are defined in (I8a) and (I8B), respectively.

(33)
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Proof. For easier readability, we provide the proof in a separate subsection, see appendix [C] O

In the following part, we will compute a particular solution by exploiting the structure of MI in eq. (32)
and use this particular solution for the rest of the proof. First, in Lemmal[8] we give an intermediate
condition to help us construct the particular solution subsequently provided in Lemma D] for solving
the generic SCSC subproblems in eq. (2).

Lemma 8. For any p; > 0, let L, = Lyz + v + g Suppose p =6, and 7,0 > 0, 6 € (0,1)
satisfy

1-— 1-— 1 1 L
r 20 o 0 s e, Lo e (L), e
bz Hy 0 T o m T
for some w1, w9 > 0. Then {1, 0,0, a} is a solution to (32) for o = ei—f” + %.

Proof. 1t follows from the choice of 7 and ¢ in (34) and p = 6 that a sufficient condition for eq. (32)),

. . . . . 0L,. , 0L
i.e., for G = 0, is given by the following smaller matrix inequality for o = 4,
1L, 0 —Lys 11, 0 —Lys
0 < 0 Lo —Ly,|= 0 1% w g, |2 M+ M,
a Lyw | Ly
—Lyas —Lyy 9 —Lyx Ly, 7,}1 7;12'1
where M; £ 0 0 0 | andMp2 |0 2—%we_ 2w g, |  Therefore,
~Ly. 0 Ze= 0 ~Lyy fw
since 71, Ty > 0, the Schur complement conditions in @), i.e., the third and the fourth inequalities,
imply M; > 0 and My > 0, respectively. Thus, M7 + Mo = 0. O

Lemma [§] shows that every solution to (34) can be converted to a solution to (32). Next, based on
Lemma|8] we will give another explicit parameter choice for Algorithm [I]in addition to the solution
we provided earlier in Lemmal6}

Lemma 9. For any u, > 0, let L, =L., + v + ptz. For any given § € (0,1], let 7,0 > 0 and
0 € (0,1) be chosen satisfying

;e - . 0>0(8), 35)

where 0(3) = max{0;(3), 62(8)} € (0,1) such that

) S AL, i
01(8) 21— Bngw ( L+ BL e 1)7

2
zx My

_ _(-p? #3( 1605, )
G2~ s o, Ity —1) Lw>0

0 Ly, =0.
Then, {1,0,0,a, p} with « = % — \/éLyy > 0and p = 0 is a solution to (32).

Proof. Consider arbitrary 7,0,m,m2 > 0 and § € (0,1). By a straightforward calculation,
{7,0,0, 7,72} is a solution to (34) if and only if
_o1-0 10 00L e

) el ) US| 2

, (36a)

0 1

o(me + —)Lyy <1, = —Lb, >mLys. (36b)
) T

In the remainder of the proof, we fix (71, 73) as follows:

o= 90Lye . me =0 (37)
1—0(7r2+%)Lyy
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), 1) implies

Note the definition of §(3) implies that §(3) € (0, 1). Next, we show that 6 € [0(3
6(B), 1) together

71, me > 0; furthermore, we also show that 7, > 0 defined as in @) for 0 € |
with (71, 72) as in (37)) is a solution to (36).

First, setting 7, o as in and 71, mo as in imply tW is trivially satisfied. Next, by

substitutin {T 0,1, T2}, chosen as in (33) and , into , we conclude that {7, 0,0, 7,72}
satisfies forany 0 € ( O 1) such that

2L, 1-0
2y 120y 39)

Hy Vo

2
e ) L2, 9Ly, 1-0\-1
— Ly >2(1-0)— (1—-—— ——) , (39
1-90 ( ) Hy ( Hy Vo )

for some S € (0, 1]. Clearly, a sufficient condition for (39) is

1-0 ( ) By B

Note that (38)) implies that 71 > 0. We also have mp = \f 6 > 0 trivially.

When Ly, > 0, given any 3 € (0, 1), solving eqs. and (40) for 6 € (0,1), we get the third
condition in (33). Indeed, it can be checked that 6 € [02([3) 1) satisfies (38) and 6 € [6:(3),1)
satisfies @0); thus, 6 € [(), 1) satisfies (38) and (@0) simultaneously. Moreover, when L,,, = 0,
one does not need to solve eq. (38) as the first inequality in (36b) holds trivially; thus, the only
condition on 6 comes from (39) which is equivalent to with 8 = 1. The rest follows from

Lemmaby setting o = eii + OL%. Indeed, the particular choice of (my,m2) in (37) gives us

a=1-VoL,, 0

Now that we have provided a particular solution to eq. (32), we will next use this particular solution
within Lemma [7|to derive an error bound customized for this choice of parameters. The following
two technical results, i.e., Lemmas[T0and[TT] will be used later within the proof of Theorem 2}

Lemma 10. Consider L defined in (). Suppose Assumptzonsm |ZI Ehola’ Given arbitrary xy, let
& = prox,,(wg), where ¢(-) = maxyey L(-,y) and \ = For any given é > 0, SAPD,

displayed in Algorithm can generate T, € X such that E [||x* — 1’”] < é within O(??) stochastic
first-order oracle calls.

Proof. Recall that y.(x) = argmax,cy, L(z,y) for z € dom f. Hence, (#,y.(2)) is the unique
saddle point to the SCSC problem:

J— 2_
minmax £(z,y) £ f(z) + 2(z,y) +7lle — z0l* ~ 9(y), (41)

which is equivalent to the SCSC problem in eq. ? 2)) with p, = . Let {xk, Y } be the iterate sequence
generated by SAPD running on (&), initialized from an arbitrary point (x¢, yo), with parameters
{7, 0,0} chosen as follows:

1-0 1-46
T= — o= 0 0=max{0(3), 61, 62}, (42)
for 8 = min{}, £ -, ;7,, izt }, where 0(8) £ max{0;(8), 62(3)} € (0, 1) such that

1-B)° Hy IGLiy
h e 1SR (1 o =) L >0
0 Ly, =0,
with L/ = L., + 27 and
—1
NN 1, & NN L opyy €
lemax{o,l—g-fy .%}, by & Hé'ﬁ'@ . 43)



In fact, in Lemma([7] we provide a convergence guarantee for solving the above problem in (1)) using
Algorithm([T] Since the parameter choice above satisfies the condition (32) in Lemma[7] we can invoke
eq. (33) to complete the rest of the analysis. To be more precise, the problem in eq. is a generic
form of the SCSC subproblems given in eq. with u, = +; furthermore, by Lemmalgl, (1,0,0)

chosen as in (@2) satisfies (32) with p = 0, pu, = v, = 2 — V0L, > 0,and L, = Ly, + 2.
Since (&, y. (%)) is the saddle point of £, then by Lemma we get

1 12 N1 2 1 2 0
B(3~ ) llow = al] <6% (Llieo — a1 + Lo - 0o @I) + 12

If we substitute the choice of {7, o} in eq. into the above inequality, it follows that

(TE?.YO-,Q(;‘.% +o0Z=Y 55)

T,0,0

X - N A - =
E[HQTN -~ :r||2] <oN! max{l, %} (Jlwo — )% + |lyo — y*(z)HQ) + 5(7’:,.’(,7952 + 0:37(,,’06;).

Then, by Jensen’s inequality, it follows that

2 1
(Bl =) < B [l —#17) < 07 max {1, 24D 4 = (727 5,002 + 022,067,

where Dy 2 (||& — 20|12 + [l (&) — v0]|?)"/*. Thus, for any given é > 0, E[||lzy — 2|[] can be
bounded by é when
Lz 02 romy 02) < © 44
;(T‘—‘T,U,a T +O-'_‘T,0',0 y) - 92’ ( 3.)
~2
9N_1max{ ,@}Dg < % (44b)
v

Recall that =7, Ez@ , are defined in Lemma Thus, the choice of 7 and o in (42)) further implies
that

L
B o=1+(1-0*)2,
0,0 ( )2%
L’11 L L L
=¥ 0= (1430 (1= 6272 4 (14 0)(1 - 0)* 7222 ) (14 20) + 6(1 — 6%) 222
> Hy Yy 2y
Since 0 < # < 1and 1 — 62 < 2(1 — ), we have
L
B <1+ (-0, (45a)
7, Iy
L Ly.L, Ly,
22,0 <3(44201-0)=2 4 2(1 - )22 ) 4 (1 )L, (45b)
” Hy Ty Y

On the other hand, since 6 > 0(3) = max{#,(8),02(3)}, the inequality v/a + b < \/a + /b for all
a,b > 0, and the definition of §(/3) together imply that

. By 1 -8 py
_h< = — = 0.
1 e_mm{ R Lyy} (46)

Therefore, by eq. [@6)), we can derive that

1 _g)@ < @7 (1_9)@ < ﬂ7 (1_9)2M < @7 (1_9)LW < %;
thy Iy ty 2 Yy Lyx gl v

thus, using those inequalities within eq. (#3a)) and eq. (@3D)), we get
By

Eia@ <1+ o (47a)
” Hy
L,
=Y 0 < 15— 36+ 6872 + % (47b)
yx
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L

Note that # = min{%, ”71‘, =, 722} € (0,1) implies that
Yy Ty
=T =Y
_‘3’,0,0 < 27 —r,0,0 < 22.

Therefore, using the choice of {7,0} in eq. , we obtain a sufficient condition for eq. as
given below:

1—9352 1—9@52Sé

Ty oty T2

Our choice of 6 € (0,1) in (@) implies that § > max{6;, 0}, where 0; and 0, are defined in
eq. . Note 6 > max{él, é2} immediately implies that the above sufficient condition in (@8) holds.
Therefore, with the choice of {7, 7, 6} in eq. (42) we obtain that eq. holds, i.e.,
2

1/ _ 9 _ 9 €
;(T:f’g_’e(% + J:£7U,G§y> < 5

(48)

Furthermore, (#4b) holds when N > In w> /In (%) + 1. Thus, we conclude that
for any € > 0, SAPD, stated in Algorithm |1} can generate x  such that E [||zy — #||] < € within N,
iterations for f=max{6(8), 0, 02}, where
1 1
N: :o(ln (w)/ln (5) +1). (49)
é

Note 1n(1l) < (1—6)~!for 6 € (0,1) implies that
6

1 _ _ . .
o < O(max{(1-8:(8)) 7, (1= Ba(8)) ", (1= 6)7", (1 02)7'}).
First, we equivalently rewrite (1 — 01(3)) ™! and (1 — 02(8)) " as follows:

- 1L 17> - AL
1_96_1:7 T i ; 1_05—1:7 vy .
(1-5:(8) T (1-009) T

thus,
_ L L — 2 L
(1-0)'<=22 4 L (1-0y) ' <1+ -——7 2
Y VB 1—=8  py
Finally,
; 1 62 ; 1 4,
-0 '=0(=-2 —0) ' =0(— .2
(1-6,) 0(72 €2), (1 0) O(Wy 5+ 1)‘

Recall that L/, = 2v + L., using the above four identities that and our choice of § =

P Ly :
Bv X Zvz 3 we derive that

indl B o
mln{?’ Y7 omy? Lay

2

11 _ O(maX{LxmLyw} n max{Lyz, Ly} n max{Lyy, Ly, } n (ﬁ . 67’/) %)7

In(3) Y YHy Iy Yo by €

From (@9), we conclude that

N.— O (maX{Lzz,Lyz} N max{Lyz, Ly} N max{Lyy, Lyz} N (g N ﬁ) {z)ln (M)
THy Hy Y My 7 7€ €

which completes the proof. O

Lemma 11. Suppose f : X — R U {400} is closed convex, and V is a strictly convex function on
dom f and differentiable on an open set containing dom f. Let x, = argmin,y f(z) + V(z).
Then, for any o > 0, it holds that x,. = prox, ;(z. — aVV (z.)).

Proof. From the first-order optimality condition, we have
0 € 0f(zy) + VV (zy). (50)
Moreover, from the definition of prox,, ¢(-) operator, it follows that

prox, ;(r. —aVV(r,)) = argmin f(z) + VV(z) " (z —z) + i||a: —z. )% 6D

TEX 2c
Finally, (50) implies that 2, is the unique minimizer of the problem on the rhs of (31). Therefore, we
get that v, = prox,, ¢(7« — aVV (z.)), which completes the proof. O
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B.1 Proof of Theorem@

We are now ready to prove Theorem 2}

Proof. Let & = prox, (=), and ¢* be the smooth part of ¢, i.e., » = f + #°. Moreover, since
®(x,-) — g(-) is strongly concave and ®(-,y) is differentiable, we have that ¢*° is differentiable;
hence, for any € dom f,

Vo (z) = Vo @(z,y.(x)), where y.(z)= argényax@(% y) —9(y).
Yy

Then we can explicitly write & as

. . . 1
& = argmin f(2) + ¢"(x) + 5y o — x|
rzeX

Since ¢°(-) + % || - —z.||? is smooth and strongly convex, for any « > 0, Lemmaimplies that

1
& = prox,; <i - a(ng)s(:is)JrX(:% - xs))) .
If we let o« = ), it follows that
& = proxy(ze — AV,¢°(2)).
Moreover, since f is closed convex, prox f() is nonexpansive; hence,

E |12 prox,, (¢ ~ AV, (@)l] < Elllec — 2] < 5 (52
)

where we used Lemma [[] for the last inequality, i.c., |z — || = A|[V@x(z¢)]|. On the other hand,
for any 2 € dom f,

E [Hi — Prox, (:i — )\de)s(i)) H]

~ ~ ~ A ~ S [ 2, )\
<E [Hx — Prox,; (a: — )\Vx(ﬁs(x)) — & + prox, (33 — AV,0 (33)) H] + ?6 (53)

SOE [ — &) + AE [|V22(F, . (7)) — Va(d, ya(2)) ] +

According to [[7, Proposition 1], y.(-) is Lipschitz with constant ,,,, = I;L”. Therefore, we get
© Y

IVe®(@,y.(2)) = Vo ®(&, ys (@) < LaollZ—2]+Lay |ye(2)—y2 (@) | < (LootLaykiya) [T,
which together with eq. (53) implies that

1 o 2 .
XE [||53 — prox,; (i’ — )\Vw¢é(x))||] < (X + Lpw + Lzymyx)]E llz — 2] + g (54)

Let \™! = 2y, and C £ (4y + Lyy + Luykiye)~'/2. Thus, for any # € dom f such that
E ||z — &||] < Ce, we have

1 N o
E XHx—prox)\f(x—)\VI(b @)l <e

Indeed, when f(x) = 0 for all x € X, we get ¢(x) = ¢°(x) and the above inequality implies that
EfIVo(@)]l] < e.

