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ABSTRACT

Understanding the intrinsic causal structure of time-series data is crucial for ef-
fective real-world interventions and decision-making. While several studies ad-
dress the Time-Series Causal Discovery (TSCD) problem, the lack of high-quality
datasets may limit the progress and evaluation of new methodologies. Many avail-
able datasets are derived from simplistic simulations, while real-world datasets are
often limited in quantity, variety, and lack of ground-truth knowledge describing
temporal causal relations. In this paper, we propose CausalDiffusion, the
first diffusion model capable of generating multiple causally related time-series
alongside a ground-truth causal graph, which abstracts their mutual temporal de-
pendencies. CausalDiffusion employs a causal reconstruction of the output
time-series, allowing it to be trained exclusively on time-series data. Our experi-
ments demonstrate that CausalDiffusion outperforms state-of-the-art meth-
ods in generating realistic time-series, with causal graphs that closely resemble
those of real-world phenomena. Finally, we provide a benchmark of widely used
TSCD algorithms, highlighting the benefits of our synthetic data with respect to
existing solutions.

1 INTRODUCTION

Many sequential temporal data (i.e., time-series) stemming from real-world phenomena have an
inherent causal structure that describes the temporal and spatial interactions among the multiple
system variables (Runge et al. (2023)). Understanding such causal relationships is a well-recognized
and important challenge for decision-making and policy formulation, as it facilitates predicting the
consequences of interventions on underlying systems and variables (Hasan et al. (2023)).

Over the years, several works have studied these underlying causal structures, starting from Granger
causality (Granger (1969)). Unable to capture how time affects causal relationships between interde-
pendent time-series, Granger causality has been complemented by efforts to formalize causal graphs
(CG) that incorporate the temporal lag in which causality unfolds, as in the leading work of Pearl
(2009). More recent studies have addressed deep learning frameworks for time-series causal dis-
covery (TSCD), as explored by Cheng et al. (2023). Many approaches proposed for the TSCD
problem (Hasan et al. (2023)) achieve satisfactory performance using statistical and machine learn-
ing techniques (Runge et al. (2019b); Pamfil et al. (2020); Sun et al. (2023)), with discovered causal
graphs closely resembling the ground-truth counterparts. However, existing benchmark datasets for
studying causal structures and evaluating TSCD algorithms are limited in both quantity and quality
(Cheng et al. (2024)). The limited data available may hinder the development of new method-
ologies and studies, and raise concerns about how existing algorithms would perform in unseen
real-world scenarios. Novel methodologies to generate realistic time-series with rigorously defined
causal graphs are needed to support research and development of algorithms on time-series causal
graphs. This challenge has been recently tackled by the works of Li et al. (2023) and Cheng et al.
(2024), which marks an initial step in this direction, proposing two deep learning models to gener-
ate synthetic time-series data while extracting the corresponding causal graphs. The first approach
focuses on the restricted case of Granger Causality (GC) and proposes a recurrent Variational Au-
toencoder (CR-VAE) framework that naturally encodes causality into the weight matrix connecting
the input and hidden states. The second work introduces a comprehensive framework that supports
prior causal graphs to generate realistic time-series data. However, when an input causal graph is
not provided, the method extracts a hypothesized causal graph using explainability tools for feature
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Figure 1: An example of generated causal graphs and time-series representing three river discharges:
sample (a) shows a graph in which Kempten (x2) has an effect on Dillingen (x1) with a lag of 1, as
can be clearly observed in the corresponding time-series; sample (b) presents a graph with no edges,
indicating the absence of causal relationships among the features — the time-series does not provide
enough evidence of any underlying effect.

importance (e.g., DeepSHAP, Lundberg (2017)), which are inherently slow and only provide an
imprecise approximation of the ground truth graph.

In this paper, we introduce a novel generative framework called CausalDiffusion that com-
bines the advantages of previous approaches by naturally encoding a causal graph, along with the
time-series, directly within a diffusion model architecture. Specifically, our model incorporates a
τ -lag vector autoregressive (VAR(τ )) structure for multivariate time-series (Hamilton (2020)), en-
abling us to generate realistic time-series data and extract their corresponding ground-truth causal
graphs from the VAR coefficients. CausalDiffusion can be trained directly on time-series data
without requiring prior causal graphs, also eliminating the need for additional explainability tools.

We evaluated our framework on both real and synthetic datasets, benchmarking it against existing
state-of-the-art methods. Our results indicate that our approach achieves superior performance in
generating realistic time-series data and accurately recovers ground-truth causal graphs.

We can summarize the main contribution of our work as follows:
• We present CausalDiffusion, a novel pipeline that employs a diffusion model to gen-

erate realistic time-series along with their ground-truth causal graphs.
• We introduce new metrics to assess the accuracy of the generated causal graphs, providing

more precise evaluation tools for this domain.
• With extensive experiments, we demonstrate that our method outperforms existing ap-

proaches, in terms of synthetic time-series quality and fidelity of causal graphs to real-world
phenomena.

• We finally conduct an evaluation of existing causal discovery algorithms using our synthet-
ically generated datasets, highlighting the practical benefits of our data.

We believe that our work may facilitate the research and development of efficient algorithms for
uncovering cause-effect relationships in multivariate time-series across diverse fields. We empha-
size that our approach specifically addresses the coherence between the synthetic sample and its
corresponding causal graph. Figure 1 illustrates two generated data samples.

2 RELATED WORK

Synthetic time-series generation Several works have addressed the generation of synthetic time-
series starting from real datasets (Yoon et al. (2019); Jarrett et al. (2021); Rasul et al. (2021)). Some
approaches have focused on specific aspects, such as the correlation dynamics among variables
(Seyfi et al. (2022); Masi et al. (2023)), user-specified constraints (Coletta et al. (2023)), or inter-
pretable generation methods (Yuan & Qiao (2024); Fons et al. (2024)). However, only a few works
delve into the generation of time-series along with their causal structure, (Li et al. (2023); Cheng
et al. (2024)).

Li et al. (2023) proposed a VAE-based framework capable of learning Granger causal relationships
from real multivariate time-series. This approach derives causal relationships from the weight ma-
trix connecting the input and hidden states, allowing a unique causal graph to be learned from the
data. All generated samples adhere to such a causal structure. A recent work of Cheng et al. (2024)
proposed a pipeline to generate realistic time-series along with the full-time causal graph. However,
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their framework does not output an interpretable-by-design time-series but it performs the hypo-
thetical causal graph inference through DeepSHAP (Sundararajan & Najmi (2020)) on the trained
generative model, introducing a considerable time overhead.

Our goal is to further explore this area and address gaps in the current literature by extending the
aforementioned works. Specifically, we aim to extend Granger causality by incorporating temporal
lags, generate a unique causal graph for each synthetic sample to introduce greater variety in the
data, and provide a naturally interpretable architecture that generates both the synthetic time-series
and the causal graph explaining it.

Benchmarking Causal Discovery Algorithms Recent works have studied and tested causal dis-
covery algorithms in several scenarios and domains. Hasan et al. (2023) provide a benchmark of
5 algorithms on both a synthetic and a real dataset (fMRI), evaluating them using several binary
classification metrics. Lawrence et al. (2021) use their framework to generate numerical datasets
and evaluate 5 causal discovery algorithms, with an in-depth performance analysis concerning their
diverse assumptions and hyper-parameters selection. Finally, Cheng et al. (2024) employs the syn-
thetic version of three real datasets to benchmark 13 representative state-of-the-art causal discovery
algorithms. We also make use of our synthetic datasets to evaluate such algorithms in Section 6,
while Appendix A.2 summarizes all the datasets commonly employed in both simulated and realis-
tic scenarios.

