MagicVFX: Visual Effects Synthesis in Just Minutes

Jiaqi Guo Lianli Gao* Junchen Zhu
University of Electronic Science and Shenzhen Institute for Advanced University of Electronic Science and
Technology of China Study, University of Electronic Technology of China
Chengdu, China Science and Technology of China Chengdu, China
guoojq@gmail.com Shenzhen, China junchen.zhu@hotmail.com

lianli.gao@uestc.edu.cn

Jiaxin Zhang Siyang Li Jingkuan Song
University of Electronic Science and ~ University of Electronic Science and Shenzhen Institute for Advanced
Technology of China Technology of China Study, University of Electronic
Chengdu, China Chengdu, China Science and Technology of China
aria jiaxinz@gmail.com simonhas3cats@gmail.com Shenzhen, China

jingkuan.song@gmail.com

Visual special effects synthesis with reference effects

In front of the woman was a spinning, sparking magic portal.

Drift car performance on a turn of the race track, emitting a magical light.

Figure 1: Two paradigms of AIGC-based visual effects synthesis: synthesis with reference effects(SRE) and synthesis without
reference effects(SNRE). Both paradigms take a base video and a textual description as input, and the paradigm with reference
effects additionally has a visual effects video as input. Top: Our results for the paradigm with reference effects. Bottom: Our

results for the paradigm without reference effects.
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Abstract

Visual effects synthesis is crucial in the film and television industry,
which aims at enhancing raw footage with virtual elements for
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greater expressiveness. As the demand for detailed and realistic ef-
fects escalates in modern production, professionals are compelled to
allocate substantial time and resources to this endeavor. Thus, there
is an urgent need to explore more convenient and less resource-
intensive methods, such as incorporating the burgeoning Artificial
Intelligence Generated Content (AIGC) technology. However, re-
search into this potential integration has yet to be conducted. As
the first work to establish a connection between visual effects syn-
thesis and AIGC technology, we start by carefully setting up two
paradigms according to the need for pre-produced effects or not:
synthesis with reference effects and synthesis without reference
effects. Following this, we compile a dataset by processing a col-
lection of effects videos and scene videos, which contains a wide
variety of effect categories and scenarios, adequately covering the
common effects seen in films and television industry. Furthermore,
we explore the capabilities of a pre-trained text-to-video model to
synthesize visual effects within these two paradigms. The exper-
imental results demonstrate that the pipeline we established can
effectively produce impressive visual effects synthesis outcomes,
thereby evidencing the significant potential of existing AIGC tech-
nology for application in visual effects synthesis tasks. Our dataset
can be found in https://github.com/ruffiann/MagicVFX.
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1 Introduction

Visual effects are indispensable components of films, television, and
even social media videos. Detailed and realistic visual effects often
provide audiences with the ultimate visual pleasure. For example,
in disaster films, the tsunamis or fires processed with visual effects
will be more immersive for the audience, enabling audiences to feel
as though they are part of the scene.

As the film and television industry advances, audience expecta-
tions for visual effects have increased dramatically, covering both
realistic phenomena that are challenging to capture (such as ex-
plosions and car accidents) and fantastical effects that do not ex-
ist in reality (such as magical shields and teleportation circles).
Meeting these expectations requires significant investment in high-
performance hardware and professional talent, making the process
costly and complex. Therefore, there is an immediate need to im-
prove current approaches and workflows of visual effects synthesis.
In light of this, we propose leveraging the rapidly evolving Artificial
Intelligence Generated Content (AIGC) technology for visual effects
synthesis, aiming to improve the efficiency in the current film and
television production industry. To the best of our knowledge, we
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are the first to attempting to bridge these two areas, which means
we will be exploring the feasibility of this idea from scratch.

First, we relate AIGC to visual effects synthesis and propose
the task definition. In film and television production, creating vi-
sual effects often involves capturing a base video and then adding
designated effects to specific locations or objects within it. These
effects generally fall into two categories: those that do not require
customization and can be described using natural language, such as
flames and lightning, and those that require customization, such as
the magical shields seen in Doctor Strange. The latter are typically
pre-produced by professionals as samples before being integrated
into the scene. Consequently, we empirically divide AIGC-based
visual effects synthesis into two paradigms: synthesis with refer-
ence effects (SRE) and synthesis without reference effects (SNRE),
as shown in Figure 1. Both paradigms utilize a base video as inputs,
with SRE additionally requires a customized visual effects video.

