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A. More Qualitative Results
We compare the relighting quality with FEGR [20] in Fig. 1.
FEGR [20] first extracts mesh and estimates the shading
from the lighting configuration, and the imperfect mesh ge-
ometry produces artifacts and loses appearance details. On
the other hand, our method alleviates the original shadow and
produces relighting images while preserving appearance de-
tails. We show additional night simulation results on various
Kitti360 [13] sequences in Fig. 2, demonstrating the general-
ization capability of UrbanIR . The Instruct-Pix2Pix [3] lever-
ages the large language model [4] and stable diffusion [17]
for abundant image editing tasks. However, such a data-
driven method cannot move the daylight shading and shadow
in the input images. On the contrary, UrbanIR decomposes
shadow-free albedo and performs physically-based rendering
with new light sources (e.g., streetlights, headlights), signifi-
cantly enhancing the visual quality of night simulation. The
strong specular reflection is also simulated on the car region,
boosting the realism of metal material. Please note that the
simulation is flexible, and the user can adjust physical pa-
rameters (e.g., light color, light strength) to create various
effects. Please refer to our supplementary videos to better
visualize view consistency and controllable simulation.

B. Model Architecture
Instant-NGP [15] encodes the scene with a multi-scale hash
table, and each entry contains learnable parameters. For
point x ∈ R3, the model retrieves and interpolates the pa-
rameters with hash function: F (x, θ). UrbanIR adopts the
hash encoding from [15] and maintain two separate hash
tables for geometry and appearance, and predict the scene
properties with:

σ = Fg(x, θg)

(a,n, s) = Fa(x, θa),
(1)

where σ is density, (a,n, s) are albedo, surface normal, and
semantic. θg, θa are learnable parameters for geometry and

appearance. Please note that the density field σ is not only
involved in the volume rendering (Eq. ??), but also involved
in visibility estimation (Eq. ??) and normal loss calculation.
The hash encoding is implemented with tiny-cuda-nn [14].
We empirically find that maintaining separate learnable pa-
rameters for geometry and appearance leads to more stable
convergence and higher rendering quality.

C. Training Details
The training procedure is illustrated in Fig. 3. We leverage
pretrained networks as 2D priors during training to address
the ill-posed inverse problem. Specifically, the shadow mask
is estimated with MTMT [5]. Omnidata normal estima-
tion [8] helps refine scene geometry, which is critical in
the shading quality and albedo decomposition. A semantic
map is provided in Kitti360 dataset [13] and can also be
estimated with MMSegmentation [6] if such information is
not provided. The objective function of the optimization is:

min
θ,L

Lrender+λ1Lvisibility+λ2Lnormal+λ3Lsemantics+λ4Lreg,

where λ1 = 0.001, λ2 = 0.01, λ3 = 0.04, λ4 = 0.1. We use
Adam optimizer [11] with a learning rate of 0.002 for a total
of 100 epochs during the optimization.

D. Application Details
We provide the implementation of relighting and object in-
sertion as follows:
Simulating night-time proceeds by defining headlights and
street lights, then illuminating with scene model considering
specularity and lens flare. For sky regions S(r) ∈ sky, we
use C(r) = Lsky(r) and otherwise, we use
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The spotlight we used is given by the center oi
L ∈ R3 and

direction di
L ∈ R3 of the light. This spotlight produces a
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Figure 1. Relighting Comparison on Waymo Open Dataset [19]. The second and third columns compare the relighting quality. The
authors provide the FEGR results and we match the lighting condition according to the shadow direction.

diffuse radiance at r given by

Li
dif(r) =

1

∥oi
L − x(r)∥2

(
l · di

L

)k
, l =

oi
L − x(r)
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L − x(r)∥

,

(3)
Spotlight’s diffuse color intensity is brightest on the central
ray r(t) = oL − tdL, decays with distance from ray r(t)
and angle. We modulate it with constant k.