3 PROBLEM FORMULATION

3.1 BACKGROUND KNOWLEDGE

Causal Discovery The Causal Discovery task aims to ferret out cause-effect relationships among
the variables of a d-variate time-series x = (x0, . . . ,xd−1). We say that xi has an effect on (or
causes) xj if the two variables are reflecting a real phenomenon in which a change of xi’s value
affects xj . Trivially, the cause must precede the effect so it is important to consider also the lag τ
that elapses between observing the cause event on xi and the effect event on xj . Causal Discov-
ery algorithms are employed to observe real data and point out the existence of causal relationships
according to which xi causes xj , after τ time-steps, returning (xi,xj , τ). We note that the exis-
tence of factors, called confounders, that influence both the independent variable (the cause) and the
dependent variable (the effect) may lead to spurious associations making it harder to determine the
true causal relationship. In the literature, it is common to assume the absence of latent confounders
when constructing the working dataset.

Causal Graphs Causal relationships are often represented through the so-called Causal Graphs.
Let τmax ∈ N+ be the maximum number of discrete time-steps we are interested in to model the
cause-effect phenomena of x. We define a Causal Graph G = (V,E) where the vertices V represent
the time-series variables for the various time-steps between 0 and τmax, and the edges E represent
their causal relationships. In particular, an edge (xi

t1 , x
j
t2) ∈ E indicates that the variable xi implies

the variable xj with a lag of t2 − t1 time-steps (i.e., xi
t1 ⇒ xj

t2 ). Formally,

• V = {xi
t−l | 0 ≤ i < d, 0 ≤ l ≤ τmax}

• E = {(xi
t1 , x

j
t2) |x

i ⇒ xj with a lag of t2 − t1 > 0}

Notice that G is a DAG since we are excluding instantaneous causal relationships. Figure 1 shows
causal graphs illustrating the interdependencies of river levels.

Granger Causality If we are not interested in a specific lag τ of the cause-effect relation, we can
simply resort to the evaluation of the Granger Causality. We say that xi Granger-causes xj if the
past of values of xi are useful to predict the present of xj with statistical significance. This kind
of relationship can be easily represented by a d × d matrix M , where M [i, j] = 1 means that xi

Granger-causes xj , M [i, j] = 0 otherwise.
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Figure 2: CausalDiffusion pipeline.

3.2 TASK DEFINITION

Let D = {x | x ∈ RL×d} be a set of N d-dimensional input time-series of length L. Our goal is
to use the training data D to learn a generative model that best approximates the distribution of the
real time-series, while simultaneously learning the corresponding causal structures. In particular,
we aim at generating a couple ⟨x̂, ĝ⟩ where x̂ ∈ RL×d is a synthetic time-series similar to the ones
in D and ĝ is the associated causal graph that explains x̂ in terms of causal relationships.

4 METHODOLOGY

The methodology we propose hereby, illustrated in Figure 2, is based on a diffusion model (Ho
et al. (2020)) able to map noisy Gaussian vectors z ∈ RL×d to a synthetic sample ⟨x̂, ĝ⟩. Unless
otherwise noted, we adopt common assumptions of the Causal Discovery literature (Cheng et al.
(2024); Runge et al. (2019b); Pamfil et al. (2020); Sun et al. (2023): absence of instantaneous
effects, Markovian conditions, faithfulness, and sufficiency, as amply discussed in Appendix A.1.

4.1 DIFFUSION FRAMEWORK

A diffusion model is a type of latent variable model that operates through two key processes: the
forward process and the reverse process. Given a sample x0 ∈ D, the forward process gradually
adds Gaussian noise to obtain a noisy sample xt ∼ N (0, I). Specifically, given the parameters
βt ∈ (0, 1) to schedule the amount of noise added at diffusion step t ∈ [1, T ], the noisy sample is
given by

xt =
√
α̂t · x0 +

√
1− α̂t · ϵ (1)

where ϵ ∼ N (0, I), αt = 1− βt, and α̂t =
∏t

i=1 αi.
The reverse process performs the actual generation of a new sample starting from Gaussian noise.
Following the formulation of Yuan & Qiao (2024), we perform the denoising procedure of xt ∼
N (0, I) as follows:

xt−1 = βt ·
√
α̂t−1

1− α̂t
· x̂0 +

(1− α̂t−1) ·
√
αt

1− α̂t
· xt + 1{t>0} · βt ·

1− α̂t−1

1− α̂t
· ϵ (2)

where 1{·} is the indicator function, ϵ ∼ N (0, I), and x̂0 = DENθ(xt, t) is the output of a neural
network parametrized by θ trained with respect the following loss function:

LRec(x0, x̂0; θ) = ∥x0 − x̂0∥22, (3)

where ∥·∥ρ indicates the ℓρ-norm. In practice, DENθ reconstructs the original sample taken from the
dataset by filtering out the noise added during the forward process.

Other losses can be additionally computed to improve the performance of the reconstruction, as the
Fourier-based term employed by Yuan & Qiao (2024):

LFourier(x0, x̂0; θ) = ∥FFT (x0)−FFT (x̂0)∥22, (4)

where FFT (·) indicates the Fast Fourier Transformation (Elliott & Rao (1982)), or the Dynamic
Time Warping-based term LDTW (x0, x̂0; θ) introduced by Cuturi & Blondel (2017).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Generally, the training objective can be formulated as:

L(x0, x̂0; θ) = E
t∼U(1,T )
x0∼D

[λ1·LRec(x0, x̂0; θ)+λ2·LFourier(x0, x̂0; θ)+λ3·LDTW (x0, x̂0; θ)] (5)

The architecture of DENθ consists of an initial convolutional layer followed by a series of RESNET
and ATTENTION blocks (see Appendix A.3.3 for more details).

4.2 CAUSAL RECONSTRUCTION OF THE TIME-SERIES

This section details how the output process inherently embeds a causal structure, allowing for the
generation of a coherent sample ⟨x̂0, ĝ⟩.
Given x0 ∈ D, we denote with xi

0(l) the value of the i-th feature of the time-series at time l, for
i ∈ [1, d] and l ∈ [1, L]1. The input and output shapes of DENθ must be identical since the network
is designed to reconstruct the original sample from a noisy version.

Let τmax ∈ N+ be the maximum lag for which we model the causal relationships in the syn-
thetic time-series2. Simultaneously for each feature i, DENθ outputs the first τmax steps, i.e.
x̂i
0(l), ∀ 1 ≤ l ≤ τmax and a set of coefficient vectors {ci(l) | τmax < l ≤ L}, where

ci(l) = [c11(l), . . . , c
1
τmax

(l), . . . , cd1(l), . . . , c
d
τmax

(l)]. The reconstruction of the whole time-series
in a causal manner follows a Vector Autoregressive (VAR) model (Zivot & Wang (2006)). Proceed-
ing one step at a time for all τmax < l ≤ L, the coefficient vector ci(l) of feature i is multiplied
with the previously-defined window: x̂i

0(l) = ci(l) · x̂0(l − τmax : l − 1).

We underline that, even though the reconstruction can be described by a VAR model, the generation
framework is not autoregressive. This is because the model does not consider previously generated
outputs as inputs. It instead generates the initial time-steps and the coefficients simultaneously.

Our approach is motivated by an acknowledged technique to identify causal relationships from the
estimated VAR coefficients. For instance, the work of Hyvärinen et al. (2010) proves that if the time
resolution of the measurements is higher than the time-scale of causal influences, one can estimate a
classic autoregressive (AR) model with time-lagged variables and interpret the autoregressive coef-
ficients as causal effects. In particular, they prove that causal effect matrices can be consistently, and
computationally efficiently, estimated from the coefficients of the VAR model by means of least-
squares methods. Therefore, in agreement with this result, we incorporated a VAR model in the
reconstruction to provide guarantees about the identification of causal relationships after appropri-
ate tuning of the sampling period and scaling of the intensity of the observed phenomena.