The rest directly follows from invoking Lemma[I0| with ¢ = C, and ¢ = .. O
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C Proofs of Lemma [2(and Lemma

We first discuss the proof of Lemma [7]and later establish Lemma 2] through specializing some parts
of this proof. Indeed recall that Lemmal(7]is stated for a generic SAPD+ subproblem of the form ().
In Lemma [I2]below, we restate Lemma [/|and rather than using a generic subproblem, we state it for
the specific subproblems as in (@), which arise while implementing SAPD+. It is crucial to remind that
the matrix inequality (MI) we establish in Lemmal[7] i.e., eq. (32), helps us describe the admissible
set of algorithm parameters that guarantee the /inear convergence of inner loop iterates generated by

SAPD,Leq<{E[HxZ——xiH2%—Hyi——yiHQ]}k>O,f0ranyt > 0.

Lemma 12. Suppose Assumptions [I} 2] B| hold. For any given ji, > 0 and t € 7., consider
solving the SCSC subproblem in using SAPD, displayed in Algorithm|l} Let (zt,yl) denote
the unique saddle point of @), and let {x},,y! }1>0 be the iterate sequence when initialized from

(zf,y5) € dom f x dom g and using 7,0, 0 that satisfy B2) for some o € [0,2) and p € (0,1),
where L, 2 Lyy + pie + . Then for all N > 7., it holds that

1 1
E[(= = m)leh =2t 12+ (5 = o) lly — o))
T g

N [ Lyt b2, Lyt iy P 2 2 ©3)
< P E |:T||x0 - JJ*H + ;”yo - y*” :l + 1— p (TET,O'796$ + UE?,U,G(Sy)a
where Z2 o and ZY _ , are defined in (18a) and (I8b), respectively.
Proof. The proof is provided in appendix [C.2] O

Clearly, it is sufficient to prove Lemma[I2]in order to establish Lemma[7} Moreover, as stated earlier,
we will exploit the techniques used in the proof of Lemma[I2 when showing Lemma 2] —this is why
we restated Lemmal[7]

C.1 Preliminary technical results

Recall that given some z}, € dom f and p, > 0, we define
Li(w,y) = flz) + @' (2, y) - 9(v), (56a)

I’+
@' (a,y) £ Ba.y) + Ho T |lo — 2, (56b)

where v > 0 is the weak-convexity constant of ®(-,y) for any y € domg. It follows from
Assumptionthat V,®" and V,®" are Lipschitz such that

IV @' (z,y) = Vy@ (2, y)| < Lyallz — 2’| + Lyylly — /1, 57
Vo (2, y) = Vo' (') < Liy [z — 2| + Laylly — ¢/l (58)

such that L’ £ L,, + p, + 7. Furthermore, (56b) implies that for any y € dom g, ®!(-,y) is
strongly convex with modulus p, > 0.

We will derive some key inequalities below for SAPD iterates {x}, yi. } x>0 generated by Algorithm
to solve min, max, L' (z,y). Letz* | =z, y* | = y§, and for k > 0, define

@ £ Vy @ (2h,yp) = V@ (i1, yh—1), sk 2 Vy@ (i, yr) + 0. (59)
Thus q(t) = 0; and for k > 0, Assumptionimplies that

lgkr1ll < Lysll@hsr = 2kl + Lyyllykr1 — il (60)

Lemma 13. Suppose Assumptions E|hold. Let {z} , yL } >0 be SAPD iterates generated according

to Algorithm for solving min, max, L'(z,y). Thenforallx € dom f C X,y € domg C ),
and k > 0,

ﬁt($§c+17y) - Lt(%yltcﬂ)

t t t ot t t t t,x ty (61)
< =Gt Y1 — ¥) + i, vk — v) + A2, y) — X1 (2, y) + Thgr + .7 () + 7 (),
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fzw(@ £ <?x¢’t($§wyi+1éwlg§) - Vz‘bt(x;wyltc-&-l)a r — x2+1>a €Zy(y) £ <§I;€ - Sfcay/te-s-l - y>,

q}. and st are defined as in (39), and

1 z 1
Aiey) 2 (5= = E)lle = abl® + 5 lly - vkl
2 1 M 2
S (z,y) & 5”93 — 2|’ + (% + %)Hy — Yl
L 1 1
FZH £ ( ;m - E)focﬂ - xfc”Q - %HZ/ZH - yi”2

+0Lyollzy, — 2 llllykr1 — vl + OLyy Yk — v lllykr — yill-

Proof. Fixx € dom f and y € dom g. Using Lemma 7.1 from [15]] for the y— and x—subproblems
in Algorithm [T} we get

. " 1
F@hia) + (Vo® (2h, yhr1s k), 2k 1 — @) < fl2) + 37 e = 2il|* = llz — ok |” = lwksr — 2l?]
. 1
9Wha1) = (ks viker = ) < 9() + o [y = will® = lly = i I” = llvkes — wil] -
Thus, by adding and subtracting we further get

f(szrl) + <qu)t($§cayi+1)a x§c+1 —x)

(62a)
t,
<f@) + 5= (e =il = llo = i [P = ok — 2kl?) + " (@),

9(924—1) — (ks yZ+1 - y) 62b
<g(y) + L (lly = vLI12 = Iy — vhu |2 = lytry — vL 2 ty (62b)
<9) + 35 (ly = will” = ly = yra 17 = vk — wll”) + &7 ()

Rearranging the terms in (62b), we get
—9() + 9(Yk11) )
t,
sk Yhr — ) + 35 [l = wll® = 1y = v 1* = lghn — wil®] + 2" ()

Since y;, ; € dom g, the inner product in (62a) can be lower bounded using convexity of ®(-, v}, ;)
as follows (see Assumption [2)):
<vx¢t(x§cv ylte—i-l)? xfc—&-l - 1‘> = <V$(I)t(xz7 yi}-‘rl)’ ‘Tiltc - .CE> + <V£E(I)t('r§w yltc+1)’ xi—i—l - CC};>

fia
> ‘I’t(J?Z»yZH) - (I’t(x,yz_H) + 7”3? - szz + <Vw¢)t(xfc,yz+1), x§c+1 - x§c>
Using this inequality after adding ®* (] ;, %} ,) to both sides of (62a)), we get

(2] 1,Yhyr) + f(2hi)
<Oz, ypy 1) + f(2) + R (@hy1, Yir 1) — D (@hs vi1) — (Vo @ (), Yhi1)s Thoyy — T1)

. t,
+ 5= [llz = i l? = o = i |1 = l2hgn — 2 0°] = B2 lle — 2 l” + €7 (2)
!

L{L’I
<O, phgn) + £ () + 2 af g — o

© t,
+ 37 (e = 2ll” = llo = 2k I* = llokyr — 2hlI°] = G llo — 2k + " (),

(64)
where the last step uses Assumption 2} Rearranging the terms gives us

Ly
F(@hia) = fla) = @Mz, ypyr) < =9 (2hy1,¥hr) + T||$§c+1 — z? ©5)

1 H t,
+ o e =24l = llz = 2l |7 = l12hs = 22 07) = ol = 2il® + 7 (@).
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Then, for k£ > 0, by summing (63) and (63), we obtain

L(zhy1,y) — L(z,yhy) = flah) + O (2h 1 y) —9(y) — flz) — (@, yh) + 9(Whin)

2

<O (@hg1,y) = PTG gy Ynr1) + (S Yign — ) + o= [@hpy — 2
: t
o [y = il = ly = vk = lgia — wil?] + £ (v)

1 P t
o= [l = b2 = 2 = gl = ok = 281P] = E2flz — o2 + 7).
(66)

From Assumption the p, -strongly concavity of ®(z, -) for fixed z € dom f C X implies
' (2351,9) = P (Thp1s Yig1) + (ks Vb1 — ¥)
VY@ (g1 Yhr1)s ¥ — Yhr1) — %Ily — Y lI® + (Vo @' (2, yk) + Odks Yirs — )
= — (Gt Yo — Y) — %Ily ~ Y I” + 0dis v — ) + 04dks Yirs — Vi)
Thus, using the above inequality within (66), we get

L2y, y) — LY@ y51) < =@l Yerr — ¥) + 0(ak, vk — v) + 0(ak, Yhsr — Yi)

/

L 1 L
+ = ok — @i + 5o Ly - Ull® = Ny = i lI* = lien = will?] = Sy = vhea 1

1 2 t, t,
+5- [lz = 2{l1* = lz = 2} [I” = l2fr — 23)1%] - f\lx =zl + €7 (@) + ¥ (v)-

Finally, (61)) follows from using Cauchy-Schwarz for (g}, y},, — v and (60). O

Lemma 14. [3| Theorem 6.42] Let f be proper, closed and convex function. Then for any x,x’ € X,
we get ||prox;(z) — prox;(z)| < |lz —2||.

Next, based on the above inequality, we prove an intermediate result, which we use later to bound the
variance of the SAPD iterate sequence.

Lemma 15. Suppose Assumptions hold. Let {z},yt }x>0 be SAPD iterates generated as in
Algorithm 0r solving min, max, L' (z,y). For k > 0, let g}, and s}, be defined as in (59), and let

Fy1 & prox,; (wh — TV (T, yhi1)) ,  Thon £ prox,; (zh — TV (zh, Gkia)),
Ghin 2 prox,, (uk +ost) . Ghi1 2 prox,, (i +0(1+0)V,0' (3, 3) — 00V, @ (a1, 5b1) ),
then the following inequalities hold for k > 0:
[#hsr = ol S TIAR WWhsr = Thrall < o (L +OIALYI +011ALYL1) (67a)
19f1 = Gkl < o (L OIA + 01 ALY |+ 7(1+ 0)Lye | AL, 1) (67b)
+0 (14 0(1+6)Lyy +70(1+6)LysLay) (1+O)IALY |+ O1ALY, ) |

where AZ’Ié@zq)t(z}sm yltc+1; wi) — Vo @' (af, yltc+1)’ and Agyé€y‘bt(w}iv ks wp) — Vy @ (z,, yf.).

Proof. The first inequality in eq. (67a) is from Lemma|[T4} for the second, we have
| +012241)

which follows from Lemma [[4] and the triangle inequality. To show eq. (67b), we bound
Hy};jl — 41|l and |9} 1 — j ., || separately. It follows from Lemmathat 2} 1 — 2} |l <
T||fo1)t(:s§€., y,i{rl;wﬁ) — Vo ®' (2}, 7}1)|l. After adding and subtracting V,®*(z}, ¥y} ), As-
sumption [2)implies that

1941 = Gha | < oll) = skll < o (1 +O)IALY

2 t, A
1her = T | <7 (1AL + Layllygsr = G l) - (68)
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We will use this relation to bound ||§%, , — 9¢ | Indeed, using Lemma we have
19841 = Sheral llvk = 98 + o1 +0) (V@ (ah, wh) = V@' (34, 30)) |
S+ 0(L+0)Lyy)lyk = Gkll + (1 +0) Lya |2, — 2|
(14 01+ 0)Lyy +70(1+0)Lya Ly Iy — 9l + 70 (1 +0) Lo | AL |
<o (L+0(L+0)Lyy +70(1+0)LyaLay) - ((1+OIALY | + 047, ])
+o7(146) Lyo | AL I,
where the second, third and fourth inequalities follow from Assumption[2} eq. (68) and the second

inequality in eq. (67a), respectively. Combining this with ||y}, — gt all < iy — Gl +
[ ﬁi 411/, and the second inequality in eq. l) give us the desired bound. O

Next, we provide some inequalities to bound the SAPD variance term later in our analysis.

Lemma 16. Suppose Assumptions Ehold. Let {x},, y! } k>0 be SAPD iterates generated according
to Algorithm 0r solving min, maxy, L (z,y). The following inequality holds for all k > 0:

E [<A2’zai2+1 - $§c+1>] < 7'52» E [(AZ’yyyltﬁ-l - :gltc+1>] < 0(1 + 29)557
E [<AZ’31,?5Z+1 - yi+1>]

<o [((2 +0(1+4+0)Lyy+70(1+0)LysLay) - (1+20) + m) 5%+ Mdi} ,

2 Y 2

where Aff and AZ’y are defined in Lemma

Proof. With the convention that y* , = y* | = y{, and 2", = 2’ ; = ), Lemma|15|and Cauchy-
Schwarz inequality imply for all £ > 0 that

(AR, @hpr — Ehg) S TIALTIP,

(A Yhsr = Dhn) S o (LA + 01437, ALY

)

AR+ OIALE P +7(1+ 0) Ly | AGZ 11 ALY

<A§£1792+1 — Y1) <o ((1 + G)HAZ?]

+ (1401 +0)Lyy + 700 +0)LyaLay ) - (1 + O AL, 2 +0|A§£2||A221|)>.

Next, using Assumptionand lal[[[o] < Zllall® + 3|6]|%, which holds for a, b € R™, and taking the
expectation leads to the desired result. O

Before we move on to prove our intermediate result in Lemma[T2] we give two technical lemmas that
help us simplify the SAPD parameter selection rule and lead to the matrix inequality in eq. (32).