Secondly, we compile a dataset for evaluation purposes. Our data
acquisition approach is shown in Figure 3. This dataset comprises
two types of videos: pre-produced effects videos and base videos.
The effects videos are collected from online sources, with each
effect being manually annotated with a brief description. For the
base videos, we select clips appropriate for effects augmentation
from both online sources and public video dataset [24], each accom-
panied by detailed textual description crafted manually. Utilizing
these two distinct video types as a foundation, we further processed
them to create samples tailored for both SRE and SNRE paradigms.
Our dataset encompasses a wide range of visual effects commonly
encountered in the film and television industry, enabling a compre-
hensive assessment of the capabilities of synthesis methods.

In the third phase, utilizing a pre-trained text-to-video genera-
tor, VideoCrafter2 [6], we design a simple yet effective pipeline in
Figure 4 capable of achieving visual effects synthesis under both
paradigms. Specifically, users are required to designate an area for
effects on a base video using a mask. Should a reference effect be
available, it is pasted to the marked area, creating an initial video;
if not, the original base video remains unchanged. Next, the ini-
tial video undergoes the addition of low-level noise, leading to a
process of denoising to generate the final output. Throughout this
procedure, we enhance the effects synthesis by using descriptions
without effects as negative prompts and employing user masks
to replace cross-attention maps. The experimental results validate
the effectiveness of our pipeline in accomplishing visual effects
synthesis, also highlighting the research potential of AIGC-based
visual effects synthesis tasks.

In summary, our contributions are as follows:

e To the best of our knowledge, we are the first to introduce
AIGC techniques to visual effect synthesis which only takes
few minutes to generate complex and high-quality special
effects in videos.

o We define the visual effect synthesis task, and correspond-
ingly collect a basic dataset encompassing common visual
effects for assessing the ability of visual effects synthesis
methods.

e We build a training-free base model with extensive experi-
ments, and demonstrate the potential of the pretrained video
diffusion model in visual effect synthesis.
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Figure 2: Differences between visual effects synthesis tasks
and video editing tasks. Visual effects synthesis aims to add
visual content to the original input, while video editing tasks
are concerned with changing some part of the visual content
in the original input.

2 Related work

In the realm of visual effects, traditional methodologies have pre-
dominantly relied on software-based approaches [27] and conven-
tional techniques [22]. These methods only optimize the software
at a certain step and do not improve the overall workflow. In con-
trast, our work pioneers the application of AIGC technology to
the synthesis of visual effects, revolutionizing the workflow and
making it possible to synthesize visual effects in just minutes.
Video Composition. In the realm of video composition, recent
advancements have primarily concentrated on achieving temporal
consistency [7] and seamless blending [12, 16, 21, 28]. But video
composition concentrates on real entities such as humans and ani-
mals, neglecting the compositing of virtual objects such as visual
effects.

Text-driven Video Editing. Text-driven video editing [4, 8, 11, 17—
19, 25, 26, 31, 32] involves modifying the video conditional on the
text, which is similar to our proposed paradigm of synthesis without
reference effects. However, as illustrated in Figure 2, the focus of
these two tasks is different. The goal of visual effects synthesis
is to enhance the original input with additional visual elements,
whereas video editing tasks [10, 17, 20, 32] focus on modifying
certain aspects of the visual content in the original input.
Text-to-video Models. Advancements in diffusion models have
led to breakthroughs in text-to-video (T2V) generation [5, 33, 35]
and multi-modal models [1-3, 9]. Several startups, like Pika Labs!,
Moonvalleyz, and Genmo?, have released impressive text-to-video
generation services. However, these rely on proprietary datasets
and models, hindering broader research and development. Among
open-source models, some [5, 13-15, 29] often yield videos of lower
resolution. While I2VGen-XL [34] can generate high-resolution
outputs, it falls short in text-to-video tasks, which are essential to
our study. Therefore, we have selected VideoCrafter2 [6] for our
work, which is the SOTA open-source text-to- video generator.

