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RDLNet: A Novel and Accurate Real-world Document
Localization Method

Anonymous Authors

ABSTRACT
The increasing use of smartphones for capturing documents in
various real-world conditions has underscored the need for ro-
bust document localization technologies. Current challenges in
this domain include handling diverse document types, complex
backgrounds, and varying photographic conditions such as low
contrast and occlusion. However, there currently are no publicly
available datasets containing these complex scenarios and fewmeth-
ods demonstrate their capabilities on these complex scenes. To
address these issues, we create a new comprehensive real-world
document localization benchmark dataset which contains the com-
plex scenarios mentioned above and propose a novel Real-world
Document Localization Network (RDLNet) for locating targeted
documents in the wild. The RDLNet consists of an innovative light-
SAM encoder and a masked attention decoder. Utilizing light-SAM
encoder, the RDLNet transfers the mighty generalization capability
of SAM to the document localization task. In the decoding stage, the
RDLNet exploits the masked attention and object query method to
efficiently output the triple-branch predictions consisting of corner
point coordinates, instance-level segmentation area and categories
of different documents without extra post-processing. We compare
the performance of RDLNet with other state-of-the-art approaches
for real-world document localization on multiple benchmarks, the
results of which reveal that the RDLNet remarkably outperforms
contemporary methods, demonstrating its superiority in terms of
both accuracy and practicability.

CCS CONCEPTS
• Applied computing→ Document scanning.

KEYWORDS
Document Localization, Novel Benchmark Dataset, Encoder and
Decoder Based Network, Distillation, Triple Branch Prediction

1 INTRODUCTION
In recent decades, there has been an increasing number of users
starting to use mobile devices to take photos or videos of the pa-
per documents. Document digitization has become a trend in our
society [40]. Once documents are digitized, they will be easier to
store, retrieve, and read. To achieve this, the document must first be
accurately located in the image. Therefore, document localization
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plays a crucial role in the document digitization process. However,
localizing documents in the natural scene images still faces many
challenges in practical applications. Firstly, images can be taken
from different distance and viewpoints, the documents in the im-
age will have various sizes, positions, and perspective distortions.
Additionally, in some cases, images are usually taken in a casual
way. For instance, some captured images are often blurry, pos-
sessing different lighting conditions, low contrast, some occlusion
in the document area and even similar overlapping background
documents. Therefore, document localization in real world images
remains a challenging problem.

Although many advanced methods have achieved good results
in the field of document localization, experimental verifications of
most methods are based on existing opensource document detec-
tion datasets, such as SmartDoc dataset [4] and CDPhotoDataset
[11]. But these datasets usually contains limited document types.
Moreover, the pictures in these datasets are taken in the scenes
which are relatively simple and do not contain comprehensive
real-world situations. These complex situations are common in
practical deployments and inevitable. However, to the best of our
latest knowledge, there is not a comprehensive dataset that fully re-
flects complex scenarios of document images in the wild. Therefore,
many methods have reached near-saturation localization accuracy
on current datasets, but this does not fully prove that the chal-
lenges existing in the real-world have been well solved. That is
why a more extensive and comprehensive real-world document
dataset is needed to provide a more valuable and research-space
benchmark for future research.

As mentioned above, many previous advanced studies have
achieved excellent results in the field of document detection, but
they all focused on a single semantic-level document type and
simple photography scenarios. And these methods do not fully
demonstrate their generalization performance. In recent years, the
emergence of large models has revolutionized the applications in
many fields. In the application of image segmentation, the emer-
gence of SAM [18] unifies the tasks of instance segmentation and
semantic segmentation and shows superior performance. However,
SAM is a segmentation model for general image scenes and can
be used for document edge detection rely on its prompt design.
Moreover, due to the large scale of the SAM model, it is not suit-
able for running on mobile devices such as personal computers or
smartphones.