Lemma 17. Given 1,0 > 0,0, > 0, and p € (0,1), let

T )+ 0 0 0 0
0 %(1_%)4‘%} _‘1_%|Lym _|1_%|Lyy 0
G' 2 0 —1=4| Ly, 1-rI, 0 —0Lya |, (69
0 —[1 =8| Ly, 0 l-a %Ly
0 0 —%Lys —%Lyy @
then G = 0 if and only if G' = 0, where G is defined in eq. .
Pl"OOf. vY = (y17y25y37y4ay5)T € R5’ lettlng 5’ = (y17 —927937y4a2/5)T’ we have
T : T :
T _ )y Gy if0<p, 1., Jy Gy ifod<p,
y Gy = {yTGy else; y Gy = {yTG’y else.
Thus, G = 0 is equivalent to G’ = 0. O
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Lemma 18. Given 1,0 >0, 0, > 0, and p € (0, 1), consider G defined in eq. . If G = 0, then
G" = 0, where

1(1 - l) + Hy +% (11— %| - %)Lyz (=11 = %| - %)Lyy

G" 2| (-1 =4[ = %)Ly 1-L, 0 = 0. (70)
(_|1_Q| %) yy 0 %—a
Proof. Note that x' G'x = x'TG'x > 0 forall x = [v; 29 23] € R3, where X' =

[0 21 @2 23 1] and G’ is defined in (69). Then the desired result follows from Lemma O

Finally, with the following observation, we will be ready to proceed to the proof of Lemma [12]
Let {]—",ix} and {]-"t’y} be the filtrations such that 7% 2 F({zt}r o {y!}ets) and F¥ 2

F({xtr o, {yt}F ) denote the o-algebras generated by the random variables in their arguments
A consequence of Assumptlonlls that for 7, **_measurable random variable v, i.e., v € Fi'", we

have that E {(V@w(xk, Yhrs Wi) — Vu(xh, yhyq) v )} = 0; similarly, for v € F}%, it holds that
E {(ﬁ@ (zh, Yt w)) — VO, (t, yfﬂ),vﬁ =0.
C.2 Proof of Lemma

Proof. Fix arbitrary (z,y) € dom f x dom g. Since (z}_ ;,%;,,) € dom f x dom g, using the
concavity of £*(x]_, ,,-) and the convexity of L'(-, 4}, ;), Jensen’s lemma immediately implies that

z

—1

Kn(p) (L, y) — L'z, 98) < Y p (L' (@hs1,y) — LY@, 55041)) Yo € (0,1],  (T1)
0

=
Il

_ —k N-1 _
where 7}, = KN(p) Zk 0 P T, Uy = KN(p Zk o P Y1 Bnlp) = s oM

Thus, if we multiply both sides of (61)) by p~* and sum the resulting inequality from k = 0 to N — 1,
then using (71)) we get

Kn(p) (L' (Z,y) — L(z,7n))
—1

< p* ( (@15 Vi1 — ¥) + 0(qk, vk — ¥) FA%(2,Y) — Siga (2, 9) + Thpa

=0 (72)

part 1

=z

x

—(Vo @' (h, b5 i) = Vo' (oh, yhor), 7hor — @) + (5 = shyvhs = 0) ).

part 2 part3

Using Cauchy-Schwarz inequality and (60) leads to

‘<QItc+1vy/tc+1_y>‘ < Sltc+1(33vy) = Lysz)l&chl_37115@”H?Ji+1_y”"‘Lyy”ylthrl_CUZHHyIthrl_yH (73)
for k > —1. Recall 2* | = zf, y', = y{, thus gy = 0; therefore, for part 1,

N—-1 N-2

_ k(0 _
> o7 00k, vk — y) — (Ghar Vi —¥) = D p k(; - 1)<qi+1,y2+1 —y)—p " gy —v)
k=0 k=0
(74)
N— N-1 9
Z 1_*‘Sk+1(1’ y)+p VTS P~ 1—*|Sk+1(x y)+p " T=Sh(z,y),
k=0 k=0 p
where the first inequality follows from eq. (73).
Next, letting AZT and Z be defined as in Lemma we equivalently write part 2 as
N—-1 N-1
—p AL wh —2) = Y (AL e — ) = (AF B - @) ()
k=0 k=0
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Moreover, for ALY, §t 4 and ﬁ,tc 41 defined as in Lemma we also equivalently write part 3 as

N—-1

—k /<t t
ZP (8K — Sk, Yk1 — )
k=0

(76)

MZ

[ (14 6)¢ k ,yk+1 Z}ltc+1 + @Z+1 —y) — 9<Ak 17yk+1 .752-5-1 + Zjltc+1 - y>}
k=0

Adding p~ N1 DY, (x, y) to both sides of (72), then using (74), (73) and (76), for any fixed (z,y) €
X x Y, we get

N—-1
En(p) (L@, y) = L', 54)) + o V' Di (2, y) < Uk(z,y) + Y p7H (P2, y) + QF),

k=0
17
where U (z,y), DY (2, y) are defined as
AN - t 0
= p Fk+1 + Ap(2,y) = Bpa(z,y) + |1 - ;| Sp1(@,y)
=0 (78a)
_ 0
—p N+1(—D§v(w,y)—;5§v(x,y)),
1 /1 1 /1
¢ a2 Ll TN ton2
Diy(o) £ o0 (= o)l = ol + 5 (5 = ) Ik~ ol (780

and P}(z,y), Q) fork =0,--- , N — 1 are defined as

Plz(af,y) £ <At - j§c+1 > (1 + 9)< 27yai92+1 - y> ‘9<Af£pi§2+1 - y>a (79a)
Q. é<AZ’xaiZ+1 $k+1> +(1+ 9)<A2’yvyk+1 yk+1> - 9<A;’glvyitc+1 - 172+1>- (79b)

For any fixed (z,y) € X x ), we first analyze U (,y). After adding and subtracting &y}, —v5[*,
and rearranging the terms, we get

Un(z,y) Z Pfk(fk Ak — §k+1B§k+1) —p " (=Di(z,y) - %va(:uy))

N-1

—568 A6 — 5 3 0 el (B = 246 — 7V (GERBew — Diva.y) - USh(ew)).
= (80)
[z} — |l
vk — yll
where A, B € R>*5 and &, € R® are defined for k > 0 as follows: & £ | |lz} —z%_ ;| | such
vk — yr—all
Hyltc+1 - yltcH
that 2* | = zf, y* | =y}, and
L—pe 0 0 0 0 i 0 0 0 0
0 L0 0 0 0 L4y =8 Ly —1=% Ly O
A= 0 0 0 0 O0Ly.|, B2|0 —[1-% Ly 1-r, 0 0
0 0 0 0 0Ly, 0 —[1—= 2| Ly 0 1o 0
0 0 0L, 0L, -—a 0 0 0 0 0

In Lemma|l7|we show that eq. is equivalent to B — %A > 0; therefore, it follows from @ that
for any given (z,y) € X x J,

1 _ 0
Uk(w:9) < 56 A% —p™ " (368 BEx — Div(,9) = = Sy (x,9)), holds wp. 1.
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Furthermore, we have

li-YH4ee 9o 0
1 .+ . 0 . 1+ F1-3) P 1>/</3
igNBgN — Dy(z,y) — ;SN(%?J) = ng 0351 G’ 0341 |énv 20,
0 0143 0

which follows from eq. (32) and Lemmal[I8] where G”' is defined in eq. (70). Finally,

1 - 1 1

el Ae < — _ A2 - ot 2.

LT Ag0< Lo — 12 + =y — b
Thus, for any (z,y) € X x ),

Uk(o,) < o-lle = bl + 5oy~ vbl%, w1 8D
NI =9 0 20 ol R

Now, we are ready to show eq. (55). It follows from eq. and eq. that, for any (z,7) € X x Y,

K (o) (£ (@ y) = £, 5)) + p~ ¥ Div(2,y)
N-1 (82)

< *le—wollz + *Ily vl + D p7F (P, y) + QL)
k=0

Let (2%, y!) be the unique saddle point of L. If we substitute (x,y) = (x%,y!) into eq. and use
the fact £(z',y%) — L'(2%, 7)) > 0, we obtain that

N-1
_ 1
p NTDN (2, yl) < ;Hx —zp)* + *||y* wll>+ > o F (Pl yl) + Q). (83)
k=0
From Assumption[3] for & > —1, we have
B (AL, 84y — 24)] = B [{AL 60 — 31)] = B [(AL,. 5 — ot)] = 0.

Thus,
Moreover, from Assumption (3| for £ > —1, we have

E[ay717) <67, E[IAIP] <65
Therefore, we uniformly upper bound E [Q}] for & > 0 using Lemma ie.,
N-1
E[Zp_kQZ]S( T0'062+U —r,0,0 )Zp ,’
k=0

where =7, and EY , are defined in and (I8b). Therefore, combining this result with
E[P{(xL, yt)] —Oforanyk: € {0,.. — 1}, we get

Zp E(PL(at, ) + QL)) Zp b (722002 + 0, 402). (84)

Then, using the definition of D% (z%,y!) in eq. (78b) and the fact

N-1
_ _ 1—pN _ 1
pk:pN+11_ SpN-Hl_ 7
=0 P P
for any p € (0, 1), the desired inequality in (53) follows from (83) and (84). O
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C.3 Proof of Lemma

Throughout this proof, our analysis is based on the proof of Lemma|[I2] To analyze the expected
gap in Lemma 2l we con31der the settmg with p = 1, which implies that K (p) = N and z,

Lyt i U= % Z ok +1- The proof of Lemmais different than that of Lemma|12|in
the way we analyze the variance terms. To be precise, we construct the auxiliary sequences —see I,
g,j, 9, defined in eq. and eq. —for the analysis of part 2 and part 3 in eq. to provide
guarantees on the expected gap function.

Proof. Fix arbitrary (x,y) € dom f x dom g. Since (2} ;,%;,,) € dom f x dom g, using the
concavity of £(x},_,-) and the convexity of L*(-,yj_ ), Jensen’s lemma immediately implies that
N-1
N (L@l y) = L4, 8)) < Y (L (kg1 y) — L@ yh)) (85)
k=0
where Ty = Zk 0 Thit IN =¥ Zk o Yki1- Summing eq. li fromk =0to N — 1 and
using (83), we get
N (L Y@ y) — L=, yN))
N-1

S _<qk+17 yk+1 - y> + 0<q23 yi - y> +AZ(SE, y) - E;H—l(xv y) + Ff@—i—l
k=0 (86)
part 1
(V@ (2, Yoy 13 @) — Va® (s Yhgr)s Thps — @) + (Bh — sk Uhrs — 0) -
part 2 part 3
The bound on Part 1 immediately follows from eq. with p = 1, i.e.,
N-1 N-1
Z‘g Thr Ui, — <Q;i+1,yi+1 —y) < Z [1—9| Si+1(z,y) +0Sy(z,y). 87
k=0
Recall that zf and y' | = yf; thus, ¢f = 0.

Next we consider part 2, let AZ’”; be defined as in Lemma For some arbitrary 7, > 0, define
{1} sequence as follows:
FoLah, i1 2 argmin— (AL /) + %”Ha:’ — @2 VEk>o. (88)
' eX
Then by [29, Lemma 2.1], for all £ > 0 and x € X, we have that

1
Az —5) < Blle — 32 - Bl — 7 2 — A2
(@472 = 3) < Bl = aul? - Lo = sl + 5 1AL
Thus, using Zo = x{, we get
N-1 N-1 n n 1
Sarme—i) <30 (Lo - al® - Bllo - aenll + 5 145°)2)
k=0 k=0 N
(89)
N - 1 t 2 Nz t 2 1 p-
=5 (& = z5]* = |z — &~ ) ;EHA;J I” < 5 llz = zoll Z;”A
hence, part 2 becomes
N-1
(AY" 2 = Thpr)
k=0
N-1
=) (AVT g’ — Thg) — (ART, By — @) + (AFT, T — Bg) (90)
k=0
n N—-1 1
S{\Iw —ap|* + Z (AYT Ehpr — Thopr) — (A", Bhpn — ) + ﬁHAZ’ZHQa
k=0 v

which follows from eq. (89), and & is defined in Lemmal|[15]]

SWhen §, = 0, clearly AL* = 0; thus, part 2 is equal to 0 and we can set 7, = 0 for which (90) becomes
0<o0.
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Next, we consider part 3, let AZ’y be defined as in Lemma For some arbitrary 7, > 0, we
construct two auxiliary sequences: let ggf =9, = yb, and for k > 0, we define

_ At n _ __ . , n __
gty 2 argmin(ALYy) + Ly — 512, G = argmin—(ALY, ) + 2y’ — gy 12 9D
y' ey 2 y'ey 2

Thus, it follows from [29, Lemma 2.1] that for y € ),
‘2

t, - n - n 1 t,
A"y =) < Sy =9 I1P = Flly = Gl + o Pyl 7AYo
y

ty ~ n n ~ 1 t,1
AR =) <y =917 - yHy_yk—HHQ—’—Tn ALY
y

Therefore, as in (89), we geﬂ

N-1

ST+ 0N T —y) + 0Ly — G )
k=0 ©2)

N—
<La+29)ly - vill* + 5 Z(1+e AP +ola52, 7).
My 4=

Next, using eq. (92), we can bound part 3 as follows:
N—-1
(8% = Sk, Y1 — )

(]

=
(=}

N—-1
(1+0) (ALY Yi1 — G + Diorr — T + T8 —y) — OALY ) Yis — Tkir + Yo — Toa + T1 — ¥)
k=0
N—-1 R R
(L4 0) (ALY Y1 — Digr + Digr — T8 ) — OO Wi — Dt + D1 — Ta)
k=0
1 N—-1
g 2 (L +OIALIP +OIAIE) + (14 26) |y — bl
Ty =0
. 93)
where §;, , and g, , are defined in Lemma
For any fixed (z,y) € dom f x dom g, we use (7). and (93) to get
2, My £12 - St At O
< Up(z, y)+*||1‘—93o|\ 5 (1+20)]ly — yoll + ) (Pi+ QL)
k=0

where U}, (,y) and P}, Q% for k = 0,..., N — 1 are defined as follows:

N-1
Un(z,y) 2 ) Ty + Aj(a,y) = iy () + 11— 0] Shyy (2,) + 0Sk(z,y),  (95a)
k_

PLE (A" — )+ (L+ 0 (ALY, by — ) — 0(ARY L 0hy — Try), (95b)
ché<Am T — ) + (1 +0)(A Z7yayk+1 ?31’2+1>_9<A2’31791€+1—ﬂ1§+1>
1+0
+*HA 71+ IIA“’||2+*HA ke (95¢)