!https://www.pikalabs.com/
Zhttps://moonvalley.ai/
Shttps://www.genmo.ai/
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3 Problem formulation and datasets

3.1 Problem Formulation

In this study, we explore integrating AIGC technology with synthe-
sizing visual effects, aiming to augment the production productivity.
Following an in-depth investigation of the industrial workflows
and techniques utilized in creating visual effects within the cine-
matic sphere, we propose categorizing AIGC-based visual effects
synthesis into two distinct paradigms: synthesis with reference
videos (SRE) and synthesis without reference videos (SNRE). These
two paradigms validly cover the spectrum of synthesis scenarios
encountered in practical applications.

Synthesis with Reference Effects (SRE). In the film industry,
fantasy and science fiction genres command a significant market
share, featuring an abundance of scenes rich in imaginative special
effects. Such movies often delve into concepts like interstellar travel,
time travel, and magical battles. These scenarios necessitate a wide
array of custom special effects, meticulously pre-designed by visual
effects designers and seamlessly integrated during post-production
to bring these visionary concepts to life on screen. We describe this
type of need for pre-produced effects as synthesis with reference
effects (SRE). SRE process can be formulated as:

Vo = SRE(Vpase Vref: Myser) (1)

where Vpys, is the base video, ;.. is the reference effect video,
and My,er represents the designated location for effect integration.
The output V, is the composite video with the reference effect
seamlessly and harmoniously integrated.

Synthesis without Reference Effects (SNRE). Beyond the imag-
inative and bespoke effects, there exists a spectrum of common
effects primarily crafted to simulate scenarios challenging to cap-
ture in the real world. These include weather phenomena, natural
disasters, and smoke, as well as effects related to water and fire dy-
namics. Such effects do not require pre-production design but can
be directly adapted to fit within scenes. We refer to the synthesis of
these types of effects as synthesis without reference effects (SNRE).
SNRE can be represented by:

Vo = SNRE(Vbases T, Muser) (2)

where T should be a textual description that is sufficiently descrip-
tive of the effect, or a description of the expected output. V,, Vp,4qe
and My;er have the same meaning as in SRE.

After formally defining these two paradigms, we can use the
AIGC model to fit and solve the problem, thus meeting the need for
efficiency and automation in the visual effects field and speeding
up the production process.

3.2 Dataset Construction

Since AIGC-based visual effects synthesis is a novel work, there is
no publicly available dataset that evaluates how well the method
performs on this task. Hence, we collect and construct a dataset
named VFX-307 to fill this gap. Our data acquisition method is
shown in Figure 3.

Data Collection. VFX-307 contains two types of data, base videos
and effect videos. We gather an assortment of base videos from
two sources: open-source video datasets (e.g. DAVIS-2017 [24])
and online sources. We meticulously curate scenes suitable for
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Samples for synthesis without reference effects

&, Original Caption: An overhead video of a city with
tall buildings in the early morning hours.

= Effect Caption: An overhead video of a city with
tall buildings. Suddenly there is an explosion in the
center of the city, with flames shooting up into the sky.

- Original Caption: Earth from space. There is a
rocket is floating in the air.

& Effect Caption: Earth from space. There is a
rocket is floating in the air. There is constant lightning
surrounding the rocket.

- Original Caption: A vast desert.
Effect Caption: A vast desert.

Samples for synthesis with reference effects

& Original Caption: There are white clouds in the
sky and a girl is contacting Kung Fu alone.

= Effect Caption: There are white clouds in the sky
and a girl is contacting Kung Fu alone. She punched out
a flame in the shape of a yellow crescent moon.

