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1 OVERVIEW
The additional material mainly consists of two parts: the research
motivation and the experiment.

• 2 Research Motivation is a supplement to 1 Introduction part,
• 3 Experimental part is a supplement to 4 Experiment.
• 4 Future Work part is a supplement to 5 Conclusion

2 RESEARCH MOTIVATION
Cross-modal plasticity refers to the brain’s ability to adjust and
reorganize its functions to enhance the processing capabilities of
other sensory modalities following the loss or absence of input
from a particular sensory modality[3, 10, 11]. This phenomenon
primarily involves neural plasticity, which is the structural and func-
tional changes in neurons and neural networks under the influence
of experience or the environment[1, 12]. These changes include
the formation, strengthening, or weakening of synapses, and the
establishment of new neural pathways[4, 8]. In cases of sensory de-
privation, such as blindness or deafness, the brain regions originally
receiving input from the now-absent modality no longer do so. In-
stead, neural centers of other modalities may take over these areas,
reallocating and optimizing their functions. For example, in experi-
ments involving visual deprivation and auditory enhancement, the
brain areas originally processing visual information, such as the vi-
sual cortex, begin to process auditory or tactile information[7]. This
reorganization can lead to increased auditory and tactile sensitiv-
ity, as observed in the extraordinary auditory localization abilities
of blind individuals. Similarly, in experiments involving auditory
deprivation and visual/tactile enhancement, individuals with hear-
ing loss exhibit enhanced visual and tactile functions, such as im-
proved visual-spatial processing abilities and heightened tactile
perception[9]. The mechanisms underlying cross-modal plasticity
involve a variety of molecular and cellular events, such as changes
in neurotrophic factors, synaptic connectivity reorganization, and
the rebalancing of inhibitory and excitatory neurotransmissions.
The brain utilizes these mechanisms to optimize the remaining
sensory inputs to compensate for the lost senses. This plasticity
helps individuals adapt to sensory loss and enhances the functions
of other senses, revealing the brain’s remarkable adaptability to
changes in sensory inputs.

Neuroanatomy is the scientific field that studies the structure and
function of the brain, including how the brain processes informa-
tion through its complex network structures[2, 14]. Specifically, in
the context of multimodal information processing, neuroanatomy
demonstrates how the brain integrates information from our vari-
ous sensory systems, including vision, hearing, touch, smell, and
taste[6, 15]. The parietal lobe, located in the upper part of the
brain, is a primary area for processing tactile, visual, and spatial
information[2, 5]. The temporal lobe primarily handles auditory
information and some visual memory. It contains several key mul-
timodal areas, such as the superior temporal sulcus (STS), which

is an important area for integrating visual and auditory informa-
tion related to facial expressions and body movements, as well as
associated sounds[13]. Additionally, the temporal lobe is involved
in language comprehension and emotional processing. The frontal
lobe, located at the front of the brain, is central to decision-making,
planning, and social behavior. The dorsolateral prefrontal cortex
(DLPFC) within the frontal lobe is key for multimodal informa-
tion processing, responsible for merging information from different
sensory sources to support complex cognitive tasks such as problem-
solving and decision-making. The insula, deep within the brain,
acts as an integration center for information from multiple sensory
systems, playing a critical role in regulating emotional responses,
pain perception, taste, smell, and visceral sensations. Its role in
multimodal information processing includes integrating internal
and external sensory signals and assessing emotionally relevant
stimuli. The amygdala, a critical area in the brain for processing
emotional responses, especially in managing emotions like fear
and happiness, receives and integrates various sensory informa-
tion, such as visual and auditory signals that relate to emotional
responses and social prompts. Multimodal information processing
relies not only on the functions of individual brain regions but also
on extensive neural networks. These networks are interconnected
through complex axonal connections. For example, visual-auditory
information is integrated in the superior temporal sulcus and other
areas of the temporal lobe, which have extensive connections with
the parietal and frontal lobes, jointly participating in tasks such as
spatial localization and speech understanding.

3 EXPERIMENTAL
In the experimental section, regarding the performance experi-
ments, the confusion matrix for Table 1 has already been presented
in the main text. We have additionally included the confusion matri-
ces for Tables 2, 3, and 4 as Figures 1, 2, 3 and 4 in the supplementary
materials. In these experiments, SENET consistently demonstrated
performance as shown in the tables, and even exceeded the perfor-
mance indicated therein.

4 FUTUREWORK
In the field of affective computing, leveraging information from var-
ious sensory channels is crucial for a nuanced understanding and
interpretation of human emotions. Inspired by the theory of cross-
channel plasticity, we propose a new unified channel paradigm for
affective computing, named UMBEnet. UMBEnet seamlessly inte-
grates multimodal information across visual, auditory, and textual
domains to create a more proficient system that enhances the accu-
racy and resilience of emotion recognition efforts. Our approach is
grounded in the complex neuroanatomical structures of the human
brain, incorporating a brain-like emotional processing framework
that utilizes inherent cues and dynamic cue pools, along with sparse
feature fusion techniques. Rigorous experimental validation on the
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most scalable benchmarks in the DFER field—specifically, DFEW,
FERV39k, and MAFW—has definitively confirmed that UMBEnet
surpasses the performance benchmarks set by existing state-of-
the-art (SOTA) methods. Particularly in scenarios characterized by
multi-channel configurations or the absence of such configurations,
UMBEnet clearly exceeds contemporary leading solutions.

We believe that the BEPF framework, DS structure, and SFF mod-
ule proposed in this paper offer significant guidance for addressing
issues of fusion and modality absence within the multimodal do-
main. Our work provides the multimodal community with a novel
and distinct model framework for multimodal fusion and address-
ing modality absence, differing from previous approaches. In the
future, we aim to extend the BEPF framework to more multimodal
domains, believing it to be a transferable multimodal framework
that requires minimal modification for adaptation.

V V+A

Figure 1: Confusion Matrices of Overall Model Performance
Comparison (UMBEnet vs. other SOTA methods on MAFW
for 11-class classification)
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Figure 3: Confusion Matrices of Missing Mode (UMBEnet on
MAFW for 11-class and 10-class classification).
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Figure 2: Confusion Matrices of Multimode Performance
Comparison (UMBEnet on MAFW for 11-class and 10-class
classification).
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Figure 4: Confusion Matrices of UMBEnet Hyperparameter Ablation Study (UMBEnet on MAFW for 11-class and 10-class
classification).
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