
Under review as a conference paper at ICLR 2024

A OTHER DETAILS

Linear programs. A linear program in the primal form is specified by a linear objective and a set
of linear constraints.

minimize ctx

subject to Ax = b,

x ≥ 0

(12)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm the following specifies a linear program. Matrix A and vector b
define the equality constraints that the solution for x must comply with. ctx is a cost that the solution
x must minimize. The linear program can also be written in dual form,

minimize btλ

subject to Atλ = c.
(13)

Central Difference for Highest Order. The method proposed in Young (1961) does not add a
smoothness constraint for the highest order derivative term. In cases where a more accurate highest
order term is required, we also add a central difference constraint as a smoothness condition on the
highest order term.

A.1 ERROR ANALYSIS

We consider the case of a second order linear ODE with an N -step grid. For simplicity we consider a
fixed step size h, i.e., st = h.

c2u
′′ + c1u

′ + c0u = b, (14)
Let u(t) denote the true solution with initial conditions u(0) = r, u′(0) = s.

Define

ũt+1 = ut + hu′
t +

1

2
h2u′′

t , (15)

ũ′
t+1 = hu′

t +
1

2
h2u′′

t , (16)

as Taylor approximations and ũ′′
t is obtained by plugging the approximate values in the ODE 14.

We consider the following Taylor constraints (expressions 8 9) for the function and its first derivative.
We use the absolute-value error inequalities for conciseness, the case for equalities is similar.

|ũt+1 − ut+1| ≤ ϵ (17)

|hũ′
t+1 − hu′

t+1| ≤ ϵ (18)

Step t = 1. From Taylor’s theorem we have that for the first step, t = 1,

u(h) = ũ1 +O(h3) (19)

u′(h) = ũ′
1 +O(h2) (20)

From 17, 18

u1 = ũ1 +O(ϵ+ h3) (21)

u′
1 = ũ′

1 +O(ϵ/h+ h2) (22)

This implies a local error at each step of O(ϵ+ h3) in ut.

Step t = 2. To estimate the error at step 2 we need to estimate the error in u′′
1 at step 1.

For u′′
1 we get the error by multiplying the error in u1 by c0

c2
and that of u′

1 by c1
c2

and adding.

u′′
1 = ũ′′

1 +O(
c1
c2

(
ϵ

h
+ h2)) +O(

c0
c2

(ϵ+ h3)) (23)

12

Under review as a conference paper at ICLR 2024

Notice that u′′
1 always appears with a coefficient of h2. Assuming c0

c2 is O(1
h2) and c1

c2 is O(1h) we
have

h2u′′
1 = h2ũ′′

1 +O(ϵ+ h3) +O(ϵ+ h3). (24)

Each of the terms u1, hu
′
1, h

2u′′
1 contribute an error of O(ϵ+ h3) to u2 plus an additional error of

O(h3) arising from the Taylor approximation and an error of ϵ arising from the inequalities 17, 18.

N Steps. Proceeding similarly, after N steps we get a cumulative error of O(N(ϵ+ h3)).

For ϵ ≈ h3 and N ≈ 1/h, we get an error of O(h2) for N -steps under the assumption that c0
c2 is

O(1
h2) and c1

c2 is O(1h).

The analysis implies that the cumulative error can become large for equations where c0
c2 , c1

c2 are large.
Or, in little omega notation, c0

c2 is ω(1
h2) and c1

c2 is ω(1h) .

A.2 NON-LINEAR ODE DETAILS

In this section we give some further details regarding the formualtion of non-linear ODEs. We
illustrate with the following non-linear ODE as an example

c2(t)u
′′ + c1(t)u

′ + d0(t)u
3 + d1(t)u

′2 = b, (25)
where u3 and u′2 are non-linear functions of u, u′.

As described in Section 3.1, we create one set of variables ut for each time step t for the solution u.
In addition we create a set of variables ν0,t for u3 and another set of variables ν1,t for u′2. In addition
we create variables ν′i,t, ν

′′
i,t for derivatives for each i, as in Section 3.1.

Next we build constraints. We add equation constraints for each time step as follows.
c2,tu

′′
t + c1,tu

′
t + d0,tν0,t + d1,tν1,t = bt,∀t ∈ {1, . . . , n}. (26)

We add smoothness constraints for each νi,t in the same way as described for ut in expressions 8, 9.

Next we solve the quadratic program to obtain ut, u
′
t, ν0,t, ν1,t in the solution. Now we need to relate

the nu0,t, nu1,t variables to non-linear functions of the ut, u
′
t variables. For this we add the term to

the loss function
1

N

∑
t

(u3
t − ν0,t)

2 + (u′2
t − ν1,t)

2.

Figure 9 shows solving and fitting of a non-linear ODE.