The remaining part of the analysis directly follows from the arguments we used in the proof of
Lemma For any fixed (z,y) € X x ), we first analyze Uk (z,y). For some given a > 0, after

"As in part 2, when §, = 0, we can set 1, = 0.
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adding and subtracting § ||y}, — yL||*, and rearranging the terms, we get

N-1
Oyta) =5 3 (67 Ay — 1B ) + 0Ny (x.0)
k=0 (96)
L. 75 1~ T/ 5 i .75 t
=260 A& — 5 Y16l (B = Al (¢4 Bew — 08k ().
k=1

where A, B € R*® and &, € R® are defined for k& > 0 as follows:

I, — |l Ly, 0 0 0 0
Iy — vl ) o 1 o0 0 0
G2 llaf —at |, A2] 0o 0 0 0 0Ly |,
19k = gl 0 0 0 0 0L,
HyZH - y]tc” 0 0 0Ly, 0L, —«
and
1 0 0 0 0
0 %"‘Ny —[1=0] Ly —[1—6|Ly, O
B0 —1-0/L, L-1I, 0 0
0 —[1—6| Ly, 0 1_q 0
0 0 0 0 0

such that ¥ | = xf, y* | = yi. Lemmatogether with p = 1 implies that eq. is equivalent to
B — A » 0; therefore, it follows from (96)) that, for any given (x,y) € X x Y, we have
1 — . .
Uy (z,y) < 550TA50 - (%fJTIBéN —0Sy(z,y)), w.p. 1.
Furthermore, we also have

= 0 0

1 Tp t 1 T a 1>/</3

§§NB£N - 9SN($7ZJ)Z§§N 03x1 G"” 0341 | &N 20,
0 Oix3 O

which follows from eq. (T6) and Lemma|[T8]with p = 1, where G”' is defined in eq. (70). Finally,
1.+~ 1 1
5&0 Abo<o—llz = 201* + 5 lly = woll*,
Thus, the above three inequalities imply that, for any (z,y) € X X ),
~ 1 1
Un(z,y) < o-lle =g + - ly = vol®s - wp. 1. (97)

Now, we are ready to show eq. (I7). It follows from eq. (94) and eq. (97) that
N sup  {LY(zh.y) — L2 00}
(w,y)€EX XY
1 Nz bt 2 1 ny(1 +26) —t t)12 — Pt At
sl 15 . (yn) — 2ol” + Gy S lly«(@N) — yoll” + Z(Pk: + Qk),

k=0
(98)
where (z! (%), y«(Z%)) is the point achieving the supremum on the left hand side. Indeed, to derive
the above inequality, we substitute (z,y) = (z£ (7 ), y«(Z%)) into the eq. and use the fact that

sup  {LYZN,y) — L'(2,9x5)} = L1 (T, v (T) — L@ TN): Uv)-
(z,y)EX XY

From Assumption for kK > —1, we have

E (AL, #her — 8] = E (A, b1 — 5] = B [(AR 0 — G} | =0
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Thus, E[]B,ﬂ = 0. Moreover, for k£ > —1, from Assumptionwe also have
E[aI7] <62 E[IAZIP] <4
Next, we uniformly upper bound E [QZ} for k£ > 0 using Lemma ie.,
i 1

1
) _ _ 1426
]E[ QZ] S N[<T‘:‘f,a,0 + T)éi + (U‘:T,J,O + 2 >6§:| .
=0 N Ty

Therefore, combining this result with E[P}] = 0 for any & € {0,..., N — 1}, we get

N—-1
E[Y (PL+ Q] < N Er . (99)
k=0
i i _ 1 _ 1 41 ot t+1 _ —t . .
Finally, setting n, = —, 1y = —, Ty = Ty, and yg' = = Yy, the desired result in (T7) follows from

©8) and ([©9). O
D Computation of ¢-stationary point in practice

In this section, we discuss how to compute a point z. such that E[||Vx(z.)||]] < € —as the ¢, in
remark [5] can not be computed in practice. This result is shown in Theorem 7} which directly follows
from Theorem |I| and Lemma @ Below, for the sake of completeness, we state a known technical
result that we need for the proof of Theorem |7}

Lemma 19. Suppose Assumptions|l|and|2|hold. Then ¢y(-) is %-smooth for X € (0,77 1Y), where
oA (+) is defined in definition for ¢(-) = maxyey L(-, y).

Proof. Let R(z) £ x — prox,4(z) for A € (0,77') and 2 € dom f. Indeed, by deﬁnition we
know R(z) = AV¢, (). Then by the optimality condition of prox, , (), we obtain that
R(x) € 0f(prox,,(z))
holds for x € dom f. Hence, for z1, x5 € dom f, we have that
(R(z1) — R(z2), prox,,(z1) — prox,4(zz2)) > 0,
which further implies that
|21 — @] = ||[R(x1) — prox,4(z1) — R(x2) + prox,,(z2)|?

> ||[R(a1) = R(x2)||* + [[proxyg(a1) — prox,,(z2)||®

> || R(w1) — R(z2)||.
Then using the fact R(z) = AV ¢, (x) completes the proof. O

Theorem 7. Consider L defined in (I). Suppose Assumptions[l} 2} [3|hold. Under the premise of

Theorem [l} for any € > 0, SAPD+ can generate an point z. such that E[|[V¢x(ze)||] < € within
0,0 2 0,0

(@] (M In(1/€) + Ly 076 (20-40) ln(l/e)) stochastic first-order oracle calls.

€

Proof. Under the premise of Theorem |1} given e > 0, SAPD+ generates {z}}] , such that
ming—o,. 7 E[|Vor(zh)|l] < e/4, for T > 96G (20, 4]) - 25 + 1. Therefore, for each zf, if
we let 2§, = prox M)(xé), then Lemmaensures that we can generate a point Z% such that

E[l|z — 2ol < é

within [V; many iterations, where

N.=0O (max{Lzz,Lyz} n max{Lyz, Lay} n max{Lyy, Ly} + (ﬁ n ﬁ) L) In (max{li,uy/'y}

v Yty oy Yo py/ € é

35

)



Moreover, if we compute the GNME of ¢(-) at :Z'i, it follows that
V(@) <HV¢A(~1) — Vor(@p)ll + Vo (dh) — Vor(xp)ll + [V (xp) |l
1,
_*le — &gl + XIIwi — x|l + V(o) |l

=Xlli‘i — g/l +2[Vox ()|

2,
<5e+2Vor(ab)l.

where the second inequality is by Lemma [T9} the first equality is by definition 3] and the fact
iy = prox,4(zf). Furthermore, because min;—o ... 7 E [||ng>\(x0)||} < €/4, then we have

.....

€

. ~t < 7A —
,min B[[Vr(z,)Il] < e+

[\

and we let z, = &L, where {, 2 argming,_ 7y E[[Vox(ZL)|]]. Therefore, setting A = % and

€= %, Lemmaimplies that calling SAPD T times, each with N iterations, one can generate .
such that
E[[Vor(zll] <,

where 7' is given in Theorem[T]and

N—o (maX{Lzz,Lyz} N max{Lyg, Ly} n max{Lyy, Lyz} N (ﬁ N ﬁ) 12) T (max{'y, ,uy})
Y THy Hy 0 Hy/ € €

Thus, considering the setting in (§), one can compute z. in practice requiring TN =
0,0 2 0,0
@ (%Q%yo) In(1/€) + %W ln(l/e)) oracle calls; furthermore, In(1/¢) can be removed

by employing a restarting strategy as in [43]. O

E Proof of Theorem

For completeness, we provide a technical lemma below establishing Lipschitz continuity of the best
response functions (see also [43, Lemma 2.5] and [24, Lemma B.2(a)]).

Lemma 20. [[7) Proposition 1] Suppose Assumptions[I|and2|hold. For any given y € dom g, let
2t (y) £ argmin, ¢y L4(2,y); and for any given x € dom f, let y.(z) £ argmax, ¢y L' (z,y) =
argmax, ¢y L(x,y). Then x(-) and y.(-) are Lipschitz maps on dom g and dom f, with constants
Kgy and Ky., respectively, where k £ Loy /i and Kya £ Lyz/ by

Lemma 21. Foranyt >0, let 2t = (zt,y!) be the unique saddle point of Lt defined in eq. (E[) and
let {z,ﬁ}ﬁto be generated by running SAPD on mingec y maxycy L' (x,y) for Ny € Z. iterations,

where z}, = (xk, yt); and define th = ]\1“ vato ! t_H Under the setting of Lemma
1

max{E[gt(zé“ﬂ E [l ~ t||2}}sMCT,U,GEM—zi|\2]+0;,0,9 (100)

holds for all t > 0 and Ny > 1, for some positive constants C; , g and 047079

Proof. For simplicity we assume N, = N for all ¢ > 0 —the proof still holds for arbitrary {V; }+>0 C
7. . The proof mainly follows the proof of Lemma We first show a bound for E [||z{*! — z¢||?]
that is in the form of the rhs of eq. (100); then, we show it for E [G!(2;"")]. In addition, given

{zh oo, welet 24, = (24,74, ). and Zhy, =2 = N SNt et forallt > 0and Ny > 1.

Now, we start with analyzmg E [Hz“‘l zt||?]. The analysis below mainly relies on the proof of

Lemmal 2| Indeed, given z{ = (), y§) for t > 0, substituting z = z% and y = y! within (94) and
then using eq. @) we obtain that

NE[L'(zh, yh) — L' (2%, 5v)]

1 1 1426 (101)
(3 +2%) et —abi? + (o + 22 1y —you+2p (Pl + Q)

<E
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Moreover, since £ (-, y') is y,-strongly convex and L*(z,-) is p,-strongly concave, and (2%, y!) is
the unique saddle point of £¢, we have that

Mo | Py _
7\% — P+ Flloy = vill” < L@, oh) — £ g)- (102)
If we let 7, = + and g, = 1, then it follows from egs. 99) and the fact that 2§, = 2"
that
NE [%\lxé“ — kI + 22y - yillz} <E [U (a:Lyi)} +NZrgo,  (103)

where 2, ; ¢ is defined in Lemmaland for any (z,y) € X x Y, we define
U'(y) £ fllx—onz —Hy voll*- (104)

Therefore, we conclude that

B[4t = 2] < Naan (I8 = 2£11%) + T, (105)
where
67,0,9 = 2maX{ } 7;—’5,9 = 2

B .757',0,0

win{jies 1) min {1y}

This completes the first part of the proof. Next, we will bound E[G*(z5"")] using the bound on
E[|| 257" — 2¢||?] we derived in the first part.

Given 2§, using eq. lwb and eq. in the proof Lemmafor Ny = % and 7, = % as above, we
obtain that

1 "
E[0' ()] < vE [T (sL6™), s @) | + Zroa, (106)

where T (z, y) is defined in (T04) and =, ¢ is defined in Lemma furhermore, z%(-) and y, (-) are
defined in eq. (6). Next, we will use eq. (I03) to derive an upper bound for the right hand side of
eq. (106)

Since 2! is the unique saddle point for £?, we have z¢ (y!) = ¢ and y. (z) = yt. Moreover, accord-
ing to Lemma 2L (+), y«(-) is Lipschitz with constants ., = L;
Therefore, Lemma[20]and

==, respectively.
Y

—¢ 2 2+ 20 ¢
U (2l (y6™), ya(a5th)) < ;Hxi zl (Yo 1P+ —— . 1yt =y (6P 420 (2L, 9L),  wp. 1,

together imply that
E [T (L (), ™))

[ 252 (2 +20)K2,
<E | T2yt — P St P 40T (o)
T g
[ 2 (2+20
<k [ {2, 2220 (v, 2, HIag ™ — A1+ 11 - 241P)|
(2 (2420) 1 N wh e
<E max{;,?}max{l,nly, Fow} ((N+1)OT’0’9||ZO_Z*|| +Co0 |

where we use eq. (I03) for the last inequality. Then, if we use the above inequality within eq. (T06),
it follows that

1= = _
E [gt(z(t)+1)] < NOT,U,G]E [||28 - ZiHQ] + NC’T,U,Q + 2700,

where

1140

7‘0'9—4 max {;7T}max{]—7"$zy7 yz}CTUGa

QH

Q)

=/ 1 0
T,0,0 £ 2 max{;, %} maX{l?Kﬂ:y? ym}CTUG

Thus, for C, 5.9 = max{C, ,9, Cr ¢} and Clo0% maX{CT .07 NCT 0.0+ Er00}, We get the
desired result in (TO0). O
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Lemma 22. Under the premise of Lemma 2| E[|| 2§ — 2%||%], E [G!(2§)] and E [G*(2§)] are finite
for any t > 0 when either Assumption[d| or Assumption 3| holds.

Proof. In Lemma[21] we show that
max {E [0 (") B[4 — 247 } < tCTagE[HzO—z [RENSp (107)

for some C; ,4,C’ ,, € Ry constants, dependent on the SAPD parameters. Next, we show
that {E [||z§ — 21| ]} < oo for all ¢ > 0 by induction. This is trivially true for ¢ = 0, i.e.,
E [[|z0 — 2911?] = ||l2§ — 22||* < oo. Next, for some ¢ > 0, suppose E |||z — z£[|?] < oo, (I07)
implies that
E[|lz5 — 24)1%] < <. (108)
The inductive assumption E [||z§ — 21]|?] < oo and (T08) imply that
E[||lz5™ — 28]1] < 2B [||26T" — 2L)1?] + 2E [||26 — 2L]%] < <. (109)

For any /i, > 0, fix A = (p1,+7) '; since we have 2f = prox, 4(zf) for £ = t,+1 and prox,,(-)
is non-expansive, we have E[||21™! — 2% ||?] < E[||z{™" — 2§ ||%]. Moreover, Lemma 20|implies that
[yt — yt1P) < w2, Bl)let — o8 7] for sy = 222 thus, using (T09), we get

Ell " = 22l°] < (850 + DE[lag™ = a6l*]< (5, + DE[l2g" — 2/°] <o0. (110)

Therefore, we can conclude that E[|| 25T — 221|2] < 2E[||25T — 24||2] + 2E[|| 24+ — 2¢ |2 ] < oo,
which follows from (T08) and (TT0). This completes induction, providing us with E[HZO —2t%) <

for all t > 0. Note that using this result together with the definition of G* and (107] 1mphes that
0 <E[G!(2{™)] < oo for t > 0.