To solve the above problems, we propose a novel Real-world Doc-
ument Localization Network (RDLNet) and create a new complex
and comprehensive benchmark dataset which is Real world Mobile
Document dataset (RWMD) captured by mobile phones in the wild.
First, in order to better transfer the powerful generalization ability
of SAM in segmentation tasks to document localization tasks, we
design a lightweight SAM encoder module. Second, after the docu-
ment image is encoded by the light-SAM, we propose an advanced
decoder module based on masked attention and object query. Third,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Raw image (b) Localization result by 

keypoints detection method

(c) Localization result by 

segmentation method

(d) Localization result by 

our method

Figure 1: Document localization samples of different meth-
ods.

we design three output branches based on the features from both the
encoder and decoder modules. The three branches contain the clas-
sification branch, mask branch and corner points branch. Different
from the previous methods of corner prediction based directly on
decoded semantic features, we design an innovative branch based
on the hybrid information of semantic features, mask features and
object query vectors. Hence, the accurate document localization
results can be directly obtained by the corner prediction branch.
Document localization samples of different methods are presented
in Figure 1. Specially, our method can simultaneously output corner
point predictions of foreground document and region prediction
results that distinguish among different documents in one image.
Finally, through the above proposed modules, our model’s able
to generate accurate document localization results with high effi-
ciency, especially on the new comprehensive benchmark dataset
we contributed with more distinct effect.

In summary, the main contributions of this paper includes:
(1). Light-SAM encoder: We introduce the light-SAM encoding

module into the field of document localization, and exploit distilla-
tion method to constrain and reduce the parameters of the designed
encoding module to improve model performance.

(2). Masked attention and object query based decoder: We
design an advanced decoding module based upon masked attention
and object query to allow the model to form the global and local
relations between document objects and image context to directly
and separately output the predictions of different documents in one
image or frame.

(3). Triple-branch: We propose a novel triple-branch that in-
tegrates hybrid features to predict corner points, area masks and
categories at the same time. By jointly optimizing the losses of
the three branches, we can get more accurate prediction results.
In addition, the number of corner points of the document can be
modified as a hyper-parameter in our method.

(4). New benchmark dataset: We create a new benchmark
dataset which is called Real worldMobile Document(RWMD) dataset
for document localization. This dataset provides rich document
types and diverse shooting scenarios in the wild. RWMD fills the
current lack of comprehensive challenging document localization
datasets. And the RWMD dataset will be soon publicly available.

(5). SOTA results: In the experiments, we compare the per-
formance of our method and other current state-of-art methods
in document localization on multiple datasets contain our new

dataset RWMD. The results proved that the accuracy of our pro-
posed method exceeded other methods with low inference time.

2 RELATEDWORK
2.1 Document Localization Datasets
There are several public datasets used to measure the capabilities
of document localization methods: SmartDoc dataset [4], Extended
SmartDoc dataset [10], CDPhotoDataset [11], MIDV dataset fam-
ily (MIDV-500 dataset [1], MIDV-2019 dataset [2], MIDV-2020 [3]).
SmartDoc dataset was created for ICDAR 2015 SmartDoc compe-
tition. Each of these documents are printed using a color laserjet
and captured by a Google Nexus 7 tablet [4]. The database consists
of 150 video clips comprising 25,000 frames. Many research works
have been carried out based on this dataset [4, 8, 15, 34]. How-
ever, SmartDoc dataset only contains smooth A4 paper format, and
most backgrounds are in close similarity and are lack of diversity.
Ricardo, et al.[10] created an extension of the original Smartdoc
Dataset known as the Extended SmartDoc dataset. The authors in-
serted extra backgrounds into the original images with backgrounds
acquired from various smartphone cameras with richer scenes than
the original datasets. This dataset has a total of 29,522 images with a
fixed size of 1728 × 2304 pixels. However, the data synthesis method
of this dataset doesn’t sufficiently increase the richness of the orig-
inal dataset. The CDPhotoDataset [11] is composed of images of
Brazilian identification documents, in different backgrounds of real-
world environments, with non-uniform standards. It has a total of
20,000 images of documents with the respective document mask as
ground truth. Since the document images in this dataset are man-
nualy merged into background images, this dataset cannot fully
reflect the real-world document photo scene. The first dataset of
the MIDV family is MIDV-500 [1] which contains 500 video clips of
50 identity documents, 10 clips per document type. The conditions
represented in MIDV-500 thus have some diversity regarding the
background and the positioning of the document, however, they
don’t include variation in lighting conditions, or significant projec-
tive distortions. To address the issues the dataset MIDV-2019 [2]
was later published as an extension of MIDV-500, which featured
video clips captured with very low lighting conditions and with
higher projective distortions. The main disadvantage of the datasets
of the MIDV-2019 is the scarcity of different document samples. All
images in this dataset are made using the same 50 physical docu-
ment samples. In order to make up for this shortcoming, MIDV2020
[3] photo dataset consists of 1000 different physical documents, all
with unique artificially generated faces, signatures, and text fields
data. Although this dataset contains some complex scenes, it only
contains hard cards and therefore does not include some shape
changes and flexible transformations.