Figure 3: Our data acquisition method. We first collect a series of effects videos and base videos. Then we manually process

them to obtain samples suitable for SRE and SNRE, respectively.

adding visual effects, prioritizing those with stable camera motion,
clear settings, and distinct actions. We manually trim the videos to
retain only segments shorter than 300 frames and standardize the
resolution to 1080p with a 16 : 9 aspect ratio. This process resulted
in resulted in a collection of 117 base videos. For effect videos,
we compile 190 pre-produced standalone effects videos uploaded
by professionals on public networks. Despite varying resolution
and duration, they all have a 16 : 9 aspect ratio. This compilation
contains a wide variety of effect categories, adequately covering the
common effects seen in films and the TV industry. Upon collecting
the two types of videos, we manually provide each base video with
a detailed textual description as the original caption and each effect
video with a brief description.

Samples Creation. Based on these two categories of videos, we
further process them to create sample sets for SRE and SNRE. Specif-
ically, we manually pair each base video with an effect video to form
valid and logical combinations. For each combination, we merge
the original caption of the base video with the brief description
of the effect video to generate a new effect caption. This results
in a sample in the form of a quadruplet comprising the original
caption, the effect caption, the base video, and the effect video. We
created 75 such samples for SRE. For SNRE, we manually add a

special effect description to the original caption of each base video
to formulate an effect caption. This yields a triplet consisting of the
original caption, the effect caption, and the base video. Each base
video is associated with 1 to 4 such triplets, culminating in a total
of 175 samples.

4 Method

In this section, we explore to implement the task of visual effects
synthesis using a pre-trained text-to-video generation model. We
first give an overview of our synthesis pipeline in Section 4.1 fol-
lowed by detailing the implementation of utilizing this pipeline for
SRE and SNRE, in Section 4.2 and 4.3, respectively.

4.1 Overview

Our pipeline offers a straightforward yet potent approach to synthe-
sizing visual effects, as shown in Figure 4. First, users are required
to define a mask Myser to specify where effects should be applied to
a base video Vpyg,. In SRE, where a reference effect V.. ¢ is available,
it is pasted onto the designated area to create an initial video Vjpi¢;
in SNRE, the original V., is utilized directly as Vip;;. Following
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Prompt: The space station is engulfed in a ball of flame.
Negative Prompt: Earth from space. There is a sophisticated
space station floating in the air.

cross attention replace attention map
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Figure 4: Our proposed pipeline for visual effect synthesis.
For SRE, we first paste V,..r on Vj 4 to form Vipir, while Vp,,
is used directly as Vj,;; for SNRE. Then, low-level noise is
introduced into Vj,;;, followed by a denoising generation
process. During this process, we use the original caption as
negative prompt and employ M., replacing cross-attention
maps in specific UNet layers to enhance the synthesis.

this, low-level noise is added to the Vj;;, which then undergoes a
process of denoising to generate the final output.

Throughout the SNRE procedure, we employ two key techniques
to enhance effect synthesis: 1. utilizing original captions of the
base videos as negative prompts to ensure the generated results do
not remain unchanged. 2. utilizing user masks as cross-attention
maps in specific UNet layers, thereby strengthening the connection
between the effect text token and its intended location.

Next, we detail the design of our pipeline for both paradigms
and provide an in-depth explanation of our key techniques.

4.2 Synthesis with reference effects

In the scenario of visual effects synthesis with reference effects,
our goal is to reasonably integrate a pre-produced effect video V.. ¢
into a specific location within the base video Vj, ;.. Professional
engineers often adjust parameters like color and contrast to harmo-
nize the overall visual effect and may alter elements in the original
footage to ensure the composite video’s coherent. For example,
when facing destructive effects like explosions, it may be necessary
not only to adjust the effects themselves but also to modify elements
within the original scene to depict the destruction.

This complex and time-consuming manual process can be greatly
simplified by employing a pre-trained video generation model with
advanced semantic understanding and generalization capabilities.
[10, 12, 23] showed that introducing an appropriate level of noise
into the input image, and using this noisy image as the starting point
for a denoising generation process, can effectively make the output
more harmonious while preserving the structural information of
the input.

Inspired by this finding, we first paste the reference effect video
Vref, at a certain value of transparency discussed in Section 5.2,
onto the designated location by My,er of the base video V4, to
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create an initial composite video Vipi;. Then, we add low-level
noise to Vjnj; to serve as a starting point for generation. During
the denoising generation process, we use the textual description of
the scene containing the special effect as a conditional guidance.
Unlike methods like [23, 30], which generate realistic images and
videos by adding noise to sketches, our purpose in adding noise is
not to provide a rough prior, but to facilitate adding effects.