Next, we will argue that E[G'(z{)] < oo for all ¢ > 0 as well. Recall that G'(z}) =

sup,cy L'(xh,y) — infrex L (x,yf); furthermore, note that L' (zf,y) = L(xfh,y) forally € Y,

and given z§, we have L!(-, y}) strongly convex with modulus s,, and £(zf, -) strongly concave with
modulus . Therefore, we have

L(xb,y) < Llwb,ys) + (Vo (wh,yd) — 50(0)s v = u6) — 22y — v

< L(ah,h) + invywa,yf}) — sy I, ()
L (z,y0) > L(0,y0) + (Va®(z0, y0) + s5(0), = — 5) + "l — @)

> £(h.98) = V=) + 55 @b (112)

where sy(zf) € 0f(zf) and s4(y§) € dg(yh) such that ||stf z§)|| < By and ||s4(yf)|| < By —see
t

(Y6 By
Assumption [5} moreover, we have used the fact that £(z), y%) = L(xzh,y}) and 9, L (x4, yt) =
V. ®(zh, y) + 0f (xh). Thus, (ITT) and (TT2) imply that

G'(20) = efvupey{ﬁ(fﬂé,y) = L', y0)} < (1Y) + s (@0)I* + g (wo)I?) / min{pee, 1y }
z 'Y

1
m (IVe(20) = V()II* + [V (0)II* + B} + B3)

IA

IN

L 1
;IIzS — 21" + m (IVe=0)lI* + Bf + B7).

where L = max{L,,, Lyy, Lys, Lyy} and g = min{y,, p, }. Finally, (I09) implies that E[||z§ —
20]12] < oo; therefore, we can conclude that E[G(2{)] < oo for all t > 0.

Thus, Lemma[22]implies that the analysis given in appendix [A.T]directly goes through if we replace
Assumption 4] with Assumption[5] which does not require compactness of the problem domain.
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F Proof of Theorem @ and preliminary technical results

The general proof structure of Theorem[d]is the same with Theorem|[I[s. The main difference is the
way we bound the variance, which is given in Lemma[24]

F.1 Construction for the iteration complexity result

Lemma 23. Suppose Assumptions @ andlz hold. Given {N;}1>0 C Zy, let {z},yt}i>0
be generated by SAPD+, stated in Algorithm 2| when VR-flag=true, initialized from (x9,3) €
dom f x dom g and using 7,0, 0, j1,, > 0 that satisfy

G — diag(g) = 0, (113)
fOrdsome a € [0, %), p € (0,1] and 7,7, > 0, where G is defined in 32), g = [, 7y, L', L;l,O]T
an

2 2y, —172
L, 2(1+20+20%)p~ 'Lz,

pLZ, N 2(1420+20%)p~'L2,
bl ’/Tyb;

I, 2

);

such that c(p) = 1%})(p_q+1 — 1) for p € (0,1) and c(p) = 2(q — 1) for p = 1, where L', &
Ly + pi +v. Then for all t > 0, it holds that

% Jz =
(52 [t (btY) — wblI?] + E2E [lly- (a57) — w61 ) + =",

). Ly 2 o)

VR

E[G' (=i, yith)] <

K. (p) 4
(114)
N—=1 g = 52 s
where K, (p) =Y 1ty p K 2 £ Qﬂ'mb+(l+29+292)m and M"* & max{%(%*um), WQJ .

Proof. For easier readability, we provide the proof in a separate subsection, see appendix[F2] [

Theorem 8. Under the premise of Lemma @ given an arbitrary ¢ > 0 and T € Z.., suppose
Ny =N jorallt =0,...T for some N € Z such that N > (1 + ()M ", and @21)) has a solution

for some 1, B2 € (0,1) and py,p2,ps > 0 such that p1 + p2 + p3 = 1. If either Assumptionor
Assumption |5|holds, then 22) holds with 2. , g = Z"* for \ = (v + p.) " and for all T > 1.

Proof. The proof is omitted as it is essentially the same with the proof of Theorem |6} O

F.2 Proof of Lemma and preliminary technical results

In this section we prove Lemma[23] We first state a technical lemma that will be used in our analysis.

Lemma 24. Suppose Assumptions @and @ hold. Let {z},, y! } x>0 be VR-SAPD iterates generated
according to Algorithm|3|for solving min, max, L'(x,y). Then,

I b oL 2 5 2L2 5
E(Jvr = Vo' @hons) I7] < 4+ 30 T E (e - o]+ TE [y — o7
i=(np—Da+1 " ’
(115a)
52 k 212, 212
E[lwk — V@' @ho) ] < 3+ D0 TEEllaf - aioal] + T E (v - vinall®]
i=(n—Da+1 Y Y
(115b)
for all k > 0 such that mod(k, q) # 0, where ny, = [k/q]. Moreover, if mod(k, q) = 0, then
¢ et ot 2 o 0% t bt tv2] < 08
B [lof ~ Vo' ph) 7] < %, E[lwf - v, @k a7 < 2 1

S B (gt ot A1 T Bt gt gt _ [0
Proof. Recall that V& E(xk’ykﬂ)_@ sz"el,f Vi ® (21, YWy, ), where I = {wy " 12y

is a randomly generated batch with |I’| = b/, independent elements which are also independent of
(2},_1,v}) and (2}, Y}, ). According to the definition of vy, in Algorithm for mod(k, q) > 0,

vf, = Vg + @xq’gg (@h Yhr) = @x‘btlg (Th1, Yk)- (117)
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Therefore,

E [|[vi — V2@ (2, yit1) 1%

= B [lohr + Va®ly (2h, yhn) = Vol (wh1,90) = Va' (kv ]

=E [H”Ll — V@' (Tho1,y1) + Vo @' (Tho1, yi) — 69#133; (The1,Yi) + @xq’gfg (The, Yhor1) — V:cq’t(fiayiﬂ)HQ]
=E [Ilvifl - qu’t(l’ifh yltc)”ﬂ

E [IVo0" (2h1,3) = V@l (th1,4k) + Vallr (@h vhi1) — Va@ (@h vk )]
(118)
where for the last equality we used

E [Vo0! (eho1,yk) = Vel (eho1, k) + Vi ok, yhi1) — V@' (ak, yin)| = 0.
Next, we bound the second expectation on the rhs of (TT8). It follows that
E (V20" (2 1,9) = V@l (th-1, k) + Valz (@h vhi1) — Vo' (@hs vy )]

by
1Y (Ve (@h, Yhr 15 win”) = Va@ (@ho1, vt wi ) = Va®' (25, Ygr) + Va® (2h-1, vk)) I

1
:7blz2 E
b/

b’ 2 ZE [HV o’ (mkvyk-&-lvwk ) @zq’t(ﬁﬁc—l,y%wz’i) - Vz‘I’t(l’Z»yZ-ﬁ-l) + Vz‘bt(fﬂ}sc—hyltc)ﬂﬂ

=1

,b,2Z (192" @h, s i) = Vo' (@hos, ki)

2L.,,> 212
<= (llek - aha ] + =2

E [Hyk+1 - yk” ]

(119)
where the second equality follows from the stochastic oracle being unbiased —see Assumption [3|
which implies

E Vo (@h_1,58) = Vo (@h_ 1 yhiwi ) + VO (2h, yhriwf ) = Vol (@h yhsn)| = 0,

for all ¢ = 1,...,b, and {wf}fil being independent; the first inequality is because
E [||¢ — E[¢]|[*)] < E[|[¢||?] for any given random variable ¢ with finite second order moment
—we invoke this inequality for ¢ = V,, (2], Yy 1 Wy, ") = V@ (ah 1,yk,wk *); and finally, the

last inequality follows from Assumption|6{and the mequahty (a+b)? < 2a? + 2b* for any a,b € R.
Next, if we combine eq. (TT8)) and eq. (119), we get

E [lvi — Va®" (@), yiy ) [I”]
o1/ 2 2

L 212
<E [llvk—1 = Va®' (2t 1,50 ] + b’f’” E [lz) — 251 [1?] + b, E [llyk1 — wil?] -

Hence, if we sum the above inequality from (ny — 1)g + 1 to k, we get a telescoping sum:

E [[log = Va®' (), yiy1) 1]

ko oop 2 , 2
< Y. EEw-aalPl+ o )] “E [llyfen —vill?]
i=(ng—1)g+1 7 i=(np—-1)g+1 7
(120)
+E o011 = Vo (2, 130> Y -1yg40)11]
k 2 k 2
2L’ 2L 57
< Y TEElel o+ Y YE [llgien —wilP] + 5
i=(ng—1)g+1 i=(ng—1)g+1 7

where the last inequality follows from Assumption 3 Bsince mod((nk —1)g, ) =0andforl € Zy
such that mod (¢, q) = 0, we have vy = \V/ <I>Bl (mg,yeﬂ) \B$| sz eB; Vo ® (2, v 13w "),s
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where B = {w}"'} is a randomly generated batch with |B#| = b independent elements which are
also independent of (', 3}, ;). This completes the proof of the case for & such that mod(k, ¢) > 0.

When mod(k,q) = 0, it follows from Algorithm 3 I that vy = V,®% (2}, y5,,). Hence, above
discussion yields

E [Jlok = Va® (@) i) I°] < (121)
Finally, the second inequality in (TT3b) can be shown similarly. O

0“‘%0&

Next, we will modify I:emmaﬂzlfor VR-SAPD, stated in Algorithm E[ Specifically, instead of using
the stochastic oracles V, ®*(z}, yj 13 wi) and V, @ (], yj;wj) as in Lemma we adopt v} and
wy, to estimate V, ® (], y;, ;) and V,®*(z],y} ), respectively.
Lemma 25. Suppose Assumptions and @ hold. Let {z} ,yi }r>0 be VR-SAPD iterates generated
according to Algorithm E|f0r solving min, max, L' (x,y). Then for all z € domf C X, y €
domg C Y, and k > 0,

‘Ct (x}i-&»l ) y) - [’t ($7 y2+1)

Gk, Yhor — Y) + 0(gh, vk — y) + Ak(2,y) — Shia (@, y) + Ty +ep"(2) + 2% (v),

where £, (z) £ (v, — V@ (2t yt 1), © — 2t ) and e (y) & (54 — st yt,, —y) for 5% =

(14 O)wt — Ow! | as defined in Algorithm (3| qi. and s, are defined as in (39), and A} (x,y),
341 (2, y), T}, are the same with those in Lemma

(122)

Proof. The proof uses the same arguments as the proof of Lemma@ One only needs to replace
V.0t (zt, Yj4q) and V,® (2L, yt) in the proof of Lemmaw1th vk, w}, respectively. O

F.3 Proof of Lemma

Proof. For simplifying the notation, let N; = N for some N € Z,. For arbitrary (z,y) €
dom f x dom g, since (2}, ¥} ,,) € dom f x dom g, using the concavity of L(x}_,,-) and
the convexity of L (-, y}. +1)> Lemma(25|and Jensen’s lemma immediately implies that

N-—1
Kn(p) (L3N, y) — L2, 98) <> p " (L (@hp1,y) — L (2, y541)) , Yo € (0,1], (123)
k=0
_ _ N—-1
where xg\/ = KN(p) Zk o P kx§c+1v yII‘/V = Zk o P yk+1’ and Ky (p) = Zl 0 p

Thus, if we multiply both sides of (122) by p and sum the resulting inequality from k¥ = 0 to
N — 1, then using we get

Kn(p) (L' (zh,z) — L(z, %))

2

—1

< P_k( — (@t 1> Yhr1 — @) + 0(qk, vk — ) + Aj(2,y) — S (2, 9) + Thpa

B
I
o

— (vh = V@ (2, yh1), whor — 2) + (5 — sk, b — 0)

2

<3 7 (tabe,vhor — @) + gk, yk — @) +AL(0, ) = Shia(2,) + T

ES
Il
=}

part 1
T
+ Fllehon = ol + P lker =l + 5ok = V' (@h ko) P+ g5 - 5L,
part 2
(124)
The second inequality follows from Young’s inequality for some constants 7, m, > 0.
The following bound for partl can be obtained from (]7_1[) Indeed, for any & > —1, we get
N-1
_ _ _ 0
D 7 (O(gh Yk — yi) — (G Yk —¥2)) < D p 1 - *I Skr1(z,y) +p N“;va(x,y)-
k=0
(125)
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where S} | (z,y) is defined in (73).