Finally, to encourage the model to learn sparse causal graphs, i.e. to focus on the most important
causal relationships, we add a regularization term for the coefficients. While the ideal choice for
such a function would be the ℓ0-norm, this is difficult to optimize, therefore we consider both the
ℓ1-norm and the ℓ2-norm, as in Sun et al. (2023); Li et al. (2023). Specifically, the regularization is
defined as:

LSpars(x0; θ) = λ4 · ∥c∥1 + λ5 · ∥c∥2, (6)

where c is the vector of coefficients output by DENθ when reconstructing x̂0, and λ4 and λ5 are the
weights associated to such regularization terms.

4.3 CAUSAL GRAPH EXTRACTION

Given the coefficients vector, we can now extract the causal graph responsible for generating the
time-series. The synthetic sample x̂0 is reconstructed through the series of coefficients c of shape
[L − τmax, d, d · τmax] meaning that for each time-step τmax ≤ l ≤ L, and for each feature
1 ≤ d ≤ d, we have importance weights assigned to the previously generated time-steps, i.e. the
window x̂

(l−τmax:l−1,:)
0 . We also call these coefficients the explanation of the synthetic sample. To

infer the causal graph ĝ, we summarize the causal relationships from the VAR coefficients respecting
the following formal definition.

1To avoid confusion, note that in this section, l refers to the index of the temporal dimension of the time-
series, and should not be confused with the diffusion step t ∈ [1, T ] as a subscript.

2The maximum lag should be set according to the time-series domain or based on expert domain knowledge.
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Definition 4.1. Let ρ be the percentage of causal relationships we want to keep in the synthetic
dataset. For a synthetic sample x̂, we say that variable x̂i ⟨ρ, p⟩-causes variable x̂j with a lag of τ
if the p-percentile of the coefficients of the VAR model at lag τ , i.e. giving the effect from x̂i(t− τ)
to x̂j(t), is among the ρ% highest values. Notice that ρ and p refer to the dataset and the single
sample, respectively.

This approach has been also employed in Cheng et al. (2024) but there are some other definitions of
causality to be extracted from a VAR model, for instance in Hyvärinen et al. (2010). Our definition
can be adopted by setting the related parameter values by using domain knowledge or through hyper-
parameter tuning techniques. This means that there will be samples with more connections than
others, while some may have no causal relationships at all. Notice that, unlike previous work, this
allows us to not assume stationarity, as our causal graphs are strictly related to individual samples.
This approach enables the generation of diverse samples, each associated with its own distinct causal
graph, which may vary across the synthetic samples.

5 EXPERIMENTS

In the experiments section, we show that the proposed pipeline is able to generate high-quality
synthetic samples along with coherent and realistic causal graphs. In this regard, we conducted an
experimental campaign involving three different datasets. We compared our models against two
state-of-the-art approaches to highlight the advantages of our approach. We evaluate the generated
samples both quantitatively and qualitatively, using well-established metrics for synthetic time-series
as well as metrics specifically designed to assess the realism of the causal graphs.

5.1 DATASETS

To evaluate the models’ capability to generate time-series alongside their causal relationships, we
utilize two real-world datasets and a synthetic dataset constructed using closed-form equations.

• Hénon: introduced by Li et al. (2023), it consists of six coupled Hénon chaotic maps (Kugiumtzis
(2013)) described by the following equations:

x1
t+1 = 1.4− (x1

t )
2 + 0.3 · x1

t−1

xp
t+1 = 1.4− (e · xp−1

t + (1− e) · xp
t )

2 + 0.3 · xp
t−1

with p = 2, . . . , d, where the number of dimensions d = 6 and e = 0.3. In this dataset, we have
a maximum causal lag equal to 2. There is one positive (xp

t−2 ⇒ xp
t ) and two negative causal

relationships (xp
t−1 ⇒ xp

t and xp−1
t−1 ⇒ xp

t ).

• Rivers: introduced by Ahmad et al. (2022), it consists of the average daily discharges of the
Iller river at Kempten, the Danube river at Dillingen, and the Isar river at Lenggries between the
year 2017 and 2019. The data are provided by the Bavarian Environmental Agency3. The Iller is
a tributary of the Danube and we expect that an increase in the water level of the former will flow
into the latter within a day, i.e., with a lag of 1 time-step. In this case, d = 3 and the only causal
relationship is xKempten

t−1 ⇒ xDillingen
t . For this dataset, there may be unobserved confounders, such as

rainfall, allowing us to test the model’s ability to distinguish spurious associations and real causal
implications.

• Air Quality Index (AQI): introduced by Cheng et al. (2024), it consists of the PM2.5 pollution
index monitored hourly over the course of one year by 36 stations spread across Chinese cities4. In
this case, d = 36 and the available causal relationships are modeled through a Granger Causality
matrix, which is based on the pairwise distances between sensors (see Appendix A.3.1 for more
details).

5.2 MODELS

Benchmarks. We compare our model against the two most recent state-of-the-art approaches. The
first one is CAUSALTIME introduced by Cheng et al. (2024). It is an autoregressive model based on

3https://www.gkd.bayern.de
4https://www.microsoft.com/en-us/research/project/urban-computing
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normalizing flows, able to observe some time-steps of the time-series and generate the subsequent
step. Thanks to this architecture the authors can extract the importance of each feature in the input
time-series using an explainability technique,i.e., DeepSHAP, provided by Sundararajan & Najmi
(2020), and eventually extract a causal graph. The second one is CR-VAE introduced by Li et al.
(2023). It is based on a recurrent VAE made up of a multi-head decoder, in which the p-th head
is responsible for generating the p-th feature of the time-series. Encouraged by a sparsity penalty
on the weights of the decoder, it learns a sparse causal matrix able to encode causal relationships
among the variables. Since the causal matrix is part of the model’s parameter, it will be the same
for each synthetic sample generated by the model, in contrast to our approaches and CAUSALTIME.
Moreover, a notable limitation of CR-VAE is that it is restricted to the notion of Granger Causality,
implying that it does not consider the concept of lag in observing the causal relationships.

CausalDiffusion We trained our model using various loss functions and properly tuning the
λ parameters in Equation (5) and Equation (6). In particular, we evaluate the following variants of
our approach: OUR is trained by making use only of the standard reconstruction loss (λ1 = 10);
OUR W/L2 adds the ℓ2-norm to sparsify the coefficients (λ5 = 1); OUR W/L2 W/DTW considers
also the DTW-based loss (λ3 = 0.01). Additional loss functions, namely the ℓ1-norm and the
Fourier-based loss, are evaluated in a further ablation study presented in Appendix A.4.2.

All our models are trained with the hyper-parameter τmax fixed to 2 for all three datasets (see Sec-
tion 4.2). All the other hyper-parameters are shown in the Appendix in Table 5. The sequence length
is fixed to 32 for Hénon and Rivers datasets, and to 24 for AQI dataset.

5.3 EVALUATION METRICS

To evaluate the quality of generated time-series and causal graphs, we selected a diverse set of
metrics spanning various aspects of the synthetic samples.

Evaluation of time-series. We tested the quality of the synthetic time-series using well-known
metrics for fidelity, usefulness, and diversity.