2.2 Document Localization Methods
Research has been conducted on document localization since the
start of camera-based document processing development [17]. The
earliest methods were primarily designed to solve scanned docu-
ments. These documents are required to be placed flatly in a pre-
scribed area, so the background is simple. Then the traditional
segmentation methods[20, 27, 30] can locate the document easily.
In the recent literature addressing document localization problems,
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these methods can be broadly divided into four categories: docu-
ment boundary-detection-based methods, segmentation methods,
keypoints detection methods, document content-based methods.

Document boundary-detection-basedmethods: These meth-
ods continue the idea of traditional image processing methods
and locates documents by detecting the edges of the document.
Document edge detection methods usually include the following
methods: edge extraction methods (such as Canny detector, Sobel
operator, or Holistically-Nested Edge Detector [36]), line detectors
(like Line Segment detectors [13], Hough transform). This type of
methods is robust to corner occlusion, but requires a clean back-
ground and clear document edges. Document detection accuracy
heavily depends on environmental conditions and shooting situa-
tions. Once the conditions change, such as low contrast and light
intensity, the accuracy of document localization results will be
significantly affected.

Segmentation methods: These methods follow the flow of ob-
ject segmentation methods [14, 21, 28, 32, 35, 39], which treat the
document as an object. This type of methods [7, 8, 37] uses dense
prediction to output a classification result for each pixel to distin-
guish whether the pixel belongs to the document or the background.
Then by grouping the pixels with the same label, the document is
segmented. This type of method is robust to irregular documents.
But these methods require further post-processing to get the orien-
tation of the document. Moreover, these methods usually have large
model sizes and require more inference time, making it difficult to
meet the efficiency requirements for processing on mobile devices.

Keypoints detection methods: This type of methods [15, 26,
40] usually assumes that the document has four corner points, and
then converts the document localization problem into a corner po-
sitioning problem. It can be solved using corner detectors and key
point detectors. If the used dataset has corner annotations, this
type of methods can directly obtain the orientation of the docu-
ment based on the predicted corner points coordinates. However,
these methods will be ineffective for documents whose corners are
occluded or have irregular shapes.

Document content-based methods: This type of methods
[23, 24, 31] transforms the document localization problem into the
positioning problem of the text content area. These methods use the
layout and pattern characteristics within the document to locate
document areas, such as text line information, image or table edge
information, and the layout of different text blocks. The advantages
of this type of methods are that it can judge the orientation of
the document based on the information of the text content. And
it is conducive to extracting useful content information for subse-
quent recognition steps. However, these methods usually assume
the background to be simple and flat in contrast to the document.
Therefore, thesemethods often fail when the background is complex
or confusing.

There are also some literature that use hybrid methods, such as
[29] which uses both corner prediction and edge prediction to locate
documents. And [34] combines corner points prediction, line board-
ers prediction and document classification in a single lightweight
network. Our method belongs to this kind of category combin-
ing the corner points prediction, instance-level segmentation, and
classification.

2.3 SAM
SAM [18] is a powerful model with strong generalization ability for
segmentation tasks based upon user prompts. It’s pre-trained on a
broad dataset SA-1B consisting of 11 million images and 1 billion
masks. Given a prompt like a single ambiguous point prompt on the
document in an image, it’s capable of generating the document’s
area mask, and with post-processing, corner points of that doc-
ument can be obtained. Nonetheless, it’s computationally costly
since it contains at least 91 million parameters which is too large
for mobile devices.

3 METHOD
The pipeline of the proposed RDLNet is depicted in Figure 2. In
this section we elucidate distillation process we applied for the
backbone, following the encoder-decoder structure we adopted and
the loss functions for RDLNet’s training supervision.

3.1 Light-SAM Backbone Multiplex Distillation
SAM [18] is a powerful model for generic and referring segmen-
tation. It is based on the Vision Transformer(ViT) [12]. The ViT
is a stack of Transformer blocks, which is used to extract features
from the RGB input image 𝐼 ∈ R𝐻×𝑊 ×3 of size 𝐻 ×𝑊 with three
channels.

