
SUPPLEMENTARY MATERIALS

A COLLECTIVE DECISION MAKING THROUGH MULTI-AGENT SETTINGS

Proposition 1. Consider the problem of mixture representation learning in a multi-agent VAE framework with A ≥ 2
agents using type-preserving data augmentation, where the accuracy of categorical assignment for a single agent is
imperfect. The confidence of the correct assignment for the multi-agent VAE is higher than that of the single agent
VAE. Moreover, there exists an A such that the correct category receives the highest confidence score in the A-agent
framework, independent of the categorical prior.

Proof. Following Definition 1 of the multi-agent framework, each agent is represented by

p(xa|ca) ∝ p(ca|xa)

p(ca)
. (1)

In this framework, using a type-preserving data augmentation, each agent receives a noisy copy xa of given sample x.
Without loss of generality, let x ∼ p(x|m), wherem ∈ {1, . . . ,K} denotes the true categorical assignment, respectively.
Accordingly, xa ∼ p(xa|m) also belong to the same category-conditioned distribution p(x|m), ∀m ∈ {1, . . . ,K}.
Considering the joint categorical assignment as c, where c = c1 = · · · = cA. Defining X := {xa}1:A, the confidence
measure for category k for samples from category m is expressed as,

CAm(k) = Ep(X|m) [log p(c = c1 = · · · = cA = k|X)] , (2)

= E(X|m)

[
log

p(x1|X \ {x1}, c = k)p(x2|X \ {x1,x2}, c = k) . . . p(xA|c = k)p(c = k)

p(X)

]
,

= Ep(X|m)

[
log

p(p(x1|X \ {x1}, c = k) . . . p(xA|c = k)

p(X)

]
+ log p(c = k)

where we use p(c) = p(c = c1 = · · · = cA) to simplify the notation. Using the type-preserving data augmentation,
since all samples independently generated from the same class-conditioned distribution, the confidence measure can be
simplified as,

CAm(k) = Ep(xa|m)

[
A∏
a=1

log
p(xa|c = k)

p(xa)

]
+ log p(c = k) (3)

=

A∑
a=1

Ep(xa|m)

[
log

p(xa|c = k)

p(xa)

]
+ log p(c = k) (4)

Since all of the augmented data are sampled from the same distribution, log-likelihood values of the augmented samples
are equal on expectation, as follows:

A∑
a=1

Ep(xa|m) [log p(xa|c)] = AEx [log p(x|c)] (5)

Therefore, the confidence over category k in an A-agent framework is defined as,

CAm(k) = AEp(x|m)

[
log

p(x|c = k)

p(x)

]
+ log p(c = k). (6)

According to Eq. 6, for a single agent (1-agent) and A-agent frameworks, the confidence values for the true categorical
assignment, i.e. category m, are formulated as follows.

C1m(m) = Ep(x|m)

[
log

p(x|c = m)

p(x)

]
+ log p(c = m), (7)

= DKL (p(x|c = m)‖p(x)) + log p(c = m)

CAm(m) = ADKL (p(x|c = m)‖p(x)) + log p(c = m), (8)

1



Since DKL (p(x|c = m)‖p(x)) > 0 for K > 1, for A > 1, CAm(m) > C1m(m).

Moreover, assuming p(c = m|x) 6= p(c = n|x), ∀ m,n ∈ {1, . . . ,K}, n 6= m, the correct categorical assignment
receives the highest confidence for the 1-agent case, i.e. C1m(m) > C1m(n), if and only if,

Ep(x|m)

[
log

p(x|c = m)

p(x|c = n)

]
> log

p(c = n)

p(c = m)
, ∀n 6= m, (9)

which is a function of categorical distributions and is not always satisfied for any arbitrary prior distribution. When
there are A agents receiving type-preserving noisy copies of the given sample x,

CAm(k) = AEx [log p(x|c = k)] + log p(c = k)−AEx [log p(x)] , (10)

Therefore, CAm(m) > CAm(n), ∀n 6= m, if and only if,

AEx

[
log

p(x|c = m)

p(x|c = n)

]
> log

p(c = n)

p(c = m)
, ∀n 6= m. (11)

Thus, when the number of agents, A, satisfies

A > max
m
{max (ρ(m)D−1(m), 1)}, (12)

where ρ(m) = max
n 6=m

log
p(c = n)

p(c = m)
and D(m) = min

n 6=m
DKL(p(x|m)‖p(x|n))), we have

CAm(m) > CAm(n), ∀n 6= m . (13)

Corollary 1. For a uniform prior on the discrete factors, one pair of VAE agents (A = 2) is sufficient to increase the
confidence of correct categorical assignment.

Proof. For uniformly distributed clusters, ρ(k) = 0, ∀k ∈ {1, . . . ,K}. According to Eq. 12, for any A ≥ 2, the
confidence increase criteria is satisfied.

Remark 1. When the augmentation is type-preserving, by definition, p(xa|xb, c = k) = p(xa|c = k), where xb could
be either the given training sample or another noisy copy. If the augmented samples concentrate around xb, i.e. the
augmenter under-explores the category-conditioned distribution, the above proof should be adapted by keeping the
conditioning on xb explicit. Conditionally independent terms used in Eq. 3 should be replaced by p(xa|xb, c = k) as
follows.