• DISCRIMINATIVE SCORE (Discr.) Yoon et al. (2019) measures the fidelity of synthetic time-series,
evaluating to which extent they are indistinguishable from real ones. It consists in training an off-
the-shelf 2-layer LSTM to distinguish real samples from synthetic ones. It is formally defined as
|0.5 − AUROC| where AUROC is the area under the ROC (Receiver-Operating Characteristic)
curve of the trained discriminator.

• PREDICTIVE SCORE (Pred.) Yoon et al. (2019) measures the usefulness of synthetic time-series
for a downstream prediction task. It involves training a post-hoc sequence-prediction model (2-layer
LSTM) to predict the subsequent steps of a time-series by optimizing the ℓ1 reconstruction loss. The
predictor is trained on synthetic data and evaluated on real data in terms of the Mean Absolute Error
(MAE) of the reconstructions.

• AUTHENTICITY (Auth.) Alaa et al. (2022) measures the portion of synthetic data that is authentic,
i.e. the models should not simply memorize the training dataset by generating copies of real samples
just observed but invent new samples.

• MAXIMUM MEAN DISCREPANCY (MMD) Gretton et al. (2006) measures the similarity of syn-
thetic and real time-series distributions. Formally, it is defined as MMD2(P,Q) = EP [k(X,X)]−
2 · EP,Q[k(X,Y )] + EQ[k(Y, Y )] where k(·, ·) is the Radial Basis Function (RBF) kernel.

• CROSS-CORRELATION (xCorr.) measures the extent to which synthetic time-series preserves the
cross-correlation of real data. In detail, we evaluate the MAE between the correlation values of the
real features and synthetic features.

• DIMENSIONALITY REDUCTION is used to evaluate the diversity of synthetic samples, i.e., they
cover the full variability of real samples. We employed t-SNE (Van der Maaten & Hinton (2008))
and PCA (Bryant & Yarnold (1995)) on both real and synthetic data to easily visualize how similar
the two distributions are in a 2-dimensional space.

Evaluation of Causal Graphs. To evaluate the corresponding causal graphs, we should first con-
sider the following: despite the existence of a causal phenomenon relating the variables of the
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datasets, not all the samples extracted from the long time-series may exhibit such a phenomenon.
For instance, concerning the Rivers dataset, even if the Iller is a tributary of the Danube, if there
is no increase in the water level of the former, the phenomenon of causality cannot be observed.
Indeed, the water level of the three rivers simply remains stable over substantial periods of time, as
a result, many time-step windows extracted from the dataset will not provide evidence of the causal
relationship. In this regard, we employ metrics that do not require that each sample show the causal
relationships we expect. On the other hand, there are some causal relationships that we know for
sure are not realistic and we focus on this kind of error the models make. The recent work of Ahmad
et al. (2022) and Hasan et al. (2023) addressed such a problem by introducing metrics based on the
false positive rate of causal relationships.

Accordingly, we introduce the GRANGER CAUSALITY FALSE POSITIVE RATE (GC-FPR) and the
GRAPH FALSE POSITIVE RATE (Graph-FPR), which account for the fraction of connections in the
graph that we know are incorrect. This evaluation metric is based on the idea that an implication
must be considered true also when the hypothesis is not verified, as it does not penalize samples
that do not exhibit the causal implication. At the same time, we are counting as errors other causal
relationships that are not part of the real-world causal model. Notice that, since CR-VAE does not
output a causal graph for each sample we compute the F1-SCORE to evaluate its causal relationships
with respect to the ground-truth Granger Causality matrix.

We emphasize that these methods are not designed to be used as causal discovery algorithms, so we
do not focus on the exact causal relationships expected to be extrapolated from the datasets. Rather
than that, we focus on the realism of the causal graphs and their coherence with the corresponding
generated synthetic time-series, ensured by the design of the generative pipeline.

Finally, we also evaluated the inference time (Inf. time) of the models to generate a synthetic sample
and the corresponding graph.

5.4 RESULTS

In this section, we discuss the results of our experimental campaign. All the quantitative scores
are shown in Table 1. We report the results for the two state-of-the-art approaches (namely,
CAUSALTIME and CR-VAE) and three of our models (namely, OUR, OUR W/L2 and OUR W/L2
W/DTW) for comparisons. All the results report the mean and standard deviation across 10 different
seeds.

Regarding the fidelity and the quality of the synthetic time-series, OUR W/L2 W/DTW outperforms
the other approaches in terms of MMD on all three datasets, maintaining a satisfactory degree of
AUTHENTICITY. It is also the best model concerning the DISCRIMINATIVE SCORE on two out of
three datasets and in all the other cases it obtains scores very close to the benchmark. This validates
our generated samples with respect to their originality, usefulness, and indistinguishability from real
data.

Regarding the causal graphs OUR W/L2 W/DTW achieves both the best GC-FPR and the best
Graph-FPR scores in all three datasets. This result is of critical importance given that it ensures the
reliability of the graphs as a representation of the causal relationships exhibited by the time-series.
For the AQI dataset, we report only the GC-FPR metric that evaluates the Granger Causality matrix,
as no lag information is provided in the ground-truth causal phenomena. We recall that CR-VAE
does not output a causal matrix for each sample, but it is learned and fixed in the trained model. The
FPR metric does not fully capture the model’s ability in this context. For this reason we reported the
F1-score of the learned matrix with respect to the ground-truth GC matrix, highlighting room for
improving performance.

Summarizing, we highlight that our model achieves the lowest DISCRIMINATIVE SCORE and PRE-
DICTIVE SCORE along with the best Graph-FPR ensuring that the synthetic samples exhibit a high
level of realness and the causal graphs are reliable.

Even though OUR W/L2 W/DTW turned out to be the best one, we also included the other mod-
els to point out the additional losses’ impact on performance. As the results show, incorporating
the ℓ2-norm of the coefficients into the objective loss as an attempt to sparsify the causal graph
reduces the number of wrong connections. Moreover, the DTW-based loss considerably aids in
extracting synchronization signals among the temporal sequences, significantly improving overall
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Table 1: Results of the models on the three datasets, where ↓ indicates lower is better and ↑ indicates
higher is better. For each metric, the best result is highlighted in bold, and the second-best result is
underlined.

Dataset Metric

Model

OUR
OUR
W/L2

OUR
W/L2

W/DTW
CAUSALTIME CR-VAE

Hénon

Discr. ↓ 0.09 ± 0.02 0.09 ± 0.01 0.06 ± 0.02 0.31 ± 0.14 0.24 ± 0.11
Pred. ↓ 0.15 ± 0.00 0.15 ± 0.00 0.15 ± 0.00 0.20 ± 0.01 0.24 ± 0.01
Auth. ↑ 0.59 ± 0.01 0.62 ± 0.01 0.65 ± 0.01 0.72 ± 0.03 0.65 ± 0.11
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.012 ± 0.009
xCorr ↓ 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.06 ± 0.02 0.13 ± 0.03

GC-FPR ↑ 0.39 ± 0.00 0.32 ± 000. 0.31 ± 0.00 0.48 ± 0.04 0.52 ± 0.07∗

Graph-FPR ↓ 0.09 ± 0.00 0.08 ± 0.00 0.04 ± 0.00 0.23 ± 0.01 —
Inf. time ↓ 1548ms 1548ms 1548ms 8790ms 194ms

Rivers

Discr. ↓ 0.08 ± 0.01 0.13 ± 0.01 0.07 ± 0.01 0.09 ± 0.05 0.11 ± 0.09
Pred. ↓ 0.035 ± 0.001 0.037 ± 0.001 0.033 ± 0.001 0.026 ± 0.001 0.036 ± 0.002
Auth. ↑ 0.58 ± 0.01 0.62 ± 0.01 0.63 ± 0.01 0.56 ± 0.03 0.72 ± 0.02
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.009 ± 0.011 0.059 ± 0.029
xCorr ↓ 0.06 ± 0.00 0.06 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.12 ± 0.02