4.3 Sythesis without reference effects

In the scenario of synthesis without reference effects, we rely on
only textual descriptions to guide the model in generating the de-
sired effects. First, we attempt the same method utilized for SRE,
which involves directly using the base video as the initial video,
introducing low-level noise to establish a generation starting point,
and then guiding the generation process with text description con-
taining the desired effects.

However, lacking the information provided by reference effects,

the model suffers from two problems: the inability to produce visi-
ble effects and the inability to synthesis the effects to the correct
location. Therefore, we treat this method as a baseline and employ
the following two techniques to improve our approach in order to
solve these problems.
Original Captions as Negative Prompts. In conditional diffusion
model with classifier-free guidance, the model typically predicts
noises e’ and efwg at each step ¢ conditioned separately on positive
and negative prompts. These two noises are then linearly combined
to produce the final noise é; for the current timestep t:

é = E?Eg +w* (e — e?eg), (3)
where o is the classifier-free guidance scale. This approach
guides the model to avoid generating elements or themes men-
tioned in the negative prompts within the output image. Here, to
emphasize visual effects in the output video, our method uses origi-
nal textual descriptions of the base video that do not contain effects
text directly as negative prompts.
User Masks as Attention Maps. As illustrated in subfigure (b) of
Figure 9, the result of synthesizing ‘flames’ effect guided only by text
description. The desired flames do not appear on the car as expected,
but on the grass next to it. We deduce that this issue stemmed
from the model’s inability to adequately focus the attention of
the token ‘flames’ on the location we expected. Thus, we force a
connection between the the ‘flames’ and the location we expected
by introducing a user mask and replacing the cross-attention map
in the UNet. And as discussed in Section 5.2, we modify the value
of non-zero pixels in the mask and the action position of the mask
to get better results.

5 Experiments

In this section, we first show the results of our method in Section
5.1 for both SRE and SNRE paradigms. Subsequently, we report a
series of ablation experiments in Section 5.2 to demonstrate the
reasons for some of the design choices in our method.

5.1 Performance Evaluation

Baseline. Since we are the first work to explore AIGC-based vi-
sual effects synthesis, there is no applicable methodology for us
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output

An astronaut stands next to a huge rock with brown earth in front of him. nghtnmg falls from the sky beside the astronaut.

A gray kitten was lying on the couch, looking around. A circle of flames surrounded its face.

Figure 5: Qualitative results for synthesis with reference effects (SRE).

base video baseline

ours

Drift car performance on a race track, surrounded by fires.

Figure 6: Qualitative results for synthesis without reference effects (SNRE) of baseline and our improved method.

to compare. For SRE, we conduct experiments using the pipeline
described in Section 4.2 and report qualitative results below. For
SNRE, we qualitatively and quantitatively compare the baseline
and improved methods described in section 4.3, respectively.

Metrics. In the context of synthesizing visual effects without refer-
ence, we employ two CLIP scores metrics to evaluate the perfor-
mance of our method against baseline: Text: This metric assesses
the alignment between the synthesized video and the effect prompt,
measuring how well the video matches the described effects. Con-
tent: This score determines the similarity between the synthesized
video and the base video, aiming to measure how much the output

video modifies the input.

Synthesis with Reference Effects (SRE). Figure 5 illustrates the
qualitative results of our pipeline for SRE. The base videos repre-
sent diverse scenarios where visual effects are to be incorporated.
The effect videos demonstrate the specific visual effects used as
references, and the output columns display the final synthesized
videos. For instance, in the first row, the boxer’s fists are enhanced
with realistic flames, highlighting our method’s ability to adapt
effects to various contexts and scales.

Synthesis without Reference Effects (SNRE). Figure 6 presents
a comparison between the baseline and our improved approach for
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Table 1: Comparison of CLIP scores and User Preferences
across different setting. Our method outperforms the base-
line in the Text metric. My and NP indicate our proposed
two techniques.