Eq. 2 should read as

CAm(k) = Ep(X|m) [log p(c = c1 = · · · = cA = k|X)] , (14)

= Ep(X|m)

[
log

p(x1|xb,X \ {x1,xb}, c = k) . . . p(xA|xb, c = k)p(xb|c = k)p(c = k)

p(X)

]
Since all augmented samples are generated from sample xb, the conditional probability distribution can be simplified
as follows.

p(xa|xb,X \ {xa,xb}, c) = p(xa|xb, c), for a 6= b (15)
Accordingly, Eq. 14 can be simplified as,

CAm(k) = Ep(xa|xb,m)

[
log

A−1∏
a=1

p(xa|xb, c = k)

p(xa|xb)

]
+ Ep(xb|m)

[
log

p(xb|c = k)

p(xb)

]
+ log p(c = k) (16)

= (A− 1)Ep(xa|xb,m)

[
log

p(xa|xb, c = k)

p(xa|xb)

]
+ C1m(k)

Based on Eq. 16, if the data augmenter only regenerates given sample x, the confidence value is equal to the confidence
of the single framework. Then, Eq. 8 should read as

CAm(m) = (A− 1)DKL (p(xa|xb, c = m)‖p(xa|xb)) + C1m(m) . (17)

Accordingly, ∀xa, if xa = xb, then CAm(m) = C1m(m).
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B VARIATIONAL LOWER BOUND FOR CONDITIONAL SINGLE MIX-VAE

For completeness, we first derive the evidence lower bound (ELBO) for an observation x described by one categorical
random variable (RV), c, and one continuous RV, s, without assuming conditional independence of c and s given x.
The variational approach to choosing the latent variables corresponds to solving the optimization equation

q∗(s, c|x) = arg minq(s,c|x)∈D DKL (q(s, c|x)‖p(s, c|x)) , (18)

where D is a family of density functions over the latent variables. However, evaluating the objective function requires
knowledge of p(x), which is usually unknown. Therefore, we rewrite the divergence term as

DKL (q(s, c|x)||p(s, c|x)) =

∫
s

∑
c

q(s|c,x)q(c|x) log
q(s|c,x)q(c|x)

p(x|s, c)p(s|c)p(c)

p(x)

ds

=

∫
s

∑
c

q(s|c,x)q(c|x) log
q(s|c,x)

p(s|c)
ds

+

∫
s

∑
c

q(s|c,x)q(c|x) log
q(c|x)

p(c)
ds

+

∫
s

∑
c

q(s|c,x)q(c|x) log p(x) ds

−
∫
s

∑
c

q(s|c,x)q(c|x) log p(x|s, c) ds

= log p(x)− Eq(c|x)
[
E(q(s|c,x)) [log p(x|s, c)]

]
+Eq(c|x) [DKL (q(s|c,x)‖p(s|c))] + Eq(s|c,x) [DKL (q(c|x)‖p(c))] (19)

= log p(x)− Ls (20)

Since log p(x) is unknown, instead of minimizing Eq. 19, the variational lower bound

Ls = Eq(c|x)
[
E(q(s|c,x)) [log p(x|s, c)]

]
− Eq(c|x) [DKL (q(s|c,x)‖p(s|c))]− Eq(s|c,x) [DKL (q(c|x)‖p(c))] (21)

can be maximized. We choose q(s|c,x) to be a factorized Gaussian, parametrized using the reparametrization trick,
and assume that the corresponding prior distribution is also a factorized Gaussian, s|c ∼ N (0, I). Similarly, for the
categorical variable, we assume a uniform prior, c ∼ U(K).

C VARIATIONAL INFERENCE FOR MULTI-AGENT AUTOENCODING NETWORKS

As discussed in the main text, the collective decision making for an A-agent VAE network can be formulated as an
equality constrained optimization as follows.

max L(φ1,θ1,x1, s1, c1) + · · ·+ L(φA,θA,xA, sA, cA)

s.t. c1 = · · · = cA
(22)

Without loss of generality, the optimization in Eq. 22 can be rephrased as follows.

max L(φ1,θ1, s1, c1) + L(φ2,θ2, s2, c2) + · · ·+ L(φA,θA, sA, cA)

s.t. c1 = c2
c1 = c3
. . .

c1 = cA
. . .

cA−1 = cA

(23)

where the equality constraint is represented as
(
A
2

)
pairs of categorical agreements. Multiplying the objective term in

Eq. 22 by a constant value, A− 1, we obtain,

max (A− 1) (L (φ1,θ1, s1, c1) + L (φ2,θ2, s2, c2) + · · ·+ L (φA,θA, sA, cA))

s.t. ca = cb ∀a, b ∈ [1, A], a < b
(24)

3



Consider one pair of L objectives for two agents a and b:

L(φa,θa, sa, ca) + L(φb,θb, sb, cb) = Eqφa (sa,ca|xa) [log pθa
(xa|sa, ca)] + Eqφb

(sb,cb|xb) [log pθb
(xb|sb, cb)]