GC-FPR ↓ 0.23 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.57 ± 0.01 0.37 ± 0.14∗

Graph-FPR ↓ 0.10 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.22 ± 0.01 —
Inf. time ↓ 1492ms 1492ms 1492ms 4248ms 148ms

AQI

Discr. ↓ 0.41 ± 0.02 0.43 ± 0.01 0.36 ± 0.05 0.46 ± 0.02 0.25 ± 0.04
Pred. ↓ 0.048 ± 0.001 0.048 ± 0.001 0.047 ± 0.001 0.054 ± 0.001 0.043 ± 0.001
Auth. ↑ 0.81 ± 0.02 0.81 ± 0.02 0.82 ± 0.01 0.77 ± 0.01 0.80 ± 0.10
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.008 ± 0.001 0.017 ± 0.001
xCorr ↓ 0.09 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.03 ± 0.01 0.12 ± 0.01

GC-FPR ↑ 0.48 ± 0.00 0.40 ± 0.00 0.39 ± 0.00 0.49 ± 0.00 0.27 ± 0.00∗

Graph-FPR ↓ — — — — —
Inf. time ↓ 1395ms 1395ms 1395ms 205s 442ms

performance. More ablation studies involving OUR W/L1 W/DTW, OUR W/L2 W/FOURIER can
be found in Table 6 of the Appendix.

Finally, we evaluate the inference time of the models to obtain a sample, made up of the synthetic
time-series and the corresponding causal graph. CR-VAE turned out to be the fastest, thanks to its
VAE-based architecture. However, great time saving occurs because the causal graph is fixed for
each sample since it is extracted from the parameters of the model. Our models achieve an inference
time significantly lower than CAUSALTIME. Actually, CAUSALTIME is faster than OUR * in gener-
ating the synthetic time-series but the post-processing of the feature importance through DeepSHAP
is very time-consuming. Instead, in our architecture the causal graph is generated simultaneously
with the time-series, motivating a moderate overhead. Moreover, the sampling of diffusion models
can be accelerated, using for example implicit diffusion models (DDIM, Song et al. (2021)).

Additional experiments and results can be found in the Appendix, including the evaluation of the
time-series through dimensionality reduction techniques, namely t-SNE and PCA [Appendix A.4.3],
and the evolution of the evaluation metrics during the training [Appendix A.4.5].

6 BENCHMARK OF CAUSAL DISCOVERY ALGORITHMS

To demonstrate the usefulness of our generative pipeline we employ our synthetic samples to bench-
mark several causal discovery algorithms. Given a generated couple ⟨x̂, ĝ⟩, we feed the algorithm
with the generated time-series x̂ and we compare the predicted causal graph against the generated
graph ĝ. We exclude the instantaneous relationships from the evaluation since our framework does
not model them.

In our benchmark, we included:

• Granger-Causality-based approaches: Granger Causality (GC, Granger (1969)); Neural Granger
Causality (NGC, Tank et al. (2021)); economy-SRU (eSRU, Khanna & Tan (2019)); Temporal
Causal Discovery Framework (TCDF, Nauta et al. (2019)); CUTS (Cheng et al. (2022)); CUTS+
(Cheng et al. (2023));
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• Constraint-based approaches: PCMCI+ (Runge et al. (2020)); NTS-NOTEARS (Sun et al.
(2023)); DYNOTEARS (Pamfil et al. (2020)); Rhino (Gong et al. (2023));

• CCM-based approaches: Latent Convergent Cross Mapping (LCCM, De Brouwer et al. (2020));

• Other approach: Neural Graphical Model (NGM, Bellot et al. (2021)) employing neural ordinary
differential equations.

The results of our benchmark are shown in Table 2, evaluated in terms of AUROC and AUPRC (Area
Under Precision-Recall Curve). To always have a well-defined ground truth, for the benchmark we
selected the strongest 15% causal connections for each sample. As additional experiments, we also
executed the benchmark using the top 1% approach described in Section 4.3. These results are
reported in Appendix A.6.2.

Table 2: Results of the benchmark of Causal Discovery Algorithms. Bold and underline are used to
highlight the best and the second best result, respectively.

Method AUROC AUPRC
Hénon Rivers AQI Hénon Rivers AQI

GC 0.52 ± 0.03 0.57 ± 0.07 0.50 ± 0.00 0.47 ± 0.13 0.46 ± 0.10 0.57 ± 0.09
DYNOTEARS 0.60 ± 0.04 0.51 ± 0.03 0.50 ± 0.00 0.52 ± 0.08 0.58 ± 0.03 0.65 ± 0.00

NTS-NOTEARS 0.57 ± 0.04 0.69 ± 0.10 0.50 ± 0.00 0.45 ± 0.07 0.54 ± 0.13 0.42 ± 0.10
PCMCI+ 0.74 ± 0.02 0.77 ± 0.06 0.74 ± 0.00 0.68 ± 0.02 0.64 ± 0.05 0.73 ± 0.02

Rhino 0.51 ± 0.01 0.53 ± 0.06 0.50 ± 0.00 0.70 ± 0.07 0.66 ± 0.07 0.69 ± 0.04
CUTS 0.75 ± 0.02 0.76 ± 0.06 0.74 ± 0.00 0.68 ± 0.02 0.64 ± 0.05 0.73 ± 0.00

CUTS+ 0.75 ± 0.02 0.75 ± 0.08 0.74 ± 0.00 0.68 ± 0.02 0.62 ± 0.08 0.73 ± 0.00
Neural-GC 0.72 ± 0.01 0.52 ± 0.05 0.50 ± 0.01 0.68 ± 0.01 0.55 ± 0.08 0.64 ± 0.05

NGM 0.61 ± 0.06 0.69 ± 0.12 0.50 ± 0.00 0.77 ± 0.05 0.73 ± 0.11 0.80 ± 0.05
LCCM 0.55 ± 0.00 0.50 ± 0.00 0.52 ± 0.00 0.67 ± 0.00 0.78 ± 0.00 0.57 ± 0.00
eSRU 0.50 ± 0.00 0.75 ± 0.11 0.50 ± 0.00 0.78 ± 0.02 0.76 ± 0.10 0.81 ± 0.00
TCDF 0.52 ± 0.03 0.50 ± 0.01 0.50 ± 0.00 0.35 ± 0.14 0.57 ± 0.03 0.64 ± 0.07

It turns out that three algorithms, namely PCMCI+, CUTS, and CUTS+, achieve the best tradeoff
between AUROC and AUPRC on all datasets. Also, NGM obtains satisfying results on the Hénon
and Rivers datasets, reaching AUPRC values among the highest. Instead, Neutral-GC performed
well only on the synthetic dataset of our benchmark and eSRU only on the Rivers dataset. Among
the constrained-based approaches only PCMCI+ achieved satisfying performances, while, in gen-
eral, the Granger-Causality-based approaches proved to be the best ones. None of the methods got
an AUROC lower than 0.5 meaning that there were no inverted classifications. The overall perfor-
mance of tested algorithms is lower than what has been reported on simpler synthetic datasets, such
as Lorenz-96 (Cheng et al. (2023); Tank et al. (2021)), where some methods achieved near-perfect
scores. This performance gap may suggest that current algorithms are still inexact on some specific
samples and datasets, and they could be further improved. In general, more challenging synthetic
datasets should be used to rigorously test and potentially improve existing TSCD methods. The per-
formance degradation observed in some algorithms when exposed to new data further underscores
this need.