Concretely, the input image 𝐼 is divided and flattened into a
sequence of non-overlapping patches 𝐼 ′ ∈ R𝑁×𝐶 , where𝐶 = 𝑃2 × 3
and 𝑁 = 𝐻𝑊

𝑃2 , assuming the patch size is 𝑃 × 𝑃 . They are then
linearly projected to obtain a sequence of 𝐶′-dimension feature
vectors, which are fed into the Transformer encoder with each
block (𝑙) consisting of multi-head self-attention (MSA) and feed-
foward network(FFN) conducting operations below:

z(𝑙 ) = MSA
(
x(𝑙 )

)
+ x(𝑙 ) ,

x(𝑙+1) = FFN
(
z(𝑙 )

)
+ z(𝑙 ) ,

(1)

where MSA is used to capture the global dependencies among the
patches, while the FFN is used to model the local dependencies
within each patch.

For enabling knowledge transfer from computationally expen-
sive and large models to smaller ones, we propose a multiplex
distillation method for acquiring a light-SAM image backbone.
We first obtain a large SAM model pre-trained on a large-scale
dataset, e.g., SA-1B[18], then we distill the knowledge from the
large model to a smaller one. The multiplex distillation process
is conducted by diminishing the multiplex relation map gap L𝑚𝑑
among teacher and student models’ intermediate layers’ features
denoted as 𝐹𝑇 ∈ R𝑁×𝐷𝑇 and 𝐹𝑆 ∈ R𝑁×𝐷𝑆 respectively and mini-
mizing the KL divergence L𝑘𝑙 between the output of the teacher
model 𝑝𝑠 (x) and the output of student model 𝑝𝑡 (x). The distillation
loss is defined as follows:

L𝑘𝑙 = 𝜏2F𝐾𝐿 (𝑝𝑠 (x)/𝜏, 𝑝𝑡 (x)/𝜏) ,

L𝑚𝑑 =


𝐹𝑆𝐹⊤𝑆 − 𝐹𝑇 𝐹⊤𝑇 

2

𝐹
,

(2)

whereF𝐾𝐿 denote the KL divergence loss, with 𝜏 as the temperature
parameter. Hence, the overall loss function for distillation is:

L = L𝑘𝑙 +
∑︁
𝑙

L𝑚𝑑 . (3)
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Figure 2: The pipeline of RDLNet(normalization are omitted for simplicity). RDLNet adopts an encoder-decoder structure
with a light-SAM ViT backbone distilled from a larger model. The input RGB image 𝐼 ∈ R𝐻×𝑊 ×3 is patched into image block
sequence 𝐼 ′ ∈ R

𝐻
16 ×

𝑊
16 ×𝐶 utilizing convolutional operation with both the kernel size and the stride of 16. Attached with positional

embedding, the patched feature sequence feeds into the transformer encoder for spatial dependencies capturing. In decoding
object queries[6], we introduce masked attention based upon prior predicted mask for faster training convergence rate and
better performance and output final predictions exploiting point, mask and class embedding.

3.2 Cross-Level Encoder
To fully harness information from the backbone, we design a cross-
level encoder that utilizes the low-level to high-level features from
backbone intermediate layers. They are projected into a new feature
space and concatenated to form the feature map 𝐼 ′proj

𝐼 ′proj = Concat(Conv(𝐼 ′1),Conv(𝐼
′
𝑙/2),Conv(𝐼

′
𝑙
)), (4)

where Conv denotes the convolutional operation, 𝐼 ′1, 𝐼
′
𝑙/2 and 𝐼

′
𝑙
are

the feature maps of the first, middle and last layer of the backbone
output respectively. For spatial dependencies capturing, we take ad-
vantage of deformable attention[41] to guide the encoding process
with important regions from the image and bridge visual tokens’
relations more effectively.

Enriched with positional information via positional embedding
𝐼 ′proj ← 𝐼 ′proj +𝑃𝑒 , 𝑃𝑒 ∈ R

𝐻
16 ×

𝑊
16 ×𝐶 , the input for each encoder layer

conduct:
𝐼 ′proj = DMSA(𝐼 ′proj) + 𝐼

′
proj,

𝐼 ′proj = FFN(𝐼 ′proj) + 𝐼
′
proj,

(5)

where DMSA denotes the deformable multi-head self-attention. To
prepare input mask for decoder attention mechanism and filter
out background objects, we also project the last layer output from
the backbone with convolutional operation and obtain prior mask
𝑀𝑝 ∈ R𝑁𝑜× 𝐻𝑊

16 with mask embedding 𝜓 and object queries 𝑄 ∈
R𝑁𝑜×𝐶′ :

𝑀𝑝 = Reshape
(
Flatten

(
Conv(𝐼 ′

𝑙
) + 𝜙 (𝐼 ′

𝑙
)
)
· 𝜓

(
𝑄⊤

) )
, (6)

where 𝜙 and 𝑁𝑜 denote the encoding operation and the number
of object queries. Reshape and Flatten are reshaping (𝐻𝑊 /16 →

𝐻/16×𝑊 /16) and flattening (𝐻/16×𝑊 /16→ 𝐻𝑊 /16) operations
respectively.