Next we consider part 2, recall that n,, = [k/q] such that (ny — 1)g+ 1 < k < ngg, it follows from
Lemma 24] that

N-1
> PR [Ivh — Ve (2, vk )]
k=0
k 2 2 N—-1
_ 2L 2L 52 _
< Tty el R ) + S S
ke{l,...,N—-1} i=(nr—1)g+1 z k=0
s.t. mod(k,q)#0
N-1 2 2 nkq k—1 N—-1
2L 2L _; 62 _
= P ( b, E [Hx}; - @"2—1”2] + b/xyE [||y1tc+1 - yltc” Z p+ n p*
k=1 = i=0 k=0
N—-1 7 2 2 2 N—-1
— p —-n QLICD 2L$ 5r —
=3 p (et 1) (2R [k — 2k 7]+ SR [k —wklP]) + 2 D> 7
1—p b, A b
k=0 k=0
N1 2 2 9 N—1
_ P, _ 2L, 2L 0z _
< 3t ot R el - )+ 2 (i - ok7) + 2 S
P ©
k=0 k=0
(126)
where the first inequality follows from Lemma 24} the following equality is by rearranging terms,
and for the last inequality we used the following bound: ny = [k/q] < k/q + (¢ — 1)/q; hence,
—ngq + k > —q + 1. To bound part 2 in eq. (124), we next consider ||5%, — st ||?. For k > 0,
5t sh1? = 101+ 0)uk = (14 09,8 (o) — bl + 09,0 (ks F
< 2(1+ 0)?||wy, — V@ (ah, yi)II° + 207 [wi_y — V@ (2, )1
First, 2! | = 2, y* | = y{ and (59) imply that s}, = V,®*(z}, y§). and recall that in Algorithm 3]
we set 8h = w}; hence,
156 = soll* = llwg — V@ (25, yo) 1%,
and eq. (127) holds for k > 0 with w! ;| £ V,®*(x}, y}). Then, Lemmaimplies that
N-1
p E (115} — skll?]
k=0
k 2 2
2L 2L
2407 Y ot Y CEER e —al ]+ R Iyt )
ke{l,...N—1} i=(nr—1)g+1 Y Y
s.t. mod(k,q)#0
262 - b 2L2, 212
>t Y (Bl el S E - vl P])
P ke{l,...,N—2} i=(nr—1)g+1 Y Y
s.t. mod(k,q)#0
62 N—-1
+2(1+20+ 292)?’4 pF
k=0
k 2 2
2 B 9L2, 2L
vy Y oY (GEEl -]+ S 2E s - )
P ke{l,....N—1} i=(nk—1)g+1 Yy Y
s.t. mod(k,q)#0
2 N—-1

+2(1+ 260 + 20*)-2 Zp ,

(128)
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where the first inequality follows from Lemma 24} in the last inequality we used p < 1 and combined
the two sums. Next, as in eq. (I26)), we can further obtain that

N-1
> T EI5, - sil?]
k=0

gl 1 212 L2
<2(1+20+26%) ) p k- ﬂ(ﬂ_qﬂ = D(E [l = #hoa ] + =2 [llyi — i ]
k=0 Y Y
52 N—-1
2\ Y —k
2(1+20 +20%) L ];)p .

(129)

4) using eq. (126) and eq. ( . In addition, Given (Z, 7Y ),

in
the point (24 (7%), y«(zl)) é argmax MJ)EQKXJ,L’ (xN, y) — L(z, y%) uniquely exists. We will
use the fact that

G' (T, 7n) = e yﬁt(iﬁv,y) = LY@, gn) = LT,y (@) = L'(2L(Fn), Tn)
T,y X

Now we can bound par t 2 in

to complete the proof.

Recall that we defined DYy (x, y)=5 (7 —pz) 2y — ||+ 3 (p% - a) llyhy —yl|?; first, we substitute

(z,y) = (2L (7)), y«(Zl)) into (124), and then add p~ N1 DL, (2t (74), y«(Zl)) to both sides of
. Finally, taking the expectation of the new inequality, and then using eq. (I123), eq. (I26) and

eq. (I129) to bound part 1 and part 2, we obtain

E[Kn(p)G (zly,5in) + p~ N D (2 (5 ), 9+ (2)]

<1E[UN( LN, va (7 ))}+(2ib (1 + 20 + 26%) 2)N1p (130)

k=0

where U, (z, ) is defined as

N—-1
Uk (e.9) 2 3 o7 (Thas + Ak(2,9) = Thoa (2,)

k=0

0 e T
=1 Sk () + ki = 2l + ks — o)

N-1 _pt1 .2 2(1 + 26 + 26%)p~ 1 1,2 L2
- p
FY () (( ey 2 0 Lin ) - o+ 22 g —

= 1-r T bl Ty b,
R 2(1 4 260 + 26%)p~ ' L? _ 0

+> A= -y 7 g = g l® = 7" (=Div(,y) = — Sk (,y))-
— 1-p Ty by, p

(131)
The remaining part of the analysis directly follows from the arguments we used in the proof of

Lemma We can analyze Ul (x ( ), y«(Zl)) through writing it as a telescoping sum. After
adding and subtracting § |y}, — ¥} ||, and rearranging the terms, we get

1 N-1 R R
Ok (@t @) () =5 3 o7 (6T Agi — € " B )

k=0

_p—N-‘rl( Dt ( ( ), y*( )) — %S};V(l'i(giV)Jy*(i'iv)))

1 * 1 1 ex 1N7 —k+1 > 1
2550 Agy — ) ZP (3 (B » )fk]

k=1

1., 72 0
—p VT GEN  BEY — D (e (Ty), e (T) — SN (@ (), v+ (T))),
(132)
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ek — 22 ()l

lyi, — v (@)l
where & € R? is defined for k > 0 as follows: & £ |zt — b | such that z* | = zf,
195 = Yi—a
||y1tc+1 - y;i”
yt, =yl and A, B € R5*® are defined as:
Ly, 0 0 0 0
o 1 o0 0 0
A& 0 0 pL, 0 0Ly |,
0 0 0 pL} 6Ly,
0 0 0Ly, 0L, —«
1, 0 0 0 0
0 >y — _|1_%|Lyx _‘1_%|Lyy 0
B2| o —p-fr, i-1, 0 0],
0 _|1_%|Lyy 0 %_a_Llj 0
0 0 0 0 0
with
2 L2 2(1+20+20%)p 112,
L;é (p—‘I+1_1)( 11/ + ( - ),0 Y )7
1—0p Tyl myby,
2y —172
[+ a 2 (prtt 1)2(1+29+20 )p Lyy’
L ) b,
2p L2
L, & = (p ot —1)—%L.
v 1_p@ )%%
Using the same argument as in the proof of Lemma |17} and noticing that L; in eq. (113) can be
written as L; = L;j + L; , one can show that eq. (113)) holds if and only if B - %/Al > 0. Therefore,
it follows from (132)) that

3 — = 1 * T 4 ex
Uk (@l (@) vs (T)) <565 T AG

R 0
_ « T Dex _ _ _ _
o N (56T BE — Div (o), 9 (7)) — D Sh (), 9+ (7)).
holds w.p. 1. Furthermore, define

%(1 - %) tpy Tyt (_|1 o %| o %)Lyw (_‘1 - %| - %)Lyy

Qe (_|1_Q|_Q)Lym l_L;I 0 ,
o) _ 6 ’ 1 -
and recall that DY (z,y) = ;p(% — pg) |2ty — | + %(p% — a) lyy — yl/?. Using a similar
argument as in the proof of Lemma[I8] we can show that eq. (TT3) implies

1 * 1 D — — 0 — =
26 BEx = Diy (L), (a) = 8k (2 0), 92 74) )
1 %(1—%)4—%—71@ 01x3 0
x 1 *
= szv 03x1 G"  03x1 [ &y = 0.
0 O1x3 0
Finally, since z* | = zf, y*, = yi, we have

1 s 1 R ex 1 Hax = 1 =
56 A< (5o — B ) llat @) — abl? + 5 (@) — il
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Therefore, we obtain that

1

Ha _ 1 _
Ok (@ (), 3 (28)) < (57 = 5 )l () — bll? + 5 ly-(2h) — I, holds wep. 1.

Now, we are ready to show the desired result of Lemman Since DY (2t (gh), y«(Zh)) > 0, it
follows from that

t 1 1 _
R (0E[G"h)) <B[ (5 = 4 ) e ) — abl + o1 Loab) — 6]
52 9 55
+KN(p)(2 b+(1+29+20)7ryb)
Then dividing both side by Ky (p) completes the proof. O

F.4 A particular parameter choice

We employ the matrix inequality (MI) in eq. (IT3) to describe the admissible set of VR-SAPD
parameters that guarantee convergence. Next, in Lemma[26] we compute a particular solution to it by
exploiting its structure.

Lemma 26. Forany i, > 0, let L), =Ly, + v + pip. Let 6 € (0,1] and 7,0 > 0 be chosen as
S S
Lye+ Lo + L, ° " 2Ly + Lys + L,

where L;, and L;, are defined in Lemma Then {1,0.,0, c, p, 7y, 7y} is a solution to (I13) for
p=1 7y = pig, Ty = py and o = Ly, + Ly,

0=1 7= (133)

Lopl —L 0 —Ly, 0 0 0
A A .
Proof. Define M; = 0 0 0 and M> = | o i-a-L, -L,, |.Our choice of
—Lya 0 Lya 0 —Lyy Lyy

{p, 7z, my, '} implies that (TT3) holds whenever

1o, —r, 0 —Lys
My + Mz = 0 %—a—L; —Lyy = 0.
_Lyz _Lyy Lyz + Lyy
Our choice of o« = Ly, + Lyy, and 7,0 > 0 as in @ implies that M; > 0 and M, > 0. Thus,
My + My > 0. O

Next, based on this lemma, we will give an explicit parameter choice for Algorithm [3]

F.5 Proof of Theorem@

Proof. Lemmamlmphes that our choice of {7, 0,0, c, p, 75, T, } ensures that eq. . 113)) holds. For
the outer loop, if we set N as in (TI)) and

1 19 11 4 1

167 D2 325 b3 2’ 61 7 62 2’ C ) ( )
all assumptions of Theorem Ej are satisfied, i.e., both the mequahty system in (ZI) and N > (1 +
¢)M"® hold. Specifically, M™ = 2 max{— -1, 4 L} thus, N > (1 + ¢)M"® trivially holds by

our choice of N in (TT). The proof of eq. (]Zf[) holding for parameters in (T34) follows directly from
the proof of Theorem I}

p1 =

Since all assumptions of Theorem [8] are satisfied for s, = 7, {r,0,0} as in (I33), N and b as
in eq. (TT) and other parameters chosen as in eq. (I34), if we substltute po =Y and the specific

parameter values given in eq. (134) into eq. (22) with =,y = E = 7 +5 yb, it follows that
T
: 1 52 50,
- E IV ty12 <48 - O7 Oz W0y . 135
TH; [IVorh)]?] < 7<T+1g<xoy>+m+ﬂyb 135)
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Thus, for any € > 0, the right side of the above inequality can be bounded by > when
48 2452 & 240067 2¢?
—lgEl < S TR L2
T+1 6" b 6 b 3
Our choice of b in (TI) and T' > 288G(x(),g) % ensures that all the inequalities in (T36) hold.
Moreover, our choice of N and {7, o, #}in (IT) and p = 1 together with the definitions of L/, and L},

in Lemma[23]implies (I2). Furthermore, it follows from the statement of Algorithm [3]that the total
computation complexity is T'(Nb/q + N (b}, + b;,)), which completes the proof. O

(136)

G Proof of Theorem [S|and preliminary technical results

Recall the definition of £ given in eq. . For any = € X, define ¢(x) £ max,cy L(z,y) and
d(x) £ max,cy L(z, y); moreover, let ¢x(-) and ¢, (-) be respective Moreau envelopes for some
A€ (0,y7h).

We first show that one can obtain an e-stationary point for the WCMC problem in the form of (T)
such that f(-) = 0, p, = 0 and D, < oo by computing an e-stationary point for eq. with
fiy = ©(e*/(yD})). Indeed, in Lemma [27|below, we extend [24, Corollary A.8] from g being an
indicator function of a closed convex set to a closed convex function.

Lemma 27. Under the premise of Theorem S| for some fixed i, = ©(*/(YD3)), let x. € X be
such that |V é(z.)|| < €/(2v/6), where ¢(z) £ max,ecy L(z,y). Then, . is an e-stationary point
of ¢(0), ie, [Vor(z)|| < efor X € (0,471), where ¢(z) = max,ey L(z,y).

Proof. Below We state some useful relations that will be used later in the proof. Since f(-) = 0,
eq. implies that for all (z,y) € X x dom g,

Vol(z,y) = Villz,y), [IV,@(x,y) = V,@(@,)l| < fiyDy. (137)
We define §.(-) = argmax,cy L(-,y). It follows that from Lemmathat

§e(2e) = Prox,g (9. (zo) + aVy (e, u(2.))). (138)
for any o > 0. We are now ready for the proof of Lemma[27]
Letyt & prox,, (Q* (xze) + aVy®(x, Us (xe))) then we have

Iy~ 3.
Do, (7 (2) + 0V, Bl () — Prox,, (7. (re) + 0V, b 0. (139)
<all VB34 (20) — Ve, gz < Dy
e e vt e ot CEE: woneover cag Aosmon B e e e,

we have ) R
IVal(ze,y ")l < IVel(ze,y™) = Vo(zo)ll + [ Vo(zo|

<v:v£ 67+_VZ£ eaA* € +L<Lw AD+L7
<IVel(ze,y™) (@, §u ()| o5 = Lavoin Dy + o5

where the second inequality follows from Danskin’s theorem and the fact that | V(z.)|| < ¢/(2V/6);
finally, the last inequality use Assumption[2]and (T39). Thus, using (a + b)* < 2(a® + b?) for any
a,b € R, we get
2
€ ~
IVal(we,yO)I? < 5 +2L3,0% 05Dy (140)

Later in the proof, eq. (139) and eq. (140) will be useful when we further analyze y™.

Recall that our ultimate goal is to show that |V (z.)|| < e. Now, for some arbitrary p, > 0,
consider prox,4(z.) = argmin, c y ¢(v) + 35 [|v — x[|*, where A = (g + )~ *. It follows from
Lemma ] that

1
962 = 51z = prox, (@)l
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Since A = (e + 7)1 0(-) + 55l - —2¢||? is pa-strongly convex with the unique minimizer
prox, ,(.); therefore,

1
ax L(x,y) — max L(prox ,Y) — —||prox ) — 2
max £(ze, y) — max L(prox,,(ze), y) — 5y [Proxyg(ze) — ac|

1
= ¢(Ie) - qﬁ(proxM)(xJ) - ﬁ”prox)\gﬁ(gje) - 'IEH2 (141)
o Ha
> 22, — proxy (o) | = X252 Va2

In the following analysis, we will continue to polish the upper bound on || V¢, (z.)||? on the left hand
side of eq. (I41). Indeed,

1
max £(z, y) — max L(proxyy (zc), y) = 53 [Prox,,(ze) — zll”

1
= ,C € —,C € + ,C € - £ € I~ €] Le 2
max (e, y) — L(xe, yT) + L(ze, ™) max (prox,,(ze), y) — 5y lproxy,(ze) — z|

1
< r;lea;f‘c(xe y) - ‘C(x67y+) + E(xe,yJ’) - £(pI‘0X)\¢(l‘E),y+) - ﬁ”prox/\qb(xs) - erz

M
S max L(ze,y) = L(we,y") + [z = proxyy (@) [[Va Lz y )| = 5 lwe — proxyy (e[|

yey
Val(ze,yt)I
< £ €9 _E €9 + H = =
< max (e, y) — L(xe, yT) + S0

b

where the second inequality follows from the fi,-strongly convexity of £(-,y") + 55| - —z|?
and Cauchy-Schwarz inequality. Next, we continue to derive an appropriate upper bound on
maxyey L(ze,y) — L(ze,yT). Recall that y* = prox,, (§.(zc) + aV,®(z., §.(zc))); hence,
the first-order optimality condition yields that

2 (" = Gelw) — AV B () € DglyT).