− Eqφa (ca|xa) [DKL (qφa
(sa|ca,xa)‖p(sa|ca))]− Eqφb

(cb|xb) [DKL (qφb
(sb|cb,xb)‖p(sb|cb))]

− Eqφa (sa|ca,xa) [DKL (qφa
(ca|xa)‖p(ca))]− Eqφb

(sb|cb,xb) [DKL (qφb
(cb|xb)‖p(cb))] (25)

Since all agents receive augmented samples from the same original distribution, we have p(ca) = p(cb) = p(c). Using
a simplified notation, qa = qφa(ca|xa), the last two KL divergence terms can be expressed as,

DKL (qa‖p(c)) +DKL (qb‖p(c)) =
∑
ca

qa log
qa
p(c)

+
∑
cb

qb log
qb
p(c)

=
∑
ca

∑
cb

qaqb log
qa
p(c)

+
∑
ca

∑
cb

qaqb log
qb
p(c)

=
∑
ca

∑
cb

qaqb log
qaqb
p(c)

(26)

Now, if we marginalize p(c) over the joint distribution p(ca, cb), we can represent the categorical prior distribution as
follows.

p(c) =
∑
ca,cb

p(c|ca, cb)p(ca, cb) (27)

Since there is a categorical agreement condition i.e., ca = cb, p(c) can be expressed as,

p(c) =
∑
m

p(c|ca = cb = m)p(ca = cb = m) (28)

where

p(c|ca = cb = m) =

{
1 m = c

0 otherwise
(29)

Accordingly, under the ca = cb constraint, we merge those KL divergence terms as follows:

DKL (qa‖p(c)) +DKL (qb‖p(c)) =
∑
ca

∑
cb

qaqb log
qaqb

p(ca, cb)

= DKL(qaqb‖p(ca, cb))
(30)

Finally, the optimization in Eq. 24 can be expressed as

max

A∑
a=1

(A− 1)
(
Eq(sa,ca|xa) [log p(xa|sa, ca)]− Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]

)
−∑

a<b

Eq(sa,sb|ca,cb,xa,xb) [DKL (q(ca|xa)q(cb|xb)‖p(ca, cb))]

s.t. ca = cb ∀a, b ∈ [1, A], a < b

(31)

D VARIATIONAL LOWER BOUND FOR CPL-MIXVAE

In this section, using a pair of VAE agents, first we generalize the loss function for the single mix-VAE i.e., Ls in
Eq. 21, to the multi-agent case, and show that we can achieve the same objective function in Eq. 31. Then, we derive a
relaxation for the equality constrained optimization.

Given input data xa, an agent approximates two models q(ca|xa) and q(sa|xa, ca). If we use pairwise coupling to
allow interactions between the agents, then, for a pair of VAE agents, a and b, the variational lower bound obtained
from the KL divergence in Equation (19) can be generalized as

∆(a, b) , DKL (q(sa, sb, ca, cb|xa,xb)‖p(sa, sb, ca, cb|xa,xb))

=

∫
sa

∫
sb

∑
ca

∑
cb

q(sa, sb|ca, cb,xa,xb)q(ca, cb|xa,xb)

× log
q(sa, sb|ca, cb,xa,xb)q(ca, cb|xa,xb)(

p(xa,xb|sa, sb, ca, cb)p(sa, sb|ca, cb)p(ca, cb)
p(xa,xb)

) dsadsb (32)
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When each agent learns the continuous factor independent of other agents, we have q(sa, sb|ca, cb,xa,xb) =
q(sa|ca,xa)q(sb|cb,xb). Equivalently, for independent samples xa and xb, we have q(ca, cb|xa,xb) =
q(ca|xa)q(cb|xb). Hence,

∆(a, b) = log p(xa,xb) +

∫
sa

∑
ca

q(sa|ca,xa)q(ca|xa) log
q(sa|ca,xa)

p(sa|ca)
dsa

+

∫
sb

∑
cb

q(sb|cb,xb)q(cb|xb) log
q(sb|cb,xb)
p(sb|cb)

dsb

−
∫
sa

∑
ca

q(sa|ca,xa)q(ca|xa) log p(xa|sa, ca) dsa

−
∫
sb

∑
cb

q(sb|cb,xb)q(cb|xb) log p(xb|sb, cb) dsb

+

∫
sa

∫
sb

∑
ca

∑
cb

q(sa|ca,xa)q(sb|cb,xb)q(ca|xa)q(cb|xb) log
q(ca|xa)q(cb|xb)

p(ca, cb)
dsadsb

(33)
∆(a, b) = −Eq(ca|xa)

[
Eq(sa|ca,xa) [log p(xa|sa, ca)]

]
− Eq(cb|xb)

[
Eq(sb|cb,xb) [log p(xb|sb, cb)]

]
+Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))] + Eq(cb|xb) [DKL (q(sb|cb,xb)‖p(sb|cb))]
+Eq(sa|ca,xa)

[
Eq(sb|cb,xb) [DKL (q(ca|xa)q(cb|xb)‖p(ca, cb))]

]
+ log p(xa,xb) (34)

Therefore, the variational lower bound for a pair of coupled VAE agents can be expressed as,

Lpair(a, b) = Eq(sa,ca|xa) [log p(xa|sa, ca)] + Eq(sb,cb|xb) [log p(xb|sb, cb)]
−Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]− Eq(cb|xb) [DKL (q(sb|cb,xb)‖p(sb|cb))]
−Eq(sa|ca,xa)

[
Eq(sb|cb,xb) [DKL (q(ca|xa)q(cb|xb)‖p(ca, cb))]

]
(35)

which is equivalent to the loss function in Eq. 31, for A = 2.