7 CONCLUSIONS & LIMITATIONS

We introduced CausalDiffusion, a novel pipeline to generate faithful time-series along with
realistic and coherent causal graphs specifically suited for the TSCD task. To the best of our knowl-
edge, this is the first work to incorporate diffusion models for causally related time-series generation
dropping the stationarity assumption. We demonstrated that our model can effectively generate syn-
thetic datasets to support the causal discovery community in enhancing their algorithms in various
domains, learning directly from real-world observational data.

We acknowledge among the limitations of this work the assumption of causal sufficiency, i.e. no
latent confounders in our datasets. Furthermore, only linear causal relationships are present in the
synthetic samples. In future works, in addition to improving the approach to handle the above
limitations, it can be extended in two directions. The first involves incorporating the modeling of
instantaneous causal relationships. The second improvement is to add a loss-based guidance of the
coefficients so that the generation can be conditioned on a prior-known causal graph. In fact, a key
advantage of our approach is the realism and flexibility that diffusion models provide, which allows
the implementation of sophisticated conditioning strategies on trained models.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we openly release the source code on GitHub (https://anonymou
s.4open.science/r/causal-diffusion-AEB8). All the datasets employed are easily
accessible and described in Section 5.1. All the hyper-parameters are listed in Table 5.
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A APPENDIX

A.1 THEORY

Our work makes the following assumptions, aligned with several TSCD algorithms:

• Markovian Condition: The joint distribution of the multi-variate time-series can be fac-
torized into P (x) =

∏
i P (xi|P(xi)), i.e., every variable is dependent only on its parents.

• Causal Faithfulness: It assumes that the relationships between variables in the data faith-
fully reflect the true causal connections between them.

• Causal Sufficiency: Also known as no latent confounder, it states that all common causes
of all variables are observed. While this assumption may appear quite strong — since it is
impossible to observe “all causes in the world” given the potentially infinite number of vari-
ables — it is a common and practical simplification in existing literature when constructing
causal datasets.

• No Instantaneous Effect: It is very intuitive since it states that the cause must occur before
its effect in the time-series. To satisfy this assumption it is sufficient to sample the data with
a frequency higher than the causal effects.

On the other hand, thanks to the fact that our approach generates the time-series and its strictly
associated causal graph we can drop the stationarity assumption, described below.

• Causal Stationarity: It states that all the causal links do not change over time.

A.2 DATASETS

Most of the available datasets for studying causal structures in time-series can be classified into three
categories.

Numerical datasets. This kind of datasets show causal dependencies that are manually designed
through closed-form equations. Vector-autoregression (VAR), Lorenz-96 (Karimi & Paul (2010)),
and the framework proposed by Lawrence et al. (2021) belongs to this category. In particular, the
last one allows researchers to generate diverse data with several degrees of flexibility, but it lacks a
connection to the dynamics of a real-world scenario Runge et al. (2020).

Quasi-real datasets. Similar to the previous category, the causal dynamics are manually designed but
calibrated with real data. Several medical datasets rely on Functional Magnetic Resonance Imaging
(fMRI, Cao et al. (2019)), a technique to investigate dynamic brain networks. For instance, Nauta
et al. (2019) exploited the changes in blood flow to obtain an emulated blood oxygen level-dependent
fMRI dataset, resembling the neural activity of different brain regions. Prill et al. (2010) introduced
DREAM3, a dataset simulating gene expression, while Nauta et al. (2019) also employed a simulated
dataset in the financial domain, based on the Fama-French Three-Factor Model.

Real datasets. Finally, we discuss the available real time-series dataset. Ahmad et al. (2022) intro-
duced the rivers dataset made up of three rivers, in which one is a tributary of another, while Cheng
et al. (2024) introduced three datasets, namely Air Quality Index, Traffic, and MIMIC-4 (details
in Section 5.1). The first dataset consists of the PM2.5 pollution index monitored hourly; the second
one collects traffic information from sensors in the San Francisco Bay Area5; while the last one
consists of critical care data over a large number of patients in intensive care units (Johnson et al.
(2023)). Other datasets that may include causal relationships are MoCap Tank et al. (2021), collect-
ing human motion data, and S&P100 stock data Pamfil et al. (2020). However, most real datasets
lack a ground truth causal graph, and even when such graphs are available, they are typically limited
in both quantity and diversity.

CauseMe6 is a platform released by Runge et al. (2019a) to collect many datasets mainly regarding
climate scenarios, both synthetic and real.

5https://pems.dot.ca.gov/
6https://causeme.uv.es
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A.3 IMPLEMENTATION DETAILS

A.3.1 DATASETS

Table 3 reports the most important statistics of our datasets. We also include additional details not
discussed in Section 5.1.

Table 3: Statistics of our datasets.

Dataset Number of
Training Samples

Sequence
Length

Number of
Variables

Number of
Causal Relations

Hénon 11295 32 6 11
Rivers 9969 32 3 1
AQI 7246 24 36 354

Hénon: The initial values are sampled from a standard Gaussian distribution, and then the time-
series are computed according to the equations in Section 5.1. In this dataset, the causal graph
consists of one positive relationship with a lag of 2 between a variable and itself (xp

t−2 ⇒ xp
t ) and

two negative relationships. The first one is between the variable and itself with a lag of 1 (xp
t−1 ⇒

xp
t ); the second one is between two consecutive variables again with a lag of 1 (xp−1

t−1 ⇒ xp
t ).

Air Quality Index: We recall that, as Cheng et al. (2024) state, the causal relations in the AQI
dataset are highly dependent on geometry distances. The graph contained in the dataset they re-
leased has been extracted considering Gaussian kernel and a threshold with respect to the geographic
distances of the sensors. In particular,

wij =

{
1, dist(i, j) ≤ σ

0, otherwise

where dist measures the distance between two sensors and σ is set to ≈ 40 km. See the work
of Cheng et al. (2024) for more details.

A.3.2 BENCHMARK

We compare our approach against two state-of-the-art approaches, implemented from the respective
repositories:

• CAUSALTIME Cheng et al. (2024): https://github.com/jarrycyx/UNN

• CR-VAE Li et al. (2023): https://github.com/hongmingli1995/CR-VAE

We tuned the hyper-parameters of both models on all the datasets and they are reported in Table 4.

Table 4: Hyper-parameters of CAUSALTIME and CR-VAE.

Model Hyper-parameter Dataset
Hénon Rivers AQI

CAUSALTIME

Share type Decoder Decoder Decoder
N. Epochs Train Phase 1 40 20 10
N. Epochs Train Phase 2 10 10 5

Learning rate 0.001 0.0001 0.0001
Batch size 32 32 32

Hidden size 128 128 128
N. Layers 2 2 2
N. Heads 4 4 4
Dropout p 0.1 0.1 0.1

Flow length 4 4 4

CR-VAE

Hidden 64 64 64
N. Iterations Train Phase 1 1000 1000 1000
N. Iterations Train Phase 2 90000 9000 90000

Learning rate 0.05 0.05 0.05
Batch size 1024 1024 1024
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Figure 3: Architecture of DENθ.

GroupNorm
Non-linearity Conv1d

Non-linearity Linear

GroupNorm
Non-linearity Dropout Conv1d

Figure 4: Architecture of the Resnet Block of DENθ.

A.3.3 ARCHITECTURE OF DENOISING NETWORK

Here we discuss our diffusion model network. We slightly modified the architecture of Song et al.
(2021) released in their repository7 by adding the convolution layer to output the coefficients. The
overall architecture of DENθ is depicted in Figure 3. It consists of an initial convolution layer and a
series of RESNET and ATTENTION blocks showed in Figure 4 and Figure 5, respectively.