3.3 Masked Decoder
Recent studies[9, 33] suggest global context features eventuate in
the slow convergence of Transformer-based models, as it takes
numerous training epochs for attention mechanism to learn and
attend to local foreground regions. Thus, we propose a masked
decoder and mask some of the background areas based upon prior
mask prediction with Eq.6 to filter global context features for atten-
tion operations as shown in Figure 3. With masked cross attention,
we compute the result matrix via:

x(𝑙 ) = softmax
(
𝑀
′(𝑙−1)
𝑝 + Q(𝑙 )K(𝑙 )⊤

)
V(𝑙 ) + x(𝑙−1) . (7)

Here,𝑀′(𝑙−1)𝑝 is the previous reshaped and repeated prior mask𝑀𝑝
for decoder layer 𝑙 , each decoder layer exploits mask prediction from
the last layer while the first decoder layer utilizes mask acquired
from Eq.6 to initialize𝑀′(0)𝑝 . Q(𝑙 ) , K(𝑙 ) and V(𝑙 ) are the query, key
and value matrices respectively. x(𝑙−1) is the output of the previous
decoder layer. The object queries after decoding are then fed into the
triple embedding branches of point, mask and class for prediction.
In particular, class embedding branch endues our model with the
ability to distinguish among different types of documents on the
instance level, e.g., top document and overlapped document or
document with different categories such as paper and magazine etc.
Contrasting to conventional methods like [8, 14, 16] that demand
heavy post-processing, e.g., polygon approximation, to attain final
document border or corner points predictions, RDLNet directly
output polygon corner points with its point embedding. In the case
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Figure 3: Masked Decoder overview(positional embedding
andpredictions from intermediate decoder layers are omitted
in this figure for simplicity). After acquiring prior predicted
mask 𝑀𝑝 , we fuse it with encoded backbone features from
the encoder via masking the background area and repeat it
to 𝑀′𝑝 ∈ R𝑁ℎ×𝑁𝑜× 𝐻𝑊

16 where 𝑁ℎ is the number of heads for
multi-head masked attention operation. Note that we switch
the order of self-attention and cross-attention so that local
areas can be attended solely in both attention operations for
faster training convergence rate and performance.

of documents with irregular shapes or complex document targets,
we also make use of the mask embedding branch as an auxiliary
approach for a precise approximation on their edges.

3.4 Loss Functions
To supervise the training of RDLNet, 𝑁𝑜 decoded object queries
are used to generate a set of 𝑁𝑜 predictions {𝑦𝑖 }𝑁𝑜

𝑖=1 via point, mask
and class embedding consisting of point coordinates 𝑞, raw mask
logits �̂� and class probabilities 𝑝𝑖 (𝑐). Following [6], the optimal
permutation {𝑦𝜎𝑖 }𝑁𝑖=1 is determined by bipartite matching between
the ground truth and the predictions.

In lieu of using focal loss[22], we use the binary cross-entropy
loss:

Lmask = − 1
𝑁𝑜

𝑁∑︁
𝑖=1

(
𝑚𝑖 log

(
�̂�𝜎 (𝑖 )

)
+ (1 −𝑚𝑖 ) log

(
1 − �̂�𝜎 (𝑖 )

))
,

(8)
and dice loss [25]:

Ldice = 1 −
2 ×∑𝑁𝑜

𝑖=1

(
𝑚𝑖 × �̂�𝜎 (𝑖 )

)
∑𝑁𝑜

𝑖=1𝑚𝑖 +
∑𝑁𝑜

𝑖=1 �̂�𝜎 (𝑖 )
, (9)

for our mask loss. Besides, we propose a distance loss for point
branch prediction supervision,

Ldistance =
1
𝑁𝑜

𝑁𝑜∑︁
𝑖=1



𝑞𝜎 (𝑖 ) − 𝑞

 , (10)

while foreground document class predictions are supervised via
standard cross entropy:

Lcls =
𝑁𝑜∑︁
𝑖=1

CrossEntropy
(
𝑐𝑖 , 𝑝𝜎 (𝑖 ) (𝑐)

)
. (11)

Ultimately, the total loss is composed of the weighted sum of the
above losses:

Ltotal = 𝜆1Lcls + 𝜆2Ldistance + 𝜆3Ldice + 𝜆4Lmask, (12)

with 𝜆𝑖 as adjustable hyper-parameters.