To compute the joint distribution p(ca, cb), here, we define an auxiliary continuous random variable e representing the
mismatch (error) between ca and cb such that ∀ca, cb ∈ SK , and 0 < ε� 1,

p(ca, cb|e) =

{
1 |e− d2(ca, cb)| < ε/2

0 otherwise
(36)

Here, d(ca, cb) denotes the distance between ca and cb in the simplex SK , as a measure of mismatch between
categorical variables. The random variable e is distributed according to an exponential probability density function with
parameter λ i.e., ∀e ≥ 0, f(e, λ) = λ exp (−λe), where λ > 0. Accordingly, the joint categorical distribution can be
represented as,

p(ca, cb) =

∫
p(ca, cb|e)p(e)de (37)

=

∫ ε/2+d2(ca,cb)

−ε/2+d2(ca,cb)

f(e, λ)de = εf
(
d2 (ca, cb) , λ

)
+ E (38)

where E is the error bound of the Midpoint integral rule. For given exponential function f(e, λ), since |f ′′(e, λ)| ≤ λ3,
∀e > 0, the Midpoint approximation error is bounded by,

|E| ≤ (λε)
3

24
. (39)

Subsequently, the joint probability distribution is equivalent to:

p(ca, cb) = ελ exp
(
−λd2 (ca, cb)

)
+ E (40)

where ε and λ are arbitrarily constant values. We can approximate the joint distribution as follows.

p(ca, cb) ≈ ελ exp
(
−λd2 (ca, cb)

)
(41)
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Thus, the last KL divergence in Eq. 35 can be approximated as,

DKL (q(ca|xa)q(ca|xb)‖p(ca, cb)) =
∑
ca

∑
cb

q(ca|xa)q(cb|xb) log
q(ca|xa)q(cb|xb)

p(ca, cb)
(42)

= −H(ca|xa)−H(cb|xb)−
∑
ca

∑
cb

q(ca|xa)q(cb|xb) log p(ca, cb)

≈ −H(ca|xa)−H(cb|xb) + λEq(ca|xa)Eq(cb|xb)

[
d2 (ca, cb)

]
− log ελ, (43)

Therefore, the approximated variational cost for a pair of VAE agents can be written as follows:

Lpair(a, b) = Eq(sa,ca|xa) [log p(xa|sa, ca)] + Eq(sb,cb|xb) [log p(xb|sb, cb)]
−Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]− Eq(cb|xb) [DKL (q(sb|cb,xb)‖p(sb|cb))]
+H(ca|xa) +H(cb|xb)− λEq(ca|xa)Eq(cb|xb)

[
d2 (ca, cb)

]
(44)

Now, by extending Lpair from two agents to A agents, in which there are
(
A
2

)
paired networks, the total loss function

for A agents can be written as

Lcpl =
A−1∑
a=1

A∑
b=a+1

Lpair(a, b)

=

A∑
a=1

(A− 1)Eq(sa,ca|xa) [log p(xa|sa, ca)]− (A− 1)Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]

+
∑
a<b

H(ca|xa) +H(cb|xb)− λEq(ca|xa)Eq(cb|xb)

[
d2 (ca, cb)

]
. (45)

E PROOF OF PROPOSITION 2

In this section, we first briefly review some critical definitions in Aitchison geometry. Then, to support the proof of
Proposition 2, here we introduce Lemma 1 and Propositions 3 and 4.

According to Aitchison geometry, a simplex of K parts can be considered as a vector space (SK ,⊕,⊗), in which ⊕
and ⊗ corresponds to perturbation and power operations, respectively, as follows.

Perturbation : ∀x,y ∈ SK , x⊕ y = C (x1y1, . . . , xKyK)

Power : ∀x ∈ SK and ∀α ∈ R, α⊗ x = C (xα1 , . . . , x
α
K)

where C denotes the closure operation as follows.

C(x) =


cx1
K∑
k=1

xk

, . . . ,
cxK
K∑
k=1

xk

 .

In the simplex vector space, for any x,y ∈ SK , the distance is defined as,

dSK (x,y) =

 1

K

∑
i<j

(
log

xi
xj
− log

yi
yj

)2
1/2

. (46)

Furthermore, Aitchison has introduced centered-logratio transformation (CLR), which is an isometric transformation
from a simplex to a K−dimensional real space, clr(x) ∈ RK . The CLR transformation involves the logratio of each
xk over geometric means in the simplex as follows.

clr(x) =

(
log

x1
g(x)

, . . . , log
xK
g(x)

)
. (47)
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where g(x) =

(
K∏
k=1

xk

)1/K

and
K∑
k=1

log
xk
g(x)

= 0.