A.3 DISCOVERY

We provide further details of the discovery method from Section 5.1. This method follows the SINDy
Brunton et al. (2016) approach for discovering sparse differential equations using a library of basis
functions. Unlike SINDy, which resorts to linear regression, the MNN method uses deep neural
networks and builds a non-linear model which allows modeling of a greater class of ODEs.

The method requires a set of basis functions such as the polynomial basis functions up to some
maximum degree. Over two variables x, y this is the set of functions {0, x, y, x2, xy, y2, xy2, . . . , yd}
for some maximum degree d. Let k denote the total number of basis functions.

Next we are given some observations X = [(x0, y0), (x1, y1), . . . , (xn−1, yn−1)] for n steps. We
first transform the sequence by applying an MLP to the flattened observations producing another
sequence of the same shape.

X̃ = [(x̃0, ỹ0), . . . , (x̃n−1, ỹn−1)] = MLP(X)

We apply the basis functions to X̃ to build the basis matrix Θ ∈ Rn×k.

Θ(X̃) =

1 x̃0 ỹ0 x̃2

0 x̃0ỹ0 ỹ20 . . .
1 x̃1 ỹ1 x̃2

1 x̃1ỹ1 ỹ21 . . .
...

...
...

...
...

...
1 x̃n−1 ỹn−1 x̃2

n−1 x̃n−1ỹn−1 ỹ2n−1 . . .

 (27)

13

Under review as a conference paper at ICLR 2024

Let ξ ∈ Rn×2 be a set of parameters, with each column specifying the active basis functions for the
corresponding variable in [ẋ, ẏ].

The ODE to be discovered is then modeled as

[ẋ, ẏ] = f(Θ(X̃)ξ) (28)

where f is some arbitrary differentiable function. Note that for SINDy X̃ = X and f is the identity
function and the problem is reduced to a form of linear regression adapted to promote sparsity in ξ.
SINDy estimates the derivatives using finite differences with some smoothing methods.

With MNN the ODE 28 is solved using the quadratic programming ODE solver to obtain the solution
x̄t, ȳt for t ∈ {0, . . . , n− 1}. The loss is then computed as the MSE loss between x̃t, ỹt, x̄t, ȳt and
the data xt, yt.

loss =
1

N

∑
t

(x̃t − xt)
2 + (ỹt − yt)

2 + (x̄t − xt)
2 + (ȳt − yt)

2

B FURTHER EXPERIMENTS

B.1 QUANTITATIVE COMPARISON WITH NEURAL ODE ON THE N-BODY PROBLEM

We report quantitative results for a comparison with Neural ODE on the n-body prediction problem
for 2 and 10 bodies. For Neural ODE we used a neural network with 512 units and one hidden layer
and use the dopri5 method for solving ODEs and train for 50 epochs. The results are report in
Table 2. We find Neural ODEs to be a poor model for these datasets with significant underfitting
whereas MNNs can fit the dataset easily with good evaluation score.

Table 2: N-body problem. Comparing with Neural ODE.

Method Training Loss Eval Loss

2-body

Neural ODE 38.5 321.0
MNN 0.035 0.114

10-body

Neural ODE 165.0 201.0
MNN 0.0934 0.853

B.2 VALIDATING THE QUADRATIC PROGRAMMING ODE SOLVER

First we examine whether our quadratic programming solver is able to solve linear ODEs accurately.
For simplicity we choose the following second and third order linear ODEs with constant coefficients.

u′′ + u = 0 (29)

u′′′ + u′′ + u′ = 0 (30)

For the QP solver we discretize the time axis into 100 steps with a step size of 0.1. We compare
against the ODE solver odeint included with the SciPy library. The results are shown in 7 where we
show the solutions, u(t), for the two ODEs along with the first and second derivatives, u′(t), u′′(t).
The results from the two solvers are almost identical validating the quadratic programming solver.

Next we examine the ability of the solver to learn the discretization. We learn an ODE to model
a damped sine wave where each step size is a learanable parameter initial to 0.1 and modeled as a
sigmoid function. We show the results in Figure 8 for a sample of training steps. We see the step
sizes varying with training and the steps generally clustered together in regions with poorer fit.

14

Under review as a conference paper at ICLR 2024

Solving u''(t) + u'(t) = 0

0 50 100
1.0

0.5

0.0

0.5

1.0
u(t)

0 50 100

u'(t)

0 50 100

u''(t)
Scipy odeint Solver

0 50 100
1.0

0.5

0.0

0.5

1.0

0 50 100 0 50 100

QP Solver

Solving u'''(t) + u''(t) + u'(t) = 0

0 50 100
1.0

0.5

0.0

0.5

1.0
u(t)

0 50 100

u'(t)

0 50 100

u''(t)
Scipy odeint Solver

0 50 100
1.0

0.5

0.0

0.5

1.0

0 50 100 0 50 100

QP Solver

Figure 7: Comparing ODE solvers on 2nd and 3rd order ODEs.

