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1 INTRODUCTION

In this document, we provide additional materials to support our
main submission. We first present a detailed introduction to the
dataset we construct. Subsequently, we analyze potential research
directions that may warrant attention in future AIGC-based vi-
sual effects synthesis tasks. Finally, we give more results of our
experiments.

2 DATASET

Dataset collection plays a crucial role in assessing model perfor-
mance. Unlike supervised tasks such as visual reconstruction and
visual retrieval, where evaluation datasets can be readily obtained,
the outcomes of visual effects synthesis are often subject to human
subjective judgment. Consequently, we focus solely on gathering
data that can serve as input, without taking into account the ground
truth for the synthesized results.

Our VFX-307 dataset comprises two distinct types of data: base
videos and effect videos. The base videos serve as a common input
for both SRE and SNRE synthesis paradigms, while the special ef-
fect videos are exclusively utilized as inputs for the SRE paradigm.
Further, we construct sample sets suitable for SRE and SNRE based
on these two types of data, respectively. The detailed procedures
for processing and constructing the dataset have been thoroughly
described in the main text. Therefore, in this section, we concen-
trate on analyzing the content of our dataset.

Effect Videos. We gather a collection of visual effects videos cre-
ated and uploaded by professionals through online platforms, cat-
egorizing them into 5 categories based on their content and ap-
plication, with detailed classification and quantities presented in
Figure 1. The "Element" category encompasses specialized forms of
basic visual effects elements like flames and lightning. The "Magic"
category assembles imaginative magical effects, which are further
subdivided into offensive effects, defensive effects, and those related
to portals. The "Environment” category refers to effects that can
alter the environment in a video, such as explosions and dense fog.
The "Scene" category is dedicated to effects that can envelop the
entire frame, altering the overall ambiance of the scene, like the
frame being gradually frozen over. Lastly, the "Object” category fo-
cuses on effects that have a physical presence, such as angel wings.
These videos cover the types of visual effects commonly found in
the film and television industry and are sufficient for evaluating
the performance of a visual effects synthesis method.

Base Videos. Our base video collection consists of 117 videos, in-
cluding 71 videos sourced from public video datasets (e.g., DAVIS[3])
and other 46 videos obtained from public online platforms. These
videos encompass scenes with stationary camera shots, as well as
footage capturing human and animal activities. Each base video has
been manually captioned, with the description length kept under

50 words to accommodate the text input limitation of fewer than
77 tokens imposed by our backbone model.

Effect Video Categories

31%

. Element

Magic . Environment . Scene . Object

Figure 1: Statistic of effect videos categories.

3 FUTURE WORK

In the main text, we discussed the scale size and collection method
of the dataset, as well as the shortcomings of the model’s perfor-
mance in generating rigid-body special effects, and in this section,
we continue the discussion in the main text by further analyzing
possible research points for AIGC-based visual effect synthesis.

Accurate Evaluation Metrics. Within the SNRE paradigm, we
employ CLIP[5] score to evaluate the synthesized results from two
perspectives: the similarity between the synthesized results and
the original base videos, and the congruence between the synthe-
sized results and the effect prompts. We posit that these metrics
are indicative of whether the outcomes have effectively altered
the base videos and generated effects that align with the textual
conditions. However, we observed that for certain magical effects
that are infrequently represented in CLIP’s training data, such as
magical shields, CLIP struggles to accurately match the results with
the corresponding texts. For example, in Figure 2, The output video
is more in line with the effect text than the base video, but CLIP
yields the opposite score. Additionally, within the SRE paradigm,
quantitatively measuring the similarity between the effects in the
synthesized results and the reference effects presents an unresolved
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challenge. Currently, these issues seem to be best assessed through
user studies.

base video
CLIP score = 0.2659

output
CLIP score = 0.2603

k . s
L= o e e

o

On a sunny day, there are two coconut trees on a beach by the ocean, and a woman
is leaning against them reading a book. In the sky there is a magic transfer door.

Figure 2: Inaccuracy of CLIP score.

Aligned with Reference Effect and Base Video. While our
method successfully integrates visual effects into base videos, the
experimental outcomes reveal a loss of detail from both the base
videos and reference effect videos. As shown in Figure 3, there is
some loss of detail in facial features and clothing styles. This loss
of detail could potentially impede the application of AIGC-based
visual effects synthesis in industrial settings. In fact, preserving the
original details of areas that do not require alteration is currently a
focal point of research in video editing tasks. The null-text inversion
technique[2] suggests optimizing unconditional textual embedding
that is used for classifier-free guidance for each timestamp, thereby
enhancing the high-fidelity editing of real images. FateZero[4] in-
troduces the use of attention maps to specifically target the editing
to designated areas, ensuring the consistency of the remaining areas
with the original video. LOVECon[1] combines the latent of edited
and original frames to preserve the structural information of the
original video. These approaches could potentially be adapted for
use in visual effects synthesis to achieve a more precise integration
of effects.

base video

output

Figure 3: Loss of detail.

Anonymous Authors

In summary, as an emerging application of AIGC technology,
our work highlights the significant research value and application
potential of visual effects synthesis tasks. However, its evaluation
framework remains to be refined, and the performance of method-
ologies requires further enhancement. This field calls for additional
research and contributions from the broader scholarly community.

4 MORE CASES

Figures 4 and Figure 5 respectively showcase the extensive experi-
mental results of our method under the SRE and SNRE paradigms.
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base video effect video output

An astronaut stands on a mountain-strewn planet in space and gazes ahead. White smoke slowly rises from the ground.

An astronaut stands next to a huge rock with brown earth in front of him. There are explosions and flames on a small hill in the distance.

A land so dry it's cracked and is gradually caving in.

The weather was very bad with dark clouds and there was lightning constantly falling.

&

A woman in a tackwondo outfit is practicing kung fu facing the camera against a dark background. There is a spiral flame in front of her.

F——‘
————ﬁq

A long-haired woman in a white dress is walking toward the sea. There are many reefs in the sea. A pair of huge black wings are flapping behind the woman.

Two astronauts stood in a protective yellow shield on a planet in space, gazing at another huge planet in front of them.

Figure 4: More cases of SRE.
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base video
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output
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A couple riding a motorcycle surrounded by butterflies, on a beautiful mountain road.

TS R v
A black racing car being driven down the street, surrounded by water flow.

’ *

A boy is dancing hip-hop, wearing a brown color and a pair of jeans, surrounded by water flow.
e \ o “ \ \J s ﬁ \ 3

A light ball rolling through the yard of a small house surrounded by green grass and trees.

Figure 5: More cases of SNRE.
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