Since CLR is an isometric transformation, we have
dSK (x,y) = dRK (clr(x), clr(y))

= ‖clr(x)− clr(y)‖2
The algebraic-geometric definition of SK satisfies standard properties, such as

dSK (x⊕ u,y ⊕ u) = dSK (x	 u,y 	 u) = dSK (x,y) (48)

where u ∈ SK could be any arbitrary vector in the simplex.

Lemma 1. Given a set of vectors {x1, . . . ,xN} ∈ SK where SK is a simplex of K parts, then
clr(x1 ⊕ x2 ⊕ · · · ⊕ xN ) = clr(x1) + clr(x2) + · · ·+ clr(xN ).

Proof. According to Aitchison geometry, addition of vectors in the simplex is defined as,

x1 ⊕ · · · ⊕ xN =


N∏
n=1

xn1

cN
, . . . ,

N∏
n=1

xnK

cN

 (49)

where cN =

K∑
k=1

N∏
n=1

xnk
.

By applying the centered-logratio transformation, we have

clr (x1 ⊕ · · · ⊕ xN ) =

log

N∏
n=1

xn1

δK,N
, . . . ,

N∏
n=1

xnK

δK,N

 (50)

where δK,N = cN


K∏
k=1

N∏
n=1

xnk

cN


1/K

=

(
K∏
k=1

N∏
n=1

xnk

)1/K

.

Now, we can rewrite Eq. 50 as,

clr (x1 ⊕ · · · ⊕ xN ) =

log
x11 . . . xN1(∏

k

x1k

)1/K

. . .

(∏
k

xNk

)1/K
, . . . , log

x1K . . . xNK(∏
k

x1k

)1/K

. . .

(∏
k

xNk

)1/K



=


∑
n

log
xn1(∏

k

xnk

)1/K
, . . . ,

∑
n

log
xnK(∏

k

xnk

)1/K


= clr(x1) + · · ·+ clr(xN )

(51)

7



Proposition 3. Given vectors x,y,ux,uy ∈ SK where SK is a simplex of K parts, then

d2SK (x⊕ ux,y ⊕ uy)− d2SK (x,y) ≤ Kτ2 − ∆2

K

where τ = max
k
{log uxk

− log uyk} and ∆ =
∑
k

(log uxk
− log uyk).

Proof. According to Aitchison geometry, the distance between two vectors x, y ∈ SK is defined as,

d2SK (x,y) = ‖clr(x)− clr(y)‖22
Then,

d2SK (x⊕ ux,y ⊕ uy) = ‖clr(x⊕ ux)− clr(y ⊕ uy)‖22
According to Lemma 1,

d2SK (x⊕ ux,y ⊕ uy) = ‖ (clr (x)− clr (y)) + (clr (ux)− clr (uy)) ‖22
= ‖clr (x)− clr (y) ‖22 + ‖clr (ux)− clr (uy) ‖22+

(clr (x)− clr (y))
T

(clr (ux)− clr (uy)) + (clr (ux)− clr (uy))
T

(clr (x)− clr (y))

= d2SK (x,y) + d2SK (ux,uy) + 2

K∑
k=1

(
log

xk
g(x)

− log
yk
g(y)

)(
log

uxk

g(ux)
− log

uyk
g(uy)

)
(52)

For simplicity, let’s define d21 := d2SK (x,y) and d22 := d2SK (x⊕ ux,y ⊕ uy), then

d22 − d21 = d2SK (ux,uy) + 2

K∑
k=1

(
log

xk
g(x)

− log
yk
g(y)

)(
log

uxk

g(ux)
− log

uyk
g(uy)

)
= d2SK (ux,uy) + 2

K∑
k=1

log
xk
g(x)

(
log

uxk

uyk
− log

g(ux)

g(uy)

)
−

2

K∑
k=1

log
yk
g(y)

(
log

uxk

uyk
− log

g(ux)

g(uy)

) (53)

Moreover, we know that log
uxk

uyk
≤ τ and log

g(ux)

g(uy)
= log

(∏
k

uxk

)1/K

(∏
k

uyk

)1/K
=

1

K

∑
k

log
uxk

uyk
=

∆

K
, then

d22 − d21 = d2SK (ux,uy) + 2

K∑
k=1

log
uxk

uyk

(
log

xk
g(x)

− log
yk
g(y)

)
− 2∆

K

K∑
k=1

(
log

xk
g(x)

− log
yk
g(y)

)
≤ d2SK (ux,uy) + 2

(
τ − ∆

K

)(∑
k

log
xk
g(x)

−
∑
k

log
yk
g(y)

) (54)

Since CLR is a zero-mean transformation,
∑
k

log
xk
g(x)

= 0 and
∑
k

log
yk
g(y)

= 0. Therefore,

d22 − d21 ≤ d2SK (ux,uy) (55)

In addition, we have

d2SK (ux,uy) =

K∑
k=1

(
log

uxk

uyk
− log

g(ux)

g(uy)

)2

=

K∑
k=1

(
log

uxk

uyk

)2

+

K∑
k=1

(
log

g(ux)

g(uy)

)2

− 2 log
g(ux)

g(uy)

K∑
k=1

log
uxk

uyk

≤ Kτ2 − ∆2

K

(56)

8



By inserting Eq. 56 in Eq. 55, we will have

d22 − d21 ≤ Kτ2 − ∆2

K
(57)

Proposition 4. Given samples x,y ∈ SK , where SK is a simplex of K parts, we have

0 ≤ d2u (x,y)− d2SK (x⊕ ux,y ⊕ uy) ≤ 1

K
(τ1 + τ2)2

where d2u (x,y) =
∑
k

(log xkuxk
− log ykuyk)

2, τ1 = max
k
{log uxk

− log uyk}, and τ2 = max
k
{log xk − log yk}.