CLIP scores
TextT  Content
w/o Myser  0.1828  0.7331

User Preferences
Text  Quality Temporal

Metric

w/o NP 0.1658 0.7874 - - -
w=2.5 0.1772 0.7786 - - -
w=5.0 0.1786 0.7648 - - -
w=7.5 0.1789 0.7487 - - -
©0=10.0 0.1781 0.7376 - - -

ours(w=12.0) 0.1897 0.7063 68.86% 34.17% 45.86%

baseline 0.1786 0.7349  31.14% 65.83% 54.14%

SNRE. In the first sequence, the baseline method only alters the
color of the soccer ball, while our method transforms it into a water
ball, complete with a realistic bursting effect that closely matches
the textual description. Similarly, in the fourth scene, the baseline
only generates smoke around the drifting car, lacking the dynamic
fire effect described in the text. Our method, however, successfully
synthesizes the flames, adding intensity and excitement to the scene.
The second and third rows further highlight the shortcomings of
the baseline. It produces minimal floral elements in the restaurant
and barely noticeable bubbles in the park, resulting in effects that
are not prominent and lack the striking impact required by the
scene’s description. In the stark contrast, our outputs are rich with
blossoms and bubbles, enveloping the subjects in a vibrant and
lively manner that greatly aligns with the textual prompts.

The quantitative results are presented in Table 1, which indicate
that our method effectively modifies the base video and outperforms
the baseline method in generating a video that more closely matches
the effect description.

In addition, we conduct a subjective user study to further com-
pare these methods. Specifically, we randomly selected 75 synthe-
sized videos and made a questionnaire, inviting 25 users to vote in
terms of text matching, video quality and temporal consistency re-
spectively. The voting results are displayed in Table 1. Our method
has a great advantage in text matching degree and is comparable to
baseline in temporal consistency. The video quality score measures
visual quality without regard to text alignment. Since we use the
original caption of the base video as a negative prompt to enhance
the expression of visual effects, it inevitably makes the synthesized
video lose some details compared to the base video, thus lowering
the video quality. In contrast, the baseline scores higher because it
tends to ignore visual effects and reconstruct the input.

5.2 Ablation study

Influence of Paste Transparency. In SRE, we first paste the effects
video into the specified position on the base video, and then use the
video generator to re-generate the video in order to fuse the two
in a more rational way. However, direct pasting would make the
effects in the outputs very stiff and abrupt, as shown in subfigure
(c) in Figure 7, so we adjust the transparency « of the effect video.
That is, the pixels of the base video are linearly combined with the
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(b) effect video

(a) base video

(d)a=09

There is an explosion in front of a house, ultra realistic.

Figure 7: Ablation of different transparency o when paste
effect video to base video.

(a)w=25 (b) w =5.0

c)w=175

(d)w=12.0

A young man is riding his bicycle, with bubbles appearing surrounding.

Figure 8: Ablations of different classifier-free guidance scale
of negative prompts.

pixels of the effect video when pasting by the following formula:
Pinit=(1_a)*Pbase+a*Pref’ ©)

where P denotes the pixel value at the specified paste position. The
experimental results are shown in Figure 7. Lowering the trans-
parency a does result in a better integration of the special effect
with the base video, but too low & value will cause the model ignore
the presence of the reference effect.

Influence of Using Original Captions as Negative Prompts.
We employ quantitative metrics to investigate the impact of utiliz-
ing the original captions of the base videos as negative prompts
in the generation process, as illustrated in Table 1. We use NP in
the table to denote this method and calculate metrics for different
values of w. The results shows that implementing original captions
as negative prompts improves the alignment between the output
video and the effect prompt, and this alignment increases with the
escalation of w. Figure 8 corroborates this trend. Additionally, while
this approach amplifies the divergence between the output and the
base video, it ensures that the quality remains at an elevated level.

Influence of Using User Masks as Attention Maps. First, we
explore the impact of different pixel values of non-zero region in the
user mask. When the value is 1, the result is shown in subfigure (c) of
Figure 9, where the user mask is in the lower left corner. The result
indicates that it leads to the model adding an excessive amount
of flame effects in the specified area, causing complete distortion
of the image in that region. Consequently, we further reduced the
pixel values of the non-zero areas in the mask image. The outcomes
of this adjustment are displayed in Figure 9. In conclusion, we chose
0.3 as the pixel value for the non-zero region.
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(a) base video (b) w/o mask (c) value = 1 (d) value = 0.1

E = ol A

A éray car tightly surrounded by flames is driving normally on a mountain street.