Next we demonstrate a non-linear equation. For this we introduce a variable in the QP solver
for a non-linear term add a squared loss term as described in the paper. We use the equation
c2(t)y

′′ + c1(t)y
′ + c0(t)y + ϕ(t)y2 = 1, with time varying coefficients and fit a sine wave. The

result is in Figure 9. The ODE fits the sine wave and at the same time the non-linear solver term fits
the true non-linear function of the solution.

B.3 LEARNING WITH NOISY DATA

We perform an simple experiment illustrate how the ODE learning method can fit ODEs to noisy data.
We generate a sine wave with dynamic Gaussian noise added during each training step. We train
two models: the first a homogeneous second order ODE with arbitrary coefficients and the second a
homogeneous second order ODE with constant coefficients. We also train a model without noise. The
results are shown in Figure 10. The figures show that the method can learn an ODE in the presence
of noise giving a smooth solution. The model with constant coefficients learns the following ODE.

0.92023u′′ − 0.00016u′ + 0.228u = 0,

with (learned) initial conditions u(0) = −0.031799 and u′(0) = 2.3657.

15

Under review as a conference paper at ICLR 2024

Figure 8: Demonstrating a learned grid for fitting a damped sinuoidal wave (blue curve) over the
course of training. The dots show the learned grid positions. The grid generally becomes finer for
regions where the fit is poorer.

C EXPERIMENTAL DETAILS

C.1 DISCOVERY OF GOVERNING EQUATIONS

C.1.1 DISCOVERING GOVERNING EQUATIONS OF SYSTEMS WITH RATIONAL FUNCTION
DERIVATIVES

In Figure 12 we plot the vector fields learned with SINDy and with MNNs. MNNs are considerably
more accurate.

16

Under review as a conference paper at ICLR 2024

Figure 9: Demonstrating fitting a sine wave with a non-linear ODE c2(t)y
′′ + c1(t)y

′ + c0(t)y +
ϕ(t)y2 = 1. The non-linear function is y2 and the bottom shows the solver variable fitting the
non-linear function.

C.1.2 DISCOVERED EQUATIONS.

MNN Lorenz

x′ = −10.0003x+ 10.0003y

y′ = 27.9760x+−0.9934y − 0.9996xz

z′ = −2.6660z + 0.9995xy

SINDy Lorenz

x′ = −10.000x+ 10.000y

y′ = 27.998x+−1.000y +−1.000xz

z′ = −2.667z + 1.000xy

MNN Non-linear

x′ = tanh(−0.7314x+ 0.5545y +−1.2524x2 +−0.1511xy + 0.2134y2)

y′ = tanh(0.9879x+ 1.0005y + 0.1742x2)

SINDy Non-linear

x′ = −1.968x+ 0.985y +−0.054x2

y′ = 1.466y + 11.892x2 +−5.994xy + 0.085y2

17

Under review as a conference paper at ICLR 2024

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

0 10 20 30 40 50

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

0 10 20 30 40 50

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

2

0

2

0 10 20 30 40 50

2

0

2

Figure 10: Learning sine waves without and with dynamically added Gaussian noise with 2nd order
ODE with arbitrary coefficients (middle) and constant coefficients (right). The figure on the right
corresponds to the ODE 0.92023u′′ − 0.00016u′ + 0.228u = 0.

MSE
LossMLP Basis Library

Parameters

QP ODE
SolverData

Threshold

Figure 11: Governing equation discovery architecture

MNN Rational

x′ =
−0.9287x+ 0.4386y +−1.1681x2 + 0.3545y2

0.4871 + 0.8123x+ 0.0984x2 + 0.3700xy + 0.3081x2

y′ =
0.6360x+ 0.5971y + 0.3267x2

0.6090 + 0.7507x2 + 0.5694y2

SINDy Rational

x′ = −1.705x+ 0.899y +−0.318x2

y′ = −0.795 + 3.072y + 4.777x2 + 6.892xy +−4.681y2

18

Under review as a conference paper at ICLR 2024

0.1 0.2 0.3 0.4 0.5 0.6
x1

0.1

0.2

0.3

0.4

0.5

0.6

x 2

True Field
MNN Learned Field
Train Sample2
MNN Train 2
Test Sample
MNN Test

0.1 0.2 0.3 0.4 0.5 0.6
x1

0.1

0.2

0.3

0.4

0.5

0.6

x 2

True Field
MNN Learned Field
Train Sample 1
MNN Train 1
Train Sample2
MNN Train 2
Test Sample
MNN Test

0.1 0.2 0.3 0.4 0.5 0.6
x1

0.1

0.2

0.3

0.4

0.5

0.6

x 2

True Field
SINDy Learned Field
Train Sample
Test Sample
SINDy Train
SINDy Test

dx

dt
=

−2x+ y

1 + x2

dy

dt
=

x+ y

1 + y2
,

Figure 12: Learned ODE vector fields for MNN and SINDy with rational function derivatives and
one and two training trajectories. MNN can handle multiple input examples. The ground truth ODE
is also shown.