Proof.

d2SK (x⊕ ux,y ⊕ uy) =

K∑
k=1

(
log xkuxk

− log ykuyk −
1

K
log
∏
k

xkuxk

ykuyk

)2

=

K∑
k=1

(
log xkuxk

− log ykuyk −
1

K

∑
k

log
xkuxk

ykuyk

)2

=

K∑
k=1

(log xkuxk
− log ykuyk −D)

2

(58)

where D =
1

K

∑
k

(log xkuxk
− log ykuyk). Hence,

d2SK (x⊕ ux,y ⊕ uy) =

K∑
k=1

(log xkuxk
− log ykuxk

)
2

+KD2 − 2D

K∑
k=1

(log xkuxk
− log ykuyk)

= d2u (x,y)−KD2

d2u (x,y) = d2SK (x⊕ ux,y ⊕ uy) +KD2

(59)

Since KD2 ≥ 0, we have d2u (x,y) ≥ d2SK (x⊕ ux,y ⊕ uy).

Moreover we know that ∀k, log
uxk

uyk
≤ τ1 and log

xk
yk
≤ τ2, then

d2u (x,y)− d2SK (x⊕ ux,y ⊕ uy) =
1

K

(∑
k

(
log

xk
yk

+ log
uxk

uyk

))2

≤ 1

K
(τ1 + τ2)2

(60)

Proposition 2. Suppose can , cbn ∈ SK , where SK is a simplex of K parts and n is the sample index. If d (can , cbn)
denotes the Aitchison distance, then

d2σ (can , cbn) − d2 (can , cbn) ≤ 1

K

(
(τc + τσ)

2
+K2τ2σ −∆2

σ

)
where τc = max

k
{log cank

− log cbnk
}, τσ = max

k
{(σ−1ak − 1) log cank

− (σ−1bk − 1) log cbnk
}, and ∆σ =

∑
k

(σ−1ak −

1) log cank
− (σ−1bk − 1) log cbnk

.
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Proof. In Propositions 3 and 4, by considering x = can , y = cbn , ux = ua =

c(σ−1
a1
−1)

an1

γa
, . . . ,

c
(σ−1

aK
−1)

anK

γa

, and

uy = ub =

c(σ
−1
b1
−1)

bn1

γb
, . . . ,

c
(σ−1

bK
−1)

bnK

γb

, where γa =
∑
k

c
(σ−1

ak
−1)

ank
and γb =

∑
k

c
(σ−1

bk
−1)

bnk
, we have

d2SK (ca ⊕ ua, cb ⊕ ub) =

K∑
k=1

(
σ−1ak log cank

− σ−1bk log cbnk
−D

)2
(61)

where D =
1

K

∑
k

(
σ−1ak log cank

− σ−1bk log cbnk

)
. Hence,

d2SK (ca ⊕ ua, cb ⊕ ub)− d2SK (ca, cb) ≤ Kτ2σ −
∆2
σ

K
(62)

and
0 ≤ d2σ (ca, cb)− d2SK (ca ⊕ ua, cb ⊕ ub) ≤ 1

K
(τc + τσ)2 (63)

Therefore,

d2σ (ca, cb)− d2SK (ca, cb) ≤ 1

K

(
(τc + τσ)

2
+K2τ2σ −∆2

σ

)
(64)

F MNIST DATASET ANALYSIS

A common assumption in “disentangling” the continuous and discrete factors of variability is the independence of
the categorical and continuous latent variables, conditioned on data. Fig. 1 demonstrates that this assumption can be
significantly violated for two commonly used, interpretable style variables, “angle” and “width,” in the MNIST dataset.

Calculation of angle and width: We first calculate the inertia matrix for each sample by treating the image as a solid
object with a mass distribution given by pixel brightness values. Then, we compute the principal axis of the image
based on the inertia matrix. We report the angle between this vector and the vertical axis using the [−π/2, π/2) range.
To calculate the width, we project the image to the horizontal axis after aligning the principal axis with the vertical axis
using the computed angle value. We report the support of this projected signal, normalized by the horizontal size of the
image (here 28 pixels).
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Figure 1: Histograms of angle and width for all digits in MNIST dataset. The empirical distributions of rotation (top) angle and
character width (bottom) are illustrated. Comparing the reported mean values and the shape of the histograms demonstrates the
dependency of the state variable on the digit type.

10



Figure 2: (a) 2-dimensional projections of the continuous variable obtained by JointVAE. Each dot represents a sample of the MNIST
dataset and colors represent different digits. (b) Confusion matrix for MNIST digit clustering via GMM using only the continuous
latent variable learned by JointVAE.