To represent the denoising time-step t the model employs cosine embedding and an MLP block
made up of 2 linear layers with the activation function f(x) = x · σ(x) in the middle, where σ
represents the SIGMOID function σ(x) = 1

1+e−x . The time-step information is injected in all the
RESNET blocks.

7https://github.com/mirthAI/Fast-DDPM

GroupNorm Attention
Layer Conv1d

Figure 5: Architecture of the Attention Block of DENθ.
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In the pictures, NON-LINEARITY and GROUPNORM refer to the function f(x) and Group Normal-
ization, respectively. The DOWNSAMPLE block is just a 1d-convolution with a stride equal to 2. The
UPSAMPLE block is made up of a Nearest Interpolation and a 1d-convolution.

The end part of the architecture is made up of d + 1 convolutional layers. The first one is respon-
sible for outputting the first τmax steps of the time-series. Each of the remaining d convolutional
layers is responsible for the coefficients of one feature. Then, the coefficients are multiplied with
the initial steps of the time-series and the final output is reconstructed following the formalization
in Section 4.2.

A.3.4 HYPER-PARAMETERS

The most important hyper-parameters are reported in Table 5.

Table 5: Hyper-parameters of the generative model.

Training
epochs

Batch
size

Learning
rate

Diffusion
Timesteps (T) β schedule

Time-step
embedding

50 32 1e-4 100 Linear Cosine
start=0.0001, end=0.02 dim=128

A.3.5 EVALUATION METRICS

• DISCRIMINATIVE SCORE: We trained a 2-layer LSTM for 30 epochs with a learning rate of
1e − 4, hidden size equals 8, and batch size set to 32. The loss function to be optimized is the
BINARY CROSS ENTROPY where real samples are labeled as 1 and synthetic samples as 0. The
score is formally defined as |0.5−AUROC|, where AUROC is the area under the ROC curve of the
trained discriminator.

• PREDICTIVE SCORE: Following the train-on-synthetic and test-on-real criterion, we tested the
ability of the generated data to inherit the predictive characteristics of the original. We trained a 2-
layer LSTM-based predictor to forecast the last 1

10 ·seq len time-steps over each synthetic sample
for 10 epochs, with a learning rate of 1e− 3, hidden size equals to 32, and batch size set to 32. The
loss function to be optimized is the ℓ1-loss. Then, the predictor is evaluated on real data and quanti-
fied through the Mean Absolute Error (MAE). Formally, given a real sequence x of length seq len
let xfirst and xlast be the first 9

10 ·seq len and the last 1
10 ·seq len time-steps, respectively. The

predictor observe xfirst and predicts the subsequent 1
10 · seq len time-steps, denoted as x̃pred.

The MAE-based performance consists of 1
1
10 ·seq len

∑ 1
10 ·seq len
t=1 |xlast(t)− x̃pred(t)|.

• AUTHENTICITY: We considered the original implementation provided by the work of Alaa et al.
(2022). In detail, the authenticity A ∈ [0, 1] measures the portion of synthetic samples that are
truly generated by the model, rather than just copied from the training data. The metric is evaluated
through a hypothesis test for data copying, which employs a nearest-neighbor classifier. A synthetic
sample is considered unauthentic if it is closest to a real training sample. A score close to 1 indicates
that the model is generating novel, unseen data.

• MAXIMUM MEAN DISCREPANCY: We used the scikit-learn8 implementation of the RBF kernel.

• CROSS-CORRELATION: We computed the Cross-Correlation distance for each lag up to 4. For-
mally, let x and x̂ be a real and a synthetic sample respectively. Moreover, let xi and x̂i be the
i-th feature of the real and the synthetic sample (∀1 ≤ i ≤ d), respectively. The score is formally
defined as

∑4
τ=0

1

(d2)
·
∑

{i,j}∈({1,...,d}2 ) |(xi ⋆ xj)(τ)− (x̂i ⋆ x̂j)(τ)|, where (xi ⋆ xj)(τ) denotes

the cross-correlation between xi and xj with respect to lag τ .

• DIMENSIONALITY REDUCTION: We used the scikit-learn8 implementation for both PCA and
t-SNE. For each sample, we flattened the dimension of the features by computing the mean.

8https://scikit-learn.org/
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Figure 6: Examples from the Rivers dataset. We recall that the time-series sequence of
CAUSALTIME is obtained by feeding the model with a real sequence (seed) and it outputs the subse-
quent step since it is an autoregressive model. Instead, our method can truly generate new samples
from random noise.
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Figure 7: Examples from the Hénon dataset.

A.4 ADDITIONAL RESULTS

A.4.1 SAMPLES

Figure 6 and Figure 7 show examples of real and generated samples for the Rivers and Hénon
datasets, respectively.

A.4.2 ADDITIONAL ABLATION STUDIES

Table 6 show the quantitative results for OUR W/L1 W/DTW and OUR W/L2 W/FOURIER. In par-
ticular, the first model considers a DTW-based loss and a ℓ1-norm where λ3 = 0.01 and λ4 = 1;
while the latter considers a Fourier-based loss with λ2 = 100, and ℓ2-norm to sparsify the coeffi-
cients (λ5 = 1).

A.4.3 DIMENSIONALITY REDUCTION PLOTS
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Table 6: Results of other models on the three datasets. ↓ indicates lower is better and ↑ indicates
higher is better.

Dataset Metric

Model
OUR
W/L1

W/DTW

OUR
W/L2

W/FOURIER

Hénon

Discr. ↓ 0.07 ± 0.02 0.09 ± 0.02
Pred. ↓ 0.16 ± 0.00 0.16 ± 0.00
Auth. ↑ 0.61 ± 0.01 0.63 ± 0.01
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000
xCorr. ↓ 0.04 ± 0.00 0.04 ± 0.01

GC-FPR. ↓ 0.34 ± 0.00 0.33 ± 0.00
Graph-FPR. ↓ 0.04 ± 0.00 0.09 ± 0.00

Rivers

Discr. ↓ 0.48 ± 0.01 0.10 ± 0.01
Pred. ↓ 0.043 ± 0.001 0.036 ± 0.001
Auth. ↑ 0.87 ± 0.02 0.61 ± 0.01
MMD ↓ 0.054 ± 0.003 0.001 ± 0.00
xCorr. ↓ 0.08 ± 0.01 0.07 ± 0.01

GC-FPR. ↓ 0.27 ± 0.00 0.23 ± 0.00
Graph-FPR. ↓ 0.16 ± 0.00 0.07 ± 0.00

AQI

Discr. ↓ 0.44 ± 0.01 0.38 ± 0.03
Pred. ↓ 0.049 ± 0.001 0.050 ± 0.001
Auth. ↑ 0.82 ± 0.01 0.81 ± 0.01
MMD ↓ 0.001 ± 0. 0.001 ± 0.
xCorr. ↓ 0.13 ± 0.01 0.10 ± 0.01

GC-FPR. ↓ 0.39 ± 0. 0.40 ± 0.
Graph-FPR. ↓ — —
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Figure 8: Dimensionality reduction: t-SNE (left) and PCA (right).

Figure 8 shows the t-SNE and PCA plots of our best model against the state-of-the-art approaches.
It can be observed that the distribution of the synthetic samples closely resembles the real one in two
of the three datasets (Hénon and Rivers). This visually ensures that the model is generating realistic
time-series in a diverse set of fields. Figure 9 show the dimensionality reduction results for the other
three variants of our model, namely (OUR W/L1 W/DTW, OUR W/L2, OUR W/L2 W/FOURIER),
on all considered datasets.