The realistic night-time simulation requires reproducing
the strong specular effects on cars. We find car regions using
a semantic field S in Eq. ??, then simulate specular reflec-
tion with the Blinn-Phong model [2], where the γ (specular
strength) parameter is inherited from the semantic field.

At night, luminaires often display lens flares. A pure sim-
ulation of lens flares is impractical, as it requires extensive
ray tracing through the lens. We use the standard image-
based approximation [1] to simulate such light scattering
effects. For directly visible luminaires, we composite a real-
world lens flare image from a similar lighting source into the
image, using location and depth. As Fig. ??, ?? in the main

paper show, this simple method is effective.

Object insertion proceeds by a hybrid rendering strategy.
We first cast rays from the camera and estimate ray-mesh
intersections [7] for the inserted object. If the ray hits the
mesh and the distance is shorter than the volume rendering
depth, the albedo A(r), normal N(r), and depth D(r) are
replaced with the object attributes. In the shadow pass, we
calculate visibility from surface points to the light source
(Eq. ??), and also estimate the ray-mesh intersection for the
tracing rays. If the rays hit the mesh (meaning occlusion
by the object), the visibility is also updated : V (r) = 0.
With updated A(r), N(r), V (r), shading is applied to render
images with virtual objects. Our method not only casts object
shadows in the scene but also casts scene shadows on the
object, enhancing realism significantly. Similar approaches
have been depicted in recent works [12, 16]. However, ours
is the first to be visibility-aware, enabling us to render effects
when an object enters into a shadow.

Outdoor relighting is done by simply adjusting lighting pa-
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Figure 2. Nighttime rendering. The scene is transformed from daytime (1st row) to night-time (3rd row) by introducing new light sources:
a headlight on a car and a street lamp. Top 3 and bottom 3 rows are from same driving sequence with different time stamp. Comparing
with data-driven generative model and Instruct-Pix2Pix [3], the dark shadows with sharp boundaries are successfully removed with our
decomposition, resulting more realistic rendering with new light sources (e.g. streetlights, headlight) during the nighttime simulation.

rameters (position or color of the sun; sky color) then re-
rendering using Eq. ?? in the main paper. We also use
semantics to interpret specular car surfaces and emulate their
reflectance during the simulation.

E. Baseline Details
Description of the approach of baselines we compared to.

Instruct-Pix2Pix [3] edits images according to user in-
struction. The model leverages large language model GPT-
3 [4] and Stable Diffusion [17] for generating image and
instruction pairs and fine-tune diffusion model to perform
editing. We use instructions “change to night”, and “It’s now

midnight” for night image generation.

Instruct-NeRF2NeRF [10] aims to edit NeRF scenes with
text instructions. It uses a generative image editing model [3]
to iteratively edit input images while optimizing the under-
lying scene model, resulting in an optimized 3D scene that
respects the instruction. We compare Instruct NeRF2NeRF
in night simulation, where we provide the instruction, “Make
it look like it was taken at night.”

NeRF-OSR [18] is a recent work for outdoor scene re-
construction and relighting. We use the open-source project
provided by the author to run this baseline. This method
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Figure 3. Training Pipeline. UrbanIR retrieves scene intrinsics with volume rendering from camera rays, which is guided by semantic and
normal priors. Transmittance along tracing rays is supervised with shadow masks.

represents lighting as spherical harmonics parameters. It
is worth noting that NeRF-OSR was designed for inverse
rendering in multi-illumination conditions. For a fair com-
parison, we rotate the spherical vectors to simulate different
light conditions.

RelightNet [21] is a single-image based relighting frame-
work. We use the open-source project provided by the au-
thors to produce intrinsic decomposition results, including
shading and albedo for comparison.

ShadowFormer [9] performs single-image shadow re-
moval task. It leverages the transformer architecture and
takes the original image and shadow masks as input. In
Fig. ?? in the main paper, we first estimate the shadow mask
with MTMT [5], and use the open-source project and pre-
trained weights provided by the authors to estimate the base
color of an image.
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