3.5 Implementation Details
We train RDLNet with AdamW optimizer with weight decay set
to 10−4 under the initial learning rate of 10−4 with a learning rate
drop by a factor of 10−1 every 40000 iterations. Experiments are
carried out on 1 NVIDIA A800 GPUs with the mini-batch size of 8
for 160000 training iterations in total. Loss weights are empirically
set to 𝜆1 = 2, 𝜆2 = 2, 𝜆3 = 5 and 𝜆4 = 5. The input images are
resized to 1024 pixels for both width and height.

4 RWMD DATASET

Table 1: Document categories and corresponding image quan-
tity of RWMD dataset

Category Quantity
printed paper document 355

book 360
test paper 172

students’ workbook 204
receipt 246
card 223

exercises book 164
certificate 141

other multi-categories 144
total 2009

To the best of our knowledge, there is no existing publicly avail-
able dataset comprising of documents captured by smartphones in
real conditions with various types of document and complex scenar-
ios. We create such a comprehensive benchmark dataset RWMD for
document localization. The dataset will soon be made public, and
we hope that it will serve the scientific community for more docu-
ment localization methods to boom. The images in this dataset are
captured by eight different mobile phones including iPhone13, Sam-
sung Galaxy S21 Ultra, HUAWEI nova 7 SE, HUAWEI P30, HUAWEI
P50 Pro, VIVO S17e, VIVO X21A, and Xiaomi 8. The RWMD dataset
contains a total of 2009 images which are divided into nine cate-
gories. Moreover, each category contains documents in different
styles with different real background, distortion, rotation, perspec-
tive transformation, contrast, light intensity, occlusion and other
real situations. The samples of different types of documents with
various scenarios are shown in Figure 4. These document pictures
taken in the real world contain a variety of real scenes, which pose
great challenges to the document localization algorithm. In order
to meet the needs of different methods, the RWMD annotation
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documents contain a variety of information, including masks of dif-
ferent document areas, class labels of different document instances
corresponding to the masks, and corner points coordinates of the
document. If the image contains multiple different documents, in
order to be closer to the actual usage scenarios of the document
localization algorithms on the devices, we distinguish the main
document and the background document based on the area size
and position of different documents in the image. As presented in
Figure 5, different document areas are marked separately, the main
document is given the maximum class label value 2 and the corner
points coordinates are also marked.

Figure 4: The sample images of RWMD dataset.

Figure 5: Annotation example of RWMD.

5 EXPERIMENT
In this section, we evaluate the performance of our proposedmethod
on five datasets: SmartDoc dataset [4], Extended smartdoc dataset
[10], CDPhotoDataset [11], MIDV2020 dataset [3], and RWMD
dataset. The existing four datasets ( SmartDoc dataset , Extended
smartdoc dataset, CDPhotoDataset, and MIDV2020 dataset) have
already been described in the introduction section and RWMD
dataset is introduced in the previous section. They are all divided
into 75% for training and 25% for testing, separately. To illustrate
the effectiveness of our method, we compare it with state-of-the-art
document localization approaches from several aspects. Further-
more, we evaluate our proposed design modules through ablations
on the RWMD dataset.

5.1 Evaluation Metric
To quantitative evaluate the accuracy of the proposed model, we
compute the Jaccard index (JI), which is described in the SmartDoc
competition report [4] and adopted in other works [8] [34]. Firstly,
we remove the perspective transformation of the ground-truth area
and the predicted area to get their correct situations 𝐷𝑔𝑡and 𝐷𝑝 .
Then for each frame or image, the Jaccard index (JI) is calculated
as follows:

𝐽 𝐼 (𝑓 ) =
𝑎𝑟𝑒𝑎(𝐷𝑔𝑡 ) ∩ 𝑎𝑟𝑒𝑎(𝐷𝑝 )
𝑎𝑟𝑒𝑎(𝐷𝑔𝑡 ) ∪ 𝑎𝑟𝑒𝑎(𝐷𝑝 )

. (13)

5.2 Comparison with SOTA
5.2.1 Experiment 1: Evaluation performance on SmartDoc dataset.
The first experiment compares the proposed method with other
state-of-art (SOTA) algorithms in the SmartDoc dataset. The im-
ages in the dataset can be divided into five categories(BG01-BG05)
according to different backgrounds. Only BG05 is complex, with
similar overlapping document and strong occlusions from other
objects. As shown in Table 2, our RDLNet outperforms the previ-
ous works on all sub-test scenarios from BG1 to BG5. The overall
JI of RDLNet achieves 99.53% and exceeds other methods includ-
ing HU-PageScan in [8], which had achieved the highest overall JI
99.23% before. At the same time, we can observe that our method
can achieve almost the same accuracy as BG1-BG4 on BG5, which
proves the robustness of our method in more complex scenarios.