A.4.4 INFERENCE TIME

In more detail, Table 7 shows the inference time of the models isolating the generation of the time-
series and the extraction of the graph. It turns out that even if CAUSALTIME is faster than OUR in
generating the time-series, the graph extraction through DeepSHAP introduces an important over-
load making it the slowest model. We run this experiment on a machine equipped with Intel Core
i9-10920X CPU @ 3.50GHz, NVIDIA GeForce RTX 2060 GPU, and 8× 32 GB DDR4 RAM.
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Figure 9: Dimensionality reduction: t-SNE (left) and PCA (right).

Table 7: Inference time.

Dataset
Model

OUR
OUR

with Graph CAUSALTIME
CAUSALTIME

with Graph CR-VAE

Hénon 1481ms 1548ms 465ms 8790ms 194ms

Rivers 1425ms 1492ms 235ms 4248ms 148ms

AQI 1395ms 1535ms 1349ms 205s 442ms

A.4.5 EVALUATION METRICS DURING TRAINING

Figures 10 to 12 show the evolution of the evaluation metrics during training on the Hénon, Rivers,
and AirQuality datasets, respectively.

A.5 ALGORITHMS

We show the algorithm to reconstruct the whole time-series from the output of DENθ (i.e. the initial
time-steps xstart and the set of coefficients c) in Algorithm 1.

The sampling procedure of a synthetic couple ⟨x̂, ĝ⟩ is described in Algorithm 2.

Algorithm 1 Reconstruction of x̂ from xstart and c.

function RECONSTRUCT(xstart, c)
▷ xstart.shape = [d, τmax]
▷ c.shape = [d, d · τmax, L− τmax]
x̂0 = xstart

for all i from 0 to L− τmax do
sup← x̂0[ : ,− τmax : ].flatten()
c← c[ : , : ,i]
x← torch.einsum(’a,ba->b’, sup, c)
x̂0 ← torch.cat([x̂0,x.unsqueeze(− 1)], dim=− 1)

end for
return x̂0

end function
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Figure 10: Evaluation metrics during training - Hénon dataset.
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Figure 11: Evaluation metrics during training - Rivers dataset.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

0 20 40
Epoch

0.9

1.0
Authenticity

0 20 40
Epoch

0.3

0.4

0.5
Discriminative Score

0 20 40
Epoch

0.05

0.10

0.15
Predictive Score

0 20 40
Epoch

0.00

0.02

MMD

0 20 40
Epoch

0.10

0.15

0.20
Cross-Correlation

0 20 40
Epoch

0.395

0.400

GC-FPR

Figure 12: Evaluation metrics during training - AirQuality dataset.

Algorithm 2 Sampling of ⟨x̂, ĝ⟩.
Require: Trained denoising network DENθ

xT ∼ N (0, I)
for all t from T to 0 do

(xstart, c)← DENθ(xt, t)
x̂0 ← RECONSTRUCT(xstart, c)

xt−1 ← βt ·
√

α̂t−1

1−α̂t
· x̂0 +

(1−α̂t−1)·
√
αt

1−α̂t
· xt

if t > 0 then
xt−1 ← xt−1 + βt · 1−α̂t−1

1−α̂t
· ϵ

end if
end for
return x̂0
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A.6 TSCD ALGORITHMS BENCHMARK

A.6.1 DETAILS ON THE ALGORITHMS

To evaluate the different TSCD algorithms we adapt/test them to our task using their source available
code, whose repositories are listed below.

• GC: Granger Causality test implemented in the statsmodels9 library.
• DYNOTEARS: https://github.com/mckinsey/causalnex
• NTS-NOTEARS: https://github.com/xiangyu-sun-789/NTS-NOTEARS
• PCMCI+: https://github.com/jakobrunge/tigramite
• Rhino: https://github.com/microsoft/causica
• CUTS / CUTS+: https://github.com/jarrycyx/UNN
• Neural-GC: https://github.com/iancovert/Neural-GC
• NGM: https://github.com/alexisbellot/Graphical-modelling-con
tinuous-time

• LCCM: https://github.com/edebrouwer/latentCCM
• eSRU: https://github.com/sakhanna/SRUforGCI
• TCDF: https://github.com/M-Nauta/TCDF

The used hyper-parameters of the algorithms are reported in Table 8 (they are the same for all
datasets).

Table 8: Hyper-parameters of the causal discovery algorithms.

Algorithm Hyper-parameter Value

GC maxlag 2

DYNOTEARS p 2
max iter 100

NTS-NOTEARS
lags 2

w threshold 0.3
h tol 1e − 60

PCMCI+ τmax 2
PCα 0.01

Rhino
Noise Distribution Gaussian

init rho 30
init alpha 0.2

CUTS
Input step 2

λ 0.1
τ 0.1 → 1

CUTS+
Input step 2

λ 0.01
τ 0.1 → 1

Neural-GC
Learning rate 0.05

λridge 0.01
λ 0.002 → 0.02

NGM
Steps 500

Horizon 5
GL reg 0.1

LCCM hidden size 20
Learning rate 0.01

eSRU

µ1 1
Learning rate 0.005

Batch size 30
Epochs 500

TCDF
τ 10

Epochs 1000
Learning rate 0.01

9https://www.statsmodels.org/stable/index.html
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A.6.2 OTHER RESULTS

Table 9 shows the results of our benchmark on a synthetic dataset where the causal graphs are
extracted globally, following the procedure in Section 4.3.

Table 9: Other results of the benchmark of Causal Discovery Algorithms. Bold and underline are
used to highlight the best and the second best result, respectively.

Method AUROC AUPRC
Hénon Rivers AQI Hénon Rivers AQI

GC 0.55 ± 0.10 0.73 ± 0.16 0.50 ± 0.00 0.45 ± 0.11 0.54 ± 0.09 0.48 ± 0.08
DYNOTEARS 0.45 ± 0.11 0.52 ± 0.08 0.50 ± 0.00 0.52 ± 0.15 0.56 ± 0.08 0.51 ± 0.02

NTS-NOTEARS 0.64 ± 0.14 0.73 ± 0.15 0.50 ± 0.00 0.40 ± 0.13 0.55 ± 0.14 0.30 ± 0.23
PCMCI+ 0.84 ± 0.08 0.82 ± 0.08 0.68 ± 0.00 0.54 ± 0.09 0.64 ± 0.08 0.50 ± 0.03

Rhino 0.50 ± 0.02 0.57 ± 0.12 0.50 ± 0.00 0.52 ± 0.01 0.65 ± 0.10 0.51 ± 0.03
CUTS 0.81 ± 0.10 0.86 ± 0.09 0.68 ± 0.01 0.54 ± 0.07 0.55 ± 0.08 0.51 ± 0.02

CUTS+ 0.81 ± 0.09 0.75 ± 0.09 0.67 ± 0.01 0.53 ± 0.07 0.58 ± 0.08 0.51 ± 0.02
Neural-GC 0.67 ± 0.00 0.52 ± 0.07 0.50 ± 0.01 0.52 ± 0.01 0.53 ± 0.05 0.48 ± 0.10

NGM 0.84 ± 0.13 0.80 ± 0.13 0.50 ± 0.01 0.63 ± 0.16 0.81 ± 0.12 0.47 ± 0.13
LCCM 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.00 0.78 ± 0.00 0.21 ± 0.00
eSRU 0.50 ± 0.0 0.71 ± 0.10 0.50 ± 0.00 0.53 ± 0.01 0.76 ± 0.08 0.53 ± 0.01
TCDF 0.50 ± 0.0 0.50 ± 0.01 0.50 ± 0.00 0.50 ± 0.03 0.53 ± 0.09 0.45 ± 0.15
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