C.2 NESTED CIRCLES

For the nested circles (Section 5.2) experiment we use a second order ODE with coefficients computed
with a single layer and the right hand side is set to 0. We use a step size of 0.1 and length 30. However,
as we note, 5 time steps are enough for accurate classification. The loss function is the cross entropy
loss.

MNNs obtain an explicit linear ODE per datapoint that governs the evolution of the point. The
example we give is for one of the ODEs for one point and for a 5-time step evolution. This computed
equation is sufficient for perfect classification.

C.3 AIRPLANE VIBRATIONS

For this experiment (Section 5.3) we use an MNN with a second order ODE, step size of 0.1 and 200
steps during training. The coefficients and constant terms are computed with MLPs with 1024 hidden
units.

C.4 2-BODY PROBLEM

We give experimental detail for the experiment from Section 5.4.

Learning Trajectory. For learning the 2-body trajectory we use an MNN with second order ODEs.
The time axis is discretized into steps of size 0.01 and length 50. The input x is the initial positions
and velocities of the two objects. The coefficients of the ODE are computed by an MLP with
one hidden layer and 2048 units given the pairwise distance and velocities as input. The force is
computed by an MLP with two hidden layers with 1024 units and we use Newton’s 3rd law for the
complementary force. Solving the ODE gives the position, velocity and acceleration over 50 time
steps. The loss is the MSE loss for position and velocity.

19

Under review as a conference paper at ICLR 2024

CNN CNN

UpsampleDownsample
ODE
Solve
Layer

Figure 13: PDE module architecture

Discovering Mass and Force Parameters. For this part of the experiment we use an MNN with a
restricted ODE to match Newton’s second law. In the MNN model for this experiment, we use the
same coefficient for the second derivative term for all time steps with the remaining coefficients fixed
to 0, that is c2(t) = c and c1(t) = 0, c0(t) = 0. b(t) = Ft corresponds to the force term which is
computed by a neural network from the initial position and velocity with two hidden layers of 1024
units and Newton’s second law F21 = −F12. We use a step size of 0.01 and run for 50 time steps.
The loss is the MSE loss for position and velocity.

C.5 N-BODY PROBLEM

The n-body setup is similar to the trajectory learning setup for the 2-body problem. The difference is
that the force neural network is used compute pairwise forces between the objects using Newton’s
third law and the superposition principle so that the individual forces on an are added to produce the
final force.

C.6 PDE SOLVING

In Figure 13 we show the MNN architecture we used to solve PDEs. We use the 2d Darcy Flow
dataset used by Li et al. (2020c) scaled to 85x85.

C.7 COMPARING RK4 WITH THE QP SOLVER

Table 3: Comparing the QP solver with the RK4 solver with a step size of 0.1 on fitting noisy
sinusoidal waves of 300 and 1000 steps. Showing MSE loss and time.

Steps QP (seconds) RK4 (seconds) QP Loss RK4 Loss

40 1.52 28.06 11.4 29.3
100 1.61 64.57 27.9 35.6
300 1.76 211.52 52 96.8
500 2.12 359.7 128 301

1000 3.68 666.69 292 589

20

Under review as a conference paper at ICLR 2024

RK4 Solver

0 5 10 15 20 25 30
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
300 Steps

Target
RK4

0 20 40 60 80 100

2

1

0

1

2

1000 Steps
Target
RK4

QP Solver

0 5 10 15 20 25 30

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

300 Steps

Target
QP

0 20 40 60 80 100

2

1

0

1

2

1000 Steps

Target
QP

Figure 14: Comparison of RK4 solver from torchdiffeq and our QP solver for fitting sinusoidal waves
with Gaussian noise added at each iteration. Length of the wave and number of steps is 300 (left
column) and 1000 (right column). Step size is 0.1. Trained for 100 iterations. The QP solver has
better performance (and efficiency) for longer trajectories.

0 200 400 600 800 1000
Number of Steps

0

100

200

300

400

500

600

Se
co

nd
s p

er
 1

00
 It

er
at

io
ns QP

RK4

Figure 15: Number of seconds per 100 iterations for fitting noisy sinusoidal waves. The QP solver is
significantly more efficient over longer times due to its parallelism.

21