5.2.2 Experiment 2: Evaluation performance on CDPhotoDataset
and Extended SmartDoc dataset. In the second experiment, we eval-
uate our model and the SOTA methods performance on CDPhoto-
Dataset and Extended SmartDoc dataset. The experimental results
of the two datasets are presented in Table 3, which shows that
our method still obtains the best accuracy performance when com-
paring with the other previous methods. In particular, although
LDRNet achieves good results on the SmartDoc dataset, it is not
suitable for the CDPhotoDataset. Because CDPhotoDataset con-
tains multiple documents in one image that need to be detected,
however, LDRNet can only detect a single quadrilateral document.
Additionally, in order to compare the efficiency of different meth-
ods, we also compared the inference speed of our method with
others. As Table 3 shows, our method exhibits an average speed
of 0.0385s and 0.0408s per image on the CDPhotoDataset and Ex-
tended SmartDoc datasets, respectively, which is comparable to
other fastest methods. All the experiment results demonstrate that
our proposed RDLNet has great capabilities for locating documents
in natural scene images accurately and efficiently.

5.2.3 Experiment 3: Evaluation performance on RWMD dataset.
Although many preceding methods has obtained outstanding de-
tection metric results with high JI on publicly available document
datasets mentioned above, they are not capable of coping with prob-
lems of the real-world document detection and generalizing well,
since the scenarios in the datasets above are relatively deprived in
the diversity of background and don’t contain sufficient complex
document photography scenes existing in the real situations. In
the third experiment, we evaluate our method and other SOTA
algorithms on our new dataset RWMD. RWMD contains a rich



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

RDLNet: A Novel and Accurate Real-world Document Localization Method ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: JI Results on SmartDoc Dataset

Method Background(BG) Average
BG01 BG02 BG03 BG04 BG05

HU-PageScan[8] / / / / / 0.9923
LDRNet[34] 0.9877 0.9838 0.9862 0.9802 0.9858 0.9849

SEECS-NUST-2[16] 0.9832 0.9724 0.983 0.9695 0.9478 0.9743
LRDE[5] 0.9869 0.9775 0.9889 0.9837 0.8613 0.9716

SmartEngines[5] 0.9885 0.9833 0.9897 0.9785 0.6884 0.9548
OctHU-PageScan[8] / / / / / 0.9237
Mask R-CNN[14] / / / / / 0.9063

NetEase[5] 0.9624 0.9552 0.9621 0.9511 0.2218 0.8820
RPPDI-UPE[5] 0.8274 0.9104 0.9697 0.3649 0.2163 0.7408
SEECS-NUST[5] 0.8875 0.8264 0.7832 0.7811 0.0113 0.7393
RDLNet(Ours) 0.9962 0.9952 0.9954 0.9946 0.9946 0.9953

Table 3: JI Results on CDPhotoDataset(CDP) and Extended SmartDoc Dataset(ESD)

Method CDP ESD
JI time JI time

HU-PageScan[9] 0.9896 0.0422 0.9908 0.1067
U-net[28] 0.9916 0.0799 0.9904 0.2551
LDRNet[34] / / 0.9315 0.0171

Mask R-CNN[14] 0.9498 0.1176 0.924 0.3688
OctHU-PageScan[8] 0.9456 0.0232 0.7684 0.0231

GOP[19] 0.6868 0.0597 0.7913 0.1394
RDLNet(ours) 0.9905 0.0385 0.9945 0.0408

Table 4: JI Results on our new dataset RWMD

Method JI
Mask R-CNN[14] 0.8622
HU-PageScan[9] 0.7219

OctHU-PageScan[8] 0.6821
Efficient-SAM[38] 0.6726

SAM[18] 0.6988
U-net[28] 0.6380
LDRNet[34] 0.5261

SEECS-NUST-2[16] 0.3751
RDLNet(ours) 0.9123

variety of common document types and real-world scenes, which
is much more complex and better to reflect the real document sce-
narios. As described in Table 4 , our proposed method achieves
the highest JI value and outperforms other methods. Notably, we
also directly apply pre-trained Efficient-SAM[38] and SAM[18],
which are prompt-based segmentation methods, on the RWMD
test dataset for document localization with a single center point
prompt as prompt input and post-processed output masks as final
predictions. It turns out SAM-series models don’t support generic
document segmentation and localization well due to its specific
characteristics of prompt design. As a result, we acquired relatively
low JI from SAM models. Figure 6 shows the examples of the com-
parison results between our method, maskrcnn, LDRnet and SAM
on the RWMD test dataset. These results present that our proposed