Therefore, for any y € )/, we have that

1 . "
() = 9" = ("=~ (v = e (2e) — aVy(ae, Gu(wo))),
which is equivalent to

1

«

9 —9(y) < =W —y ",y — Gu(@e)) — (Vy@(2e, 9 (), y —yT). (143)

Now, we ready to provide a useful upper bound on maxycy L£(ze,y) — L(zc,y ™). Indeed, given any
¥ € argmax, ¢y, L£(7,y), we have

ryneaj)fﬁ(xevy) - [,(xﬁ,y"') = L(v,7) — L(Te, Ju () + L(Te, Gu (7)) — £(xeay+)

= ®(2¢,7) — P(xe, U (we)) —9(9) + 9(9x(we)) + P(we, §u(2()) — (I)(xevy+) —9(9.(ze)) + g(y+)
part 1 part 2
< <qu)(x67 U4 (x)), U — Ju () —9(7) + g(y+)

N N Lyy, .
(V80,5 (), () = ) + =2 () — |

= (V@ (e, uw)), T~ ") — 9(0) + 9l + () — P

1, R Lyy . .
< (G —y oy = ) + S () — T

L R - ~ ~
= =g (we) — gt I + Ly (= 9 @),y — 5u()

< LnyyHZﬁ - @*(xe)H, (144)
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where in the first inequality, we use concavity and smoothness of ®(z., ) for part 1 and part 2,
respectively; in the second inequality, we use eq. 1i ; in the last equality, we set o« = L;yl; and in the
last inequality, we use Cauchy-Schwarz inequality and the fact that sup,,, .. cdom g |1 — %2/l < Dy.

Next, if we use eq. (T44) within eq. (T42), it follows that

1
ma £(e, y) — max L(proxy, (re), y) — 53 [Prox,, (ve) -zl

yeE
IVeL(ze,yh)|?

< LyyDylly™ — ezl + o (145)
2 2 a2
~ € T 12 2
< jiy D + + 5t - Dy,
where the last inequality follows from eq. (139) and eq. (140) with o = L.
Finally, if we use eq. (145)) within eq. (141) and substitute A = (y + p,) 1, it follows that
H 2 2 § 2y ﬂi 2
s e IVea@)ll® < 4Dy + + =55 Dy, (146)
2(Y + 1a)? VTV 2dp, L2, p, Y
Thus, choosing the free parameter p,, = -y implies that
2 2 € L?cy 2 P2
vy
N . €2 L €
Thus, we get ||V (ze)| < e for i, = min {m, - oD, } O

G.1 Proof of Theorem

Proof. To get a worst-case complexity, as in the previous sections, let
L = max{Lyy, Ly, Lyz, Ly, }, 6 = max{6,,0,}, v = L.
Assumptionimplies that Vytﬁ and V,® are Lipschitz such that forall z, 2’ € X and y, 3’ € dom g,
||Vy(i)(x,y) - vyé’(xla Y| < Lyallz —2"|| + [A’yyHy —y'll,
IV @(2,y) = Vod(@',¢)| < Loalle — 2| + Layly = 'l
where ﬁyy = Ly, + fi,. Therefore, the proof immediately follows from Lemmaand Theorem ,

considering SAPD+ with VR-f1ag = false is applied on (I3) with /i, = min { D7 éyy yTeDo [
Y Ty Yy

H Details of fair classification example

In the experiment of fair classification, {(a;, b;)}?_; denotes the (data,label) pairs of the labeled

image data set. a; € R%%92X¢ and b, is a label associated with one of the K -classes, i.e., b; € C =
{ C; 1<, with K < n. We employ the classifier

h(-;x) 1 a; € Rxdxe 5 p, e RX,

where p; = (pij)f{:1 s.t. Zjil pi; = land p;; > Ofor j = 1,2, .., K, and x is the parameters of
the classifier. Specifically, h(-; x) is a CNN with the structure as follows:
[input] — [conv — elu — maxpool] x 3 — [fc — elu] X 2 = [softmazx]

where exponential linear unit (elu) [8]] is the smoothed variant of rectified linear units (relu) activation
function. Furthermore, given the input {(a;, b;)}?_; and the output {p;}? ;, the loss functions

{1;}J<, used in eq. are

G b)Y x) = 5 D log(pis)1e, ()
J =1
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where NV; is the number of data with label C;, i.e., N; = Y"1 | 1¢,(b;) and
{1 if b = C;

Lo, (bi) = 0 ow.

and p;; is the j-th element of p,, and p; = h(a;; x).

I Additional analyses on the related work

In some of the existing work on WCSC problems, particularly [[17,[16, 126, 37]], except for x, = L / s
the individual effects of L or p, are not explicitly stated in the final complexity bounds. To better
compare existing bounds with ours, it is necessary to state the complexity bound dependence on L and
{ty. For example, Huang et al. [17,[16] assume that ;%y < L, that is equivalent to L > NG however,
a constant factor depending on L was ignored in their oracle complexity result. Moreover, Huang
et al.[17] employ a different convergence metric and claim that they obtain a competitive result. It
turns out that their convergence metric is scaled by an algorithmic constant and when their results are
converted into GNP metric, i.e., ||V ¢(-)]|, this constant adversely affects their complexity bounds. A
similar issue with the claimed complexity bounds also exists in [16], where the complexity bound are
computed after the objective function is rescaled. In this section, to provide a fair comparison,

* we give an explicit oracle complexity bound for the related works in [[17, |16, 26} 37]];

» we discuss those parts in their analysis that are not convincing, and try our best to provide
the corrected and optimized complexity bounds based on their analysis.

Without loss of generality, for the sake of easier comparison, we consider the smooth minimax
problems, i.e., minge x maxycy L(x,y) = ®(x,y). We first fix the notation to unify the discussion
for the WCSC setting, i.e., L(x,y) is weakly convex in = and strongly concave in y.

Recall that ¢(x) £ max,cy L(z,y); thus, ¢(-) is differentiable and we use ||[V¢(-)| as the con-

vergence metric. In addition, we let ¢, = inf ¢y ¢(z) and recall that y,(-) = argmax,cy L(-,y).
Moreover, for simplicity of the notation, we consider the worst-case complexity bounds using L, i.e.,
L
L = max{Lyy, Lys, Loz, Lyy}, ky=—, 6 =max{d;,d,}, ~v=L. (148)

Hy
I.1 Revisit of [17, Theorem 1]

In this section, we provide the oracle complexity of Huang et al.[17, Theorem 1] using the metric
[IV@(-)|| for the Stochastic Mirror Descent Algorithm (SMDA), stated in [17, algorithm 1]. Let 7, o be
the primal and dual stepsizes, respectively, 17 be the momentum parameter, b be the large batchsize,
and u be convexity modulus of the Bregman distance generating function. We also list our notational
convention in table ] for reader’s convenience.

Below, we restate the convergence result of SMDA for the class of Bregman distance functions such
that Dy (z,2")=(x — ') T Hy(x — 2') /2 for some H; = 0 —this class of Bregman functions are used
for all the numerical experiments reported in [[17].

Theorem 9. [I7 Thoerem 1] Suppose Assumptions [I| 2] B| hold with f(-) = g(-) = 0. Let
{x4,y:}L_| be generated by SMDA, stated in [I7, Algorithm 1], employing a stochastic first-
order oracle to sample stochastic partial derivatives. For parameters chosen as 1 € (0,1],

IMMupyo 2 uo
T € (0, mln{4L(1+5y), ;700‘:’2 , St } and o € (0,3;), letn, = n, 7 = 7 and oy = o for

t > 0. Then, for any given initial point (zg,yo), it holds that

L) 4/2A 106 200,/no

E[|G!|] 2e(z0) = ¢) 0 4 + , 149
TZ il < V3TTu V3TTu  V3bu  3/Tupyb (149)
where ¢(x) = max, L(z,y), ¢ = infrexd(z), Ao = |lyo — y«(@o)l, y«(x0) =

argmax, ¢y L(z0,y), G* = H;'V¢(x;), and Hy is a diagonal matrix such that H; = ul for
allt > 1and u > 0.
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Notation in [17] Notation in our paper Meaning

vy T primal stepsize
A o dual stepsize
Ly L Lipschitz constant as in (148)
I Ly concavity modulus of £(z, -)
K Ky condition number
é variance bound for the SFO
by v small batch size for VR methods

convexity modulus of
Bregman distance generating function

Table 2: Important notation for [[17] and this paper.
Table notes. (1) SFO: stochastic first-order oracle. (2) w is only used in the analysis provided in this
section.

Remark 11. When f(-) = g(-) = 0, it follows from the update rules and the definition of Bregman
distance function in [17, eq.(12-13), eq.(22-23)] that

G' = H;'V(xy),
where Hy is a diagonal matrix such that Hy > ul. Note that
=Voé(zy) < H; =1L

We noticed that the authors chose the value of u to improve their bounds; but, without addressing
its effect on G'. More precisely, they still use ||G*|| as the convergence metric and compare their
complexity results with those papers using ||V ¢(x¢)|| as the convergence metric.

In the following corollary, we will provide the optimal complexity for SMDA based the result
in eq. (149), i.e., [17, Thoerem 1].

Corollary 1. Suppose Assumpttonsl I Ihold with f(-) = g(-) =0, and <L holaﬁ Consider
the setting of Theorem |9} then SMDA [lI7, Algorithm 1] can generate x. such that E IVo(xe)l]] < e

by requiring at most (9( b ) stochastic first-order oracle calls.

Proof. Recall that H; = ul, G! = 1V¢(xt) and Hf is a diagonal matrix; therefore, we can
obtain a tight upper bound on E[Hqu(xt) [|] using eq. ( as follows:

1 4«/2(¢(I0)—¢*)\/E V20 [u | 105 205@?\/?
T;E[me)ll]é o o V=hby —. (150)

If we use their parameter choices, i.e., n € (0, 1],

2
3 In1pty Wy“}, o), (151

1
7 (L) T mm{4L(1+ny)’ 800K2" 2512

for some free parameter v > 0, then we get

4L(1 + w,) 8007 2512 }

=Q(K3), 152

u

— = Imax {

p
where the second term leads to 52. It is essential to note that 7 choice in (I31)) implies that u/7
ratio is independent of w; hence, the parameter u indeed does not affect the bound on the right-hand-
side of eq. (I50). Therefore, contrary to what is suggested in [17]], choosing different values for u
through picking different v > 0 values indeed is not useful for proving tighter bounds in GNP metric
[IVé(x)| in this simple scenario using their parameter choices.

$The assumption ;% < L is also made in [[17].
Y
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Note eq. (I50) can be simplified as

R Ky ($(xo) —¢.) & o
T;Emwut)mso( v v

Thus, for any € > 0, to find point x; such that E[||V¢(z:)]|]] < €, one should choose ¢ > T for
452

7= OS2 (6tan) - 6.)). b=0(5%).

which leads to the oracles complexity of

752

552
) =0 (ga)

WT = (9(

I.2 Revisit of [17, Theorem 3]

In this section, we provide the oracle complexity of Huang et al. [17, Theorem 3] using the metric
[[Vé(-)| for the Stochastic Mirror Descent Algorithm with variance reduction (SMDA-VR), stated
in [[17, algorithm 2]. Let 7, o be the primal and dual stepsizes, respectively, 17 be the momentum
parameter, b be the large batchsize, b be the small batchsize, ¢ be the period for sampling large batch
size (i.e., once every ¢ batches is large), and u be the strongly-convex constant of the Bregman distance
generating function. We also list our notational convention in table [2] for reader’s convenience.

Below, as we did in the previous section for SMDA, we restate the convergence result of SMDA-VR for
the class of Bregman distance functions such that D;(x,z') = (z — 2') " Hy(z — 2') /2 for some
H; > 0 —this class of Bregman functions are used for all the numerical experiments reported in [17].
Theorem 10. (7] Thoerem 3] Suppose Assumptions [I} 2} [3| hold with f(-) = g(-) = 0. Let
{x4,y:}L_ | be generated by SMDA-VR, stated in [I7) Algorithm 2], employing a stochastic ﬁrst-
order oracle to sample stochastic partial derivatives. For parameters chosen asn € (0,1], 7 =

. Npyou _3u  un unpyo ind L _Ony -
(O mln{4L(1+.‘£y)’ 38L% » T0L%7;> 8 400r2 7}} and o € (0, mln{ﬁ‘L’ 00?7 [ |0 et e = 1,

T =T and oy = afor t>0andb’ =q. Then Sor any given initial point (o, o), we have

o A —6 | 4EA, | 22
T ZE Il = V3T'Tu i V3T Tu + \/TunbL' (153)
where ¢(x) = max, L(z,y), ¢. = infrexod(z), Ao = |y — y«(x0)ll, yu(wo) =

argmax, ¢y £(xo, y), G! = H;'V¢(x,), and H, is a diagonal matrix such that H, > ul for
some u > 0.

In the following corollary, we will provide the optimal complexity for SMDA-VR based the result
in eq. (I53), i.e., [17, Thoerem 3].

Corollary 2. Suppose Assumptlons hold with f(-) = g(-) =0, and < L hold’} Consider
the setting of Theorem|[10} then SHDA-VR [17, Algorithm 2] can generate x such that E[||Vé(ze)|]] <

€ by requiring at most (9(

6
<z ) stochastic first-order oracle calls.