G DEPENDENCE OF STATE AND CLASS LABEL IN JOINTVAE

We analyzed the effects of the dependency between the continuous and discrete latent factors on the results obtained by
state-of-the-art methods for joint representation learning, e.g. JointVAE or CascadeVAE. These methods formulate the
continuous and discrete variability as two independent factors such that the discrete factor is expected to determine the
cluster to which each sample belongs, while the continuous factor represents the class-independent variability. In many
applications, however, the assumption of a discrete-continuous dichotomy may not be satisfied. (Section F analyzes this
assumption for the MNIST dataset.)

Fig. 2a illustrates four dimensions of the continuous latent variable s obtained by the JointVAE model for the MNIST
dataset. Here, colors represent the digit type of each s sample. While the prior distribution is assumed to be Gaussian,
the dependency of s|x on the digit type, c, is visible. To quantify this observation, we applied an unsupervised clustering
method, i.e. Gaussian mixture model (GMM) with 10 clusters, to the continuous RV samples obtained from a JointVAE
network trained for 150000 iterations. This unsupervised model achieved an overall clustering accuracy of 84%. Fig. 2b
shows the results for individual digits, e.g. 83% for digit “1” (Fig. 2). Together, these results demonstrate the violation
of the independence assumption for q(s|x) and q(c|x).

H SENSITIVITY OF REPRESENTATION LEARNING TO THE HYPERPARAMETERS

The cpl-mixVAE framework, similar to other deep neural network approaches, has a regularization hyperparameter λ
which controls coupling among a pair of autoencoder agents. In this section, we have conducted a series of experiments
to assess the sensitivity of the cpl-mixVAE’s performance to its coupling factor, in comparison with JointVAE which
has four critical hyperparameters, two for the discrete and two for the continuous variables. Fig. 3 shows how the
mixture representation performance changes for both JointVAE and cpl-mixVAE by changing their hyperparameters.
For JointVAE, here, we only consider the channel capacity for the discrete variable, i.e. Cc, which requires adjustment
over training iterations.

Fig. 3a shows changes of the categorical assignment accuracy as a function of λ (for cpl-mixVAE) and Cc (for JointVAE).
While cpl-mixVAE’s performance is adequate for different values of the coupling factor, JointVAE is susceptible to the
changes of the channel capacity factor. Although encoding channel capacity (as an estimation for mutual information)
for each dataset with different latent space dimension and training iterations is computationally expensive, a main
problem of using these hyperparameters happens when the learning of the model is highly sensitive to the channel
capacity. For instance, Fig. 3b illustrates the categorical variables learned by JointVAE, when we reduced the maximum
capacity from 5 to 1. Likewise, Fig. 3d shows a similar learning issue for JointVAE, when increasing the maximum
channel from 5 to 25. In case of cpl-mixVAE, we can see that although obtaining the best performance requires
parameter tuning, the model acceptably works with any empirical choice of λ ∈ [0.1, 10].

I DATA AUGMENTATION FOR SCRNA-SEQ DATASET

Generating augmented samples with the same class identity in the absence of within-class invariance is fairly challenging.
In case of image datasets, e.g. MNIST, since there exist some intuitions about the identities of discrete and continuous
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(a)

(b) JointVAE([0, 1]|25K) (c) cpl-mixVAE(0.2) (d) JointVAE([0, 25]|25K) (e) cpl-mixVAE(10)

Figure 3: (a) Effect of the coupling factor (λ) in cpl-mixVAE and the channel capacity (Cs) in the JointVAE models. Reported values
present the average accuracy of categorical assignment for 3 randomly initialized runs, over 15K training iteration, for the MNIST
dataset. (b-c) Confusion matrices for JointVAE and cpl-mixVAE models, respectively corresponding to the hyperparameters marked
by the dash-dotted black line. (d-e) Confusion matrices for JointVAE and cpl-mixVAE models, respectively corresponding to the
hyperparameters marked by the dash-dotted red line.

variational factors, we can explicitly define a set of transformation such as rotation, translation, scaling, flipping, etc.
that can be used as type-preserving augmentation. However, for non-image datasets, e.g. the single cell RNA-seq
dataset, suggested alternative methods may fail to represent the class-conditioned variation in an unsupervised manner.
Moreover, in case of biological datasets, learning an augmentation transformation is rather challenging due to the
limited number of samples. Accordingly, in this section, we study the performance of the proposed data augmentation
to investigate the extent to which our method is successful in realistic generation of the single-cell RNA-seq samples.

Fig. 4 illustrates a two-dimensional demonstrations for both original and augmented single cells samples. For two-
dimensional visualizations, here, we used a regular autoencoder for non-linear dimension reduction. First, the
autoencoder has been trained on the original cell samples. After learning a two-dimensional coordinate system for the
original samples (left panel), we used the autoencoder to visualize the augmented samples (right panel). Comparing the
visualizations demonstrates that the representations are qualitatively similar and all groups of cells sharing the same
type (same color) are placed in similar locations. Additionally, in Fig. 5, we show the expression profiles of a subset of
genes for an inhibitory cell. Again the qualitative comparison of the expression profiles reveals a similar variability
across genes. Since the single cell RNA-seq data is heavily unbalanced, we additionally reported the data augmenter’s
performance at the single gene expression level. Fig. 6 illustrates the expression distribution of a subset of known genes
for augmented cell samples (colorful histograms) compared with the original expressions (gray histograms).