RDLNet

Mask R-CNN

LDRNet

SAM

Figure 6: Results comparison of differentmethods on RWMD
test dataset

Figure 7: Failed result samples of our method on RWMD test
dataset

method can handle the more complex document localization tasks
and it exhibits better robustness in real complex scenarios.But at the
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Figure 8: Comparison of inference accuracy and speed

same time, we can also see that although our method has obtained
a relatively high JI value, there is still a certain space for further
improvement. This also shows that many existing document local-
ization problems have not been well solved. Figure 7 shows some
document localization results those with still problems. The area
within the green line is the detected document area. The results
also verify the significance of the RWMD dataset we construct in
this paper for document localization methods measurement, and
provide a more realistic and challenging benchmark dataset for
future research.

5.2.4 Experiment 4: Evaluation of inference speed. Furthermore, in
order to verify the efficiency of algorithms on mobile devices, we
compare the test duration of different methods on mobile phone
HUAWEI Mate 40. In Figure 8, the vertical axis is the JI of the model
while the horizontal axis is the inference time. Figure 8 illustrates
that our proposed model RDLNet obtains the highest accuracy with
low inference time. As can be seen from Figure 8 the inference
speed of our model is second only to LDRNet, but the accuracy
is much higher than LDRNet. Mask R-CNN obtains the accuracy
second to our model, but the inference efficiency is far lower than
our method.

Table 5: JI Results on MIDV2020 dataset

Method Fine-tune JI
Mask R-CNN[14] % 0.8607
HU-PageScan[9] % 0.6735

OctHU-PageScan[8] % 0.7154
LDRNet[34] % 0.4221
U-net[28] % 0.3201

SEECS-NUST-2[16] % 0.3690
RDLNet(ours) % 0.9266

5.2.5 Experiment 5: Generalization on unseen documents and back-
ground. To verify our model’s generalization ability to new doc-
uments on unseen background, we cross-validate our method on
the dataset which is not used for training. Specifically, we use the
RWMD training set to train models and MIDV2020 test set to verify
the detection effects. As demonstrated in Table 5, our method is

significantly better than other methods on unseen dataset. Espe-
cially, the accuracy of our method outperforms the second-place
method Mask R-CNN by 15.04%. The results prove that our method
has good generalization capability on unseen scenarios.

5.3 Ablation Study

Table 6: JI Results With Different Modules on RWMD dataset

Baseline Cross Level Distillation Point Branch JI
" 0.8031
" " 0.8683
" " " 0.9014
" " " 0.8713
" " 0.8813
" " " " 0.9123

In our model, we propose several novel modules, such as cross-
level encoder, multiplex distillation1, and point-mask joint super-
vision. To verify the effectiveness of these modules, we carry out
corresponding ablation experiments. Table 6 shows the verification
results, from which we can observe that the proposed modules are
essential for accuracy.

6 CONCLUSION
In this paper, we introduced RDLNet, a novel model designed for
robust document localization in real-world images. Leveraging a
light-SAM backbone, RDLNet efficiently extracts hierarchical vi-
sual features and employs a decoder that harnesses mask attention
and object queries to accurately predict document corner points,
segmentation masks, and categories. The RDLNet exploits the light-
SAM backbone to extract the cross-level vision features of the doc-
ument images and jointly predicts the corner points coordinates,
area mask and class of the documents following decoder based on
masked attention and object query. At the same time, we create
a new document localization dataset RWMD to fill the poverty of
dataset for multiple document types and complex scenarios in the
wild. Extensive experimental results have demonstrated that our
model achieved the state of the art accuracy, while using low infer-
ence time. Additionally, the experiments on unseen documents and
backgrounds highlight RDLNet’s strong generalization capability,
underscoring its practical applicability in diverse settings. We hope
this research not only advances the state-of-the-art in document
localization but also establishes a challenging benchmark that will
likely drive future progress in the field.
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