Figure 9: Ablations of different value of non-zero region in
user masks.

(b) layer 1

(c) layer 1-2

(a) w/o mask (d) layer 1-3

A gray car tightly surrounded by flames is driving normally on a mountain street.

Figure 10: Ablation of different action position of the user
masks in the UNet layers.

Furthermore, we experimentally investigate the impact of using
user masks at different positions within the UNet. Specifically, we
divide the UNet into four layers from top to bottom, from layer 1
to layer 4, according to the feature dimensions in descending order
within the UNet architecture. We replace the attention maps with
the user mask at various positions within these four layers, and
the results are illustrated in Figure 10. As can be seen, the use of
masks in the bottom layers is not as effective as in the top layers,
especially when replacing only in the fourth layer, the replacement
of the attention map is almost ineffective. We finally chose to use
the user mask in layers1-2.

6 Discussions

Our experiments have demonstrated the feasibility and potential of
integrating AIGC with visual effects synthesis. In this section, we
will discuss some issues identified during our research that warrant
further extensive consideration.

Scale of Dataset. In this paper, we compiled an effects dataset from
the internet, covering a wide range of effect categories commonly
seen in the film and television industry. However, limited by our
lack of professional experience in effects production, we could not
produce or collect a more extensive array of effects. This prevents
our dataset from supporting training or large-scale validation.
Moreover, for SNRE, our data acquisition method involved manu-
ally captioning base videos and modifying these to include descrip-
tions of effects. This process also restricted the scale of our dataset.

Guo et al.

base video output

7 r ~ A
|- " R - \4 %, -
e TN s el e g

2

An intact glass suddenly breaks into pieces and the shards scatter on the table.
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A bullet crosses the ball and breaks it.

Figure 11: Bad cases.

Perhaps, we could start by creating a series of brief descriptions
of individual effects, and then leverage the capabilities of large
language models to automatically create descriptions containing
effects for the base videos, in conjunction with the existing video-
caption dataset. This would generate a much larger dataset that
would provide the basis for model training.

Deficiencies in Rigid-body Generation. Visual effects commonly
used can broadly be categorized into four types: particle effects,
fluid effects, rigid-body effects, and soft-body effects. Particle effects
refer to those produced by simulating the movement of a multitude
of particles, such as explosions, smoke, sparks, and meteors and
so on. Fluid effects are primarily utilized to simulate the flow of
liquids, such as oceans and waterfalls. Rigid-body effects simulate
the movement of hard objects within real-world environments,
examples include a wrecking ball hitting a wall or glass shattering.
Conversely, soft-body effects model the behaviors of various elastic
objects in the real world, such as jello or balloons.

Our experiments demonstrated the competitive potential of
AIGC technology in generating fluid and particle effects. However,
we also observed that the model lacked experience in generating
soft-body and rigid-body effects, particularly with rigid-body ef-
fects. As shown in Figure 11, even in simple scenarios, our method
fails to achieve effects such as "break". This limitation might be
attributed to the capabilities of our backbone model Videocrafter2.
Indeed, we noticed that even the most impressive text-to-video
model to date, Sora, struggles with understanding the concept of a
"cup shattering". This suggests that generating rigid bodies is not
only a challenge for AIGC-based visual effects synthesis but also a
broader issue faced by the pursuit of a "world simulator" in current
research.

7 Conclusion

In this work, we explore the integration of visual effects synthe-
sis with the burgeoning field of AIGC. Our experimental findings
demonstrate the substantial potential of this integration, where pre-
trained video generator can seamlessly blend effects with scenes
and adjust scene elements logically. We believe that advancing re-
search in AIGC-based visual effects synthesis will transform film
and television production by enabling streamlined processes and
innovative applications, while also allowing non-professional users
to create high-quality visual effects videos, opening new creative
opportunities for a broader audience.
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