J ARCHITECTURES OF THE NETWORKS

Fig. 7 shows the network architecture for the 2-coupled mixVAE model applied on the benchmark datasets, e.g. MNIST
and the scRNA-seq dataset, respectively. In this architecture, each VAE agent received an augmented copy of the
original sample generated by the type-preserving augmentation. Fig. 8 illustrates the network design for type-preserving
data augmentation for image datasets. For the scRNA-seq dataset, we used the similar design that is used for a single
VAE agent, without mixture representation (only a continuous variable, with |z| = 10).
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Figure 4: Evaluation of the generated sample by the proposed type-preserving data augmenter. Both figures represent a low
dimensional visualization of single cells samples that are obtained from a regular autoencoder that is only used for non-linear
dimension reduction. Left panel shows the original scRNA-seq dataset in a two-dimensional space by means of two coordinates.
Right panel visualizes the generated cell samples by the augmenter in the same coordinate system. Both visualizations are obtained
for 22, 000 cell samples with 5, 000 genes, and 115 neuron types. The color code is assigned according to the proposed taxonomy in
Tasic et al., 2018.

Figure 5: Qualitative comparison across the original and augmented gene expression profiles for an inhibitory Sst type cell.

For all dataset, To enhance the training process, we also applied 20% and 10% random dropout of the input sample and
the state variable, respectively.

JointVAE† uses the same network architecture as a single agent of cpl-mixVAE. That is, it still uses the same loss
function and learning procedure as JointVAE, but its convolutional layers are replaced by fully-connected layers, to
demonstrate that these architecture choices do not explain the improvement achieved by cpl-mixVAE.

J.1 TRAINING PARAMETERS FOR THE MNIST DATASET

Training details used for the MNIST dataset are listed as follows. For JointVAE† and JointVAE‡ model, we used the
same training parameters as reported in (Dupont, 2018).

cpl-mixVAE

• Continuous and categorical variational factors: s ∈ R10, |c| = 10
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• Batch size: 256

• Training epochs: 600

• Temperature for sampling from Gumbel-softmax distribution: 0.67

• Coupling weight, λ: 1

• Optimizer: Adam with learning rate 1e-4

JointVAE†, JointVAE‡

• Continuous and categorical variational factors: s ∈ R10, |c| = 10

• Batch size: 64

• Training epochs: 160

• Temperature for sampling from Gumbel-softmax distribution: 0.67

• γs, γc: 30
• Cs, Cc: Increased linearly from 0 to 5 in 25000 iterations
• Optimizer: Adam with learning rate 1e-4

J.2 TRAINING PARAMETERS FOR THE DSPRITES DATASET

Training details used for the dSprites dataset are listed as follows.

cpl-mixVAE

• Continuous and categorical variational factors: s ∈ R6, |c| = 3

• Batch size: 256

• Training epochs: 600

• Temperature for sampling from Gumbel-softmax distribution: 0.67

• Coupling weight, λ: 10

• Optimizer: Adam with learning rate 1e-4

J.3 TRAINING PARAMETERS FOR THE SCRNA-SEQ DATASET

Training details used for the scRNA-seq dataset are listed as follows. For the JointVAE† model, we tried to set the
parameters according to the reported numbers in (Dupont, 2018).

cpl-mixVAE

• Continuous and categorical variational factors: s ∈ R2, |c| = 115

• Batch size: 1000

• size of the last hidden layer, D: 10

• Training epochs: 10000

• Temperature for sampling from Gumbel-softmax distribution: 1

• Temperature for softmax function on q(c|x): 0.005 ( ≈ 1/—z—)
• Coupling weight, λ: 1

• Optimizer: Adam with learning rate 1e-3

JointVAE†

• Continuous and categorical variational factors: s ∈ R2, |c| = 115

• Batch size: 1000

• size of the last hidden layer, D: 10
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• Training epochs: 10000

• Temperature for sampling from Gumbel-softmax distribution: 0.005

• γs, γc: 100
• Cs, Cc: Increased linearly from 0 to 10 in 100000 iterations
• Optimizer: Adam with learning rate 1e-3
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(a) Immediate early genes (IEG)

(b) House keeping genes (HKG)

(c) Marker Genes
Figure 6: Comparison between the distribution of genes in the original cell sample (gray color in all figures) and augmented samples
for some biologically important subset of genes including (a) immediate early genes (green), (b) house keeping genes (brown), and
(c) marker genes (yellow).
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(a) Benchmark datasets including MNIST and dSprites. The dimension of the input and first hidden layers depend on the image
resolution i.e., D.

(b) scRNA-seq dataset

Figure 7: cpl-mixVAE architectures including 2 agents.
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Figure 8: Network architecture for the proposed type-preserving data augmentation for image datasets.
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