Proof. Recall that H; = ul, Gt = Ht_1V¢(xt) and H, is a diagonal matrix; therefore, we can
obtain a tight upper bound on E[||V¢(z,)]||] using eq. (153) as follows:

44/2( mo — &) 420y [u 2V25 [u
*ZEIIW ) < \f N r+¢m\[' (154)

If we use their parameter choices, i.e., ) € (O, 1],

1 . 3 Nnyo 3 Ipyo 1
:O( )a = { ’ 4 ) ) Q) 2 }a :OL+V ’ 155
7 L) T M I ) 3802 1003 8 do0s2 )0 T O (159)

°The assumption ;% < L is also made in [[17].
Y
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for some free design parameter v > 0, then we get
4L(1 L? 1912 400%2
ufmax{ ( +I{y),38 ) ) 777§’ y}
3 Niyo 3 INpyo

o - Q(”;)a

where the last term leads to r;. It is essential to note that 7 choice in (T33)) implies that u,/7 ratio is

independent of u; hence, the parameter u indeed does not affect the bound on the right-hand-side
of eq. (I54). Therefore, contrary to what is suggested in [17]], for the simple scenarios considered
here choosing different values for « through picking different v > 0 values indeed is not useful for
proving tighter bounds in GNP metric ||V ¢(xy)|| with their parameter choices.

Note that eq. (I54) can be simplified as

RS ry(@(xo) —6) . K2
T;E[wm)n}go( i)

Thus, for any € > 0, to find point z; such that E[||V¢(x)||] < €, one should choose ¢ > T for

T O(ﬁ‘;(sﬁ(iﬂo) —¢*))’ - O(n‘;(?)’

€2 L2¢2

which leads to the oracle complexity of

Vet k862
WT +2AT)q = O( =L+ 755/a)-

2
Since their parameter choice requires b’ = g, to optimize the above bound, we let b’ = g = O (%),
6 52 5 £2
o /iyé _o /€;5 ‘
Leé? oy €3

Recall that ¢(x) = max, L(z,y) and ¢, = inf cx ¢(x). In this paper, the total oracle complexity
to find point x. such that E[||V¢(x.)|]] < €is given by

which leads to

I.3 Revisit of [26, Theorem 1]

O(nze*Q log(ky/€)) + O(T/q-b) + O(T -V - m) (156)
wherd]
100k, LA f » 2250 » 5 oo ., [3687
T { 02 -‘, g=TJe ], b=] 1 ke, b { = /ﬁyq-‘, m = [1024k,]. (157)

Given an arbitrary initial point o, let yo be obtained by inexactly solving max, £(x¢, y), and they
define Ay = L(x0,%0) — % — ¢4 In (I57), the other parameters are defined as follows: b is the

large batchsize, b’ is the small batchsize, ¢ is the period such that once every ¢ outer iterations, SREDA
calls for a large batchsize, 7' is the number of the outer iterations and m is the number of the inner
iterations —each outer iteration requires m inner iterations and each inner iteration calls for a small

3
batchsize. Then eq. (156) becomes O( L;y ).

I.4 Revisit of [37, Theorem 1]

Recall that ¢(x) = max, L£(z,y) and ¢, = inf cx ¢(z). In this paper, the precise parameter selec-
tion for [37, Theorem 1] is provided in [37, Theorem 3] of the supplementary material. Using these
parameter choice implies that the total oracle complexity to find point z, such that E[||Vo(z.)||] < €
is given by

T~b/-m+[§]b+To, (158)

1In [26]], there is a typo in the choice of b = [%52 Ky 2€2]. Here, we provide the correct one.
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for an arbitrary initial point x(, where the number of outer iterations, 7', the number of the inner
iterations per each outer iteration, m, are set as follows:

3345 — Oy 936662k2
T:max{ zﬁy’ 6600(1"‘/%)[/%2(”}’ b:fﬂ
N € €
; Ry 2 Ky
b € ? m 5 K'y ’ q 13(1 +’€y) € ) 0 O(KU Og(Hy))

Above b is the large batchsize, b’ is the small batchsize, ¢ is the period such that once every ¢ outer

iterations, a large batch size is sampled rather than a small batch size. Then eq. (158)) becomes
Lk3

O(—=).

LI.5 Revisit of [16, Theorem 12]

In this section, we provide the oracle complexity of [16, Theorem 12] using the metric ||V ¢(-)|| for
the Accelerated first-order Momentum Descent Ascent (ACC-MDA) algorithm, stated in [ 16| algorithm
3]. Let 7, o be the primal and dual stepsizes, respectively, {7} be the momentum parameter sequence,
and b be the batchsize. We also list our notational convention in table[3] for reader’s convenience.

Notations in [[16] Notations in our paper Meaning
y T primal stepsize
A o dual stepsize
Ly L Lipschitz constant as in (T48)
L, L(1+ ky) L-smooth constant of ¢(x)
T Ly concavity modulus of £(z, -)

Table 3: Important notations for [16] and this paper.

Below, we restate the convergence result of ACC-MDA reported in [L6].

Theorem 11. [[I6, Thoerem 12] Suppose Assumptions l El I 3| hold with f(-) = g(-) = 0. Let
{2y, ye J 1 be generated by ACC-MDA algorithm, stated in [16, Algorithm 3], when applied to the
smooth minimax problem mingc x max,cy L(z,y) = ®(z,y). For some given p > 0, let n, =

o 1/3 . b
wins Jorallt > 0, 7 € (0, min{ ”%/SJQJE;’M%M 2L(¢1}+Ky)p}] and o € (0, min{g, 2742 }]

9 2
such that v > max{2,p?, (c1p)?, (cap)®} for some c; > ﬁ + % and co > % + 75TL2 Then for
any given xg, we have

T 11,/,1/6 17
LSBTl < YAV 2N (159)

T1/2 + T1/3 ’
where ¢(x) = max, L(x,y), Ao = [lyo — y«(20)lI?, y«(20) = argmax,cy L(zo,y), M" =

_ 1/3 2 2, 2\52 2 .
Blra e g 9L 4 2T 4 2T () + 1), and ¢ = infeex 9(x)

Remark 12. [[16| Remarks 13 and 14] When b = ( )for v > 0and l€ S 81L , they claim that
they can obtain the gradient complexity af@(/{ye 3 ifv =3, and O(k? Ko Pe?) th = 4. However,
Jfor the assumption K, < g — L to hold in general, one needs to rescale the original objective function
L(x,y) with some s € (0, 1] 10 define

Lo(z,y) 2 s L(x,y). (160)

Then the Lipschitz constant of V Ly, strongly concavity modulus of L(x, ) for any x € X and the
variance bound of the stochastic oracle for VL and VL, can be written as sL, sji,, and 5262,
respectively. We notice that the effect of scaling L on the problem parameters is not dlscussed in

[16] and eq. li is directly used to derive the convergence result assuming r, < grp.— Lu As a

consequence, the complexity results of (9( 3¢73), 0 (k2°€?) do not hold wzthout loss of generality

unless the original function L satisfies the restrlctlve assumptwn of Ky < st Luy
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In the following discussion, we analyze the effect of scaling £ on the complexity bounds whenever

8 . . .. . . . . .
Ky < g7 Lo, 18 not satisfied for the original objective function £, and we provide complexity bounds

holding without loss of generality that are optimized by choosing v > 0 properly. Now, consider
implementing ACC-MDA on an appropriately scaled problem min, max, £s(xz,y) where L, is defined

in (T60). Let

Ly 2 sL, us2 Slly, O £ 56. (161)

Note that the condition numbers of £, and £ are the same, and are equal to x,, i €., Ky = HL = ﬁ—
Y s

In the upcoming discussion, suppose that s € (0, 1] is chosen such that Ky < g7 L e

To facilitate the complexity analysis and make the upcoming discussion easier, first we restate
Theorem [11|for the function L, where we used the relation V¢ and the derivative of max, L (,9);
indeed, the derivative of max, £ (-,y) is equal to sV¢(-), where ¢(z) = max, L(z,y).

Theorem 12. [|/6, Thoerem 12] Suppose Assumptions l Rl B] hold with f(-) = g(-) = 0. Ler
{2, ys } 1 be generated by ACC-MDA algorithm, stated in [16, Algorithm 3], when applied to the
smooth minimax problem min,cy maxycy Ls(x,y) = s - L(x,y). For some given p > 0, let 1, =

Tl 1/3 )
Wﬂ)rallt 2 0,7 € (0, min{g7 \/m’ 2L 1(b1+,; )p}] and o € (O?mln{ﬁll, 7271)” }

such that 1 > max{2,p?, (c|p)?, (chp)>} for some c| > 3}? + ZE and ¢, > % + 75L5 . Then for
any given xo, we have

T / 7,/,1/6 17
;ZE[HW(%)]Si( S+ 2MS>, (162)

T1/2 T1/3

where ¢(x) = maxy L(z,y), Ao = [lyo — y«(20)||% y«(z0) = argmax, ¢y L(xo,y), M =

— b, LA 1/352 72 72 522 .
5(4)(1:1)) ¢:) + gpo.'uso + Q;f),ugpzs + (G 4;;23 )9.p 1H(¢ +T), and (b* = lnfxe/’\f' (b(l')

Next, following the analysis in [16, Remarks 10 and 13], we provide a particular parameter choice
for ACC-MDA so that it is applicable to the setting of Theorem[12]

Lemma 28. Under the premise of Theorem. Suppose Ky < , b= Ky for some v > 0, and

81L Us

ons [ B 4P
802 + T5k2b — 2Ls(1 + Ky)p

(163)

Ifo= min{ﬁi )

210} and T = min{ gk | /o2 S}, then yp = ©(max{1, L})
satisfies the condition in Theorem.and

802+75n§b’ 2L, 1+m

3

=0bu), =0 Ty ) (164)
s)y bLs .
Remark 13. The conditions ry < g7~ and eq. li and the choice b = Ky are as suggested in
[106].
Proof. Since k}) < 81L —-»wehave o = % = ©(bus). Furthermore, eq. (163) implies that we
can simplify 7 as
_ Ols 2b

802 + T5k2b’
Then it follows that,

7 O ) =l ) =05+ 2)) = o(G)

where we use the relation x; < g L g L? < 81 y ¥ for the last equality. Next, from eq. ll
and the requirement on %) in Theorem [12] a sufficient condition 1 is

3
2b
¥ > max < 2, p°, (¢1p)®, (chp)?, (Uus(l + Ky)p 802+75n2b> ; (165)
y

54



Now we consider the components of max operator in (I63). Note positive constant p can be chosen
independent of other problem parameters, e.g., p = 1. Furthermore, the requirement on ¢}, ¢}, can be
satisfied for

¢ =0(ud), o&=06(Ll). (166)

Finally, using o = 27’““ together with b = «} yields that

2% 1 1
a e =0 (mbi [ ) = e (L )
ous(Ut )Py | gor ey — O\l [y TN TR R
2 v—1 1
- @(Lsny \/:5) <o),

where we use the relation ry < g L T L2 < 81 y ¥ for the last equality and the last inequality.

Therefore, using the above relatlons within eq. (I63), we observe that one can set
!/ = ©(max{1, L3}), (167)

which completes the proof. O

Next, we will use the parameters in Lemma 28] to provide an optimized complexity for ACC-MDA [16]
Algorithm 12] to generate . such that E [||Vo(z.)||]] < e.

Corollary 3. Suppose Assumptions hold with f(-) = g(-) = 0, and Ky > S Lu for the
original function L. Running ACC-MD4 on min, max, Ls(z,y) for
2\f 21 r(1=v)/2 (168)
9 L™ ’
1. \JKJ 5

and b = K}, one can generate x. such that E[|Vé(z)|] < e requiring at most 0(67’)
stochastic first-order oracle calls.

Proof. 1t follows from Theorem [T2]that that

1 « V2MT e
7 2 EIVetll < Y5 (7 + ) (169)

S T1/2 T1/3

Based on Lemma | let ) = @(max{l LS}); thus, Tl;z < Tll/3 whenT is large enough. Therefore,

for all sufficiently small € > 0, Tl i < \/ﬁ £ implies that £ 1 /2 g ﬁ . 5, and we get
12M" ¢
STTiE S5 {H} o E[[ V(x| = (170)

Moreover, note that eq. li implies r, < ﬁ9 thus, we can choose 7, ¢, b as in Lemma
which satisfy

13
o = O(bus), T_lz(a(bllj ), b=kp.

Recall that ¢}, ¢ chosen as in (T66) and 1 chosen as in (T67) satisfy all the required conditions in

1/352 12, Tr2ys2, 2
Theorem hence, M/ = SW(T; ) | Q;Gﬁo + Q;ZL p5 +2a Jgffg )%2” 10 (¢ 4 T') implies that

1 K2 K2 2
M =0+ L 1)
§2°7F sbL 82b+ 2b 2 Iy +7)
~ 143 K2 52 s KZLQ(SQ

2y 272y, 2 Ry O
G)(,SQZ)L * s2b + s2bu? max{l, °L7} + b )

k2252
max{1, L2}+ y 53

171)
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Moreover, to satisfy eq. 1| one needs to choose 7' > O( (Q%M v )3/ 26%,) Since the total oracle
complexity is b7, we obtain that

I i Hg/2—')/2 /@2_”/2 §3p—v/2
= 3 ( S31,3/2 $3 33,u§

max{1,s’L*} + sgmg”/2L353)) . (172)
From eq. (168), i.e., s = & 75,7, it follows that

bT>@< (L3/2 V+3+L3 V+3/2+63 ”+3/2max{1 l‘fy }+l€9/2 21/53)) (173)

When v > 1, we have
T > é(L3/2HZ+3 + LSRZH/Q + 53,13711/2 + n§/2*2”53),

.5

the optimal value is achieved at v = 1 and bT > O( L 3% ); when v < 1, we have

v > é(L?,/QHZJr?» +L3I€Z+3/2 + 53,€u+3/2 + Hg/z—2u53)7

Ll.) 35

the optimal value is achieved at v = 5 and bT > @( ), which completes the proof. O

Remark 14. In [I6]], Huang et al. claims the oracle complexity of @(H26_3> for v = 3, and
O( 25¢=3) for 1/ = 4. However, our analyszs leading to eq. (173) demonstrates that the complexities

would be (9( )forl/ = 3 and (9( )foru =4
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