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Abstract
Most studies on causal inference tackle the is-
sue of confounding bias by reducing the distribu-
tion shift between the control and treated groups.
However, it remains an open question to adopt an
appropriate metric for distribution shift in prac-
tice. In this paper, we define a generic balancing
error on reweighted samples to characterize the
confounding bias, and study the connection be-
tween the balancing error and the Wasserstein
discrepancy derived from the theory of optimal
transport. We not only regard the Wasserstein dis-
crepancy as the metric of distribution shift, but
also explore the association between the balancing
error and the underlying cost function involved in
the Wasserstein discrepancy. Motivated by this,
we propose to reduce the balancing error under
the framework of optimal transport with learn-
able marginal distributions and the cost function,
which is implemented by jointly learning weights
and representations associated with factual out-
comes. The experiments on both synthetic and
real-world datasets demonstrate the effectiveness
of our proposed method.

1. Introduction
Causal inference from observational data aims to estimate
the effect of the treatment from data, which are collected
from a real-world scenario rather than well-designed ran-
domized control trials (RCTs) (Concato et al., 2000). For
data from RCTs, the average treatment effect (ATE) can
be easily estimated by comparing the outcomes of treated
and control groups (Hernán & Robins, 2010). Nevertheless,
it is non-trivial to estimate ATE from observational data
since treated and control groups follow different covariate
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distributions (Shalit et al., 2017). For example, to treat heart
disease, a doctor typically prescribes surgery to younger
patients and medication to older ones, resulting in different
age distributions for these two groups. In other words, age
is the confounder here that brings confounding bias.

Most studies for ATE estimation address the confounding
bias by balancing the confounder distributions of the treated
and control groups, so that ATE can be estimated by compar-
ing the difference of the average outcomes between the bal-
anced groups (Yao et al., 2021). However, the performance
of distribution balancing highly relies on the metric of distri-
bution discrepancy, e.g., moment difference (Hainmueller,
2012) or integral probability metric (IPM) (Kong et al.,
2023; Wei et al., 2023), and how to adopt an appropriate
metric remains a challenging problem. For example, regard-
ing the moment-based method, the first and second moments
frequently used in existing works are insufficient to model
complex distributions, while the higher-order moments are
difficult to estimate in practice. For the IPM-based method,
different function spaces derive different distance metrics,
e.g., maximum mean discrepancy or Hilbert-Schmidt Inde-
pendence Criterion, while how to select the optimal function
space is still under-explored.

In this paper, we seek to address the confounding bias from
a generic balancing error, which is not necessarily a metric
of distribution discrepancy on confounders and could be
built based on factual and counterfactual outcomes, propen-
sity scores, or other factors. To this end, we first define a
balancing error on reweighted samples to describe the con-
founding bias, and then construct a theoretical connection
between the balancing error and the Wasserstein discrep-
ancy through the theory of optimal transport, which studies
how to move masses from one distribution to another with
a minimal transport cost (Villani, 2008; Peyré et al., 2019).
We not only regard the Wasserstein discrepancy as a metric
of distribution shift, but also deeply explore the association
between our defined balancing error and the underlying cost
function involved in optimal transport. Based on this, we
propose an optimal transport model with learnable sample
weights and the cost function associated with the balancing
error to reduce the confounding bias.

In particular, we model the balancing error by incorporating
factual outcomes, and design an optimal transport problem
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that is motivated by our theoretical connection between bal-
ancing error and optimal transport, in which the marginal
distributions of data are modeled as probability mass func-
tions and estimated as the sample weights, and the cost
function is learned based on a representation subspace that
is guided by factual outcomes. By doing this, we integrate
two major learning paradigms, i.e., reweighting and repre-
sentation learning, into a unified model of optimal transport
to minimize the Wasserstein discrepancy with the underly-
ing cost function guided by factual outcomes. We develop
an alternate algorithm to solve the resultant optimization
problem, and conduct experiments on both synthetic and
real-world datasets to evaluate the performance of our pro-
posed method.

We summarize our principal contributions as follows:

• To address the issue of confounding bias, we define a
generic balancing error on reweighted samples and the-
oretically connect it with the Wasserstein discrepancy
via the theory of optimal transport.

• Motivated by our connections, we reduce the confound-
ing bias by minimizing the Wasserstein discrepancy
with learnable marginal distributions and the cost func-
tion associated with the balancing error.

• Based on our learning model, we design a balancing
error based on potential outcomes, and develop an
algorithm to simultaneously learn sample weights and
representations with the guidance of factual outcomes.

2. Related Works
2.1. Causal Effect Estimation

There are two classes of methods to eliminate confound-
ing bias for causal effect estimation. The first class is
the reweighting method, which aims to create a pseudo-
balanced group. Rosenbaum & Rubin (1983) proposed IPW,
treating the inverse of propensity score as sample weight.
To make IPW more robust, Robins et al. (1994) combined it
with outcome regression and Imai & Ratkovic (2014) fur-
ther exploited the dual characteristic of propensity score.
To avoid the model misspecification problem of IPW, Hain-
mueller (2012) and Kuang et al. (2017) proposed to learn
weights directly by aligning the moments between treated
and control groups.

The other class is the representation-based method. Shalit
et al. (2017) first introduced representation learning to causal
effect estimation, showing that balancing the distributions of
treated and control groups in the representation space can im-
prove performance. Recently, various algorithms have been
proposed to incorporate both representation-based learning
and reweighting (Johansson et al., 2018; Assaad et al., 2021;

Johansson et al., 2021). Compared with them, we not only
integrate reweighting and representation learning in one uni-
fied optimal transport model to minimize the Wasserstein
discrepancy between two groups, but also reveal that the
underlying cost function in our optimal transport model is
associated with a balancing error metric measured on data.

Recently, some empirical studies show that hyperparameter
tuning can balance the covariates to some extent (Athey &
Imbens, 2016; Curth & Van Der Schaar, 2023; Machlanski
et al., 2023; Mahajan et al., 2022). For example, Kong et al.
(2023) applied kernel MMD to measure the confounding
bias, and Wei et al. (2023) tuned the hyperparameters within
the IPW framework. Nevertheless, a theoretical analysis
regarding hyperparameter tuning is still under-explored.

2.2. Optimal Transport

Optimal transport seeks to find an optimal plan for mov-
ing mass from one distribution to another with the minimal
transport cost (Monge, 1781; Kantorovitch, 1958; Villani,
2008). Recently, optimal transport has shown powerful abili-
ties in different kinds of applications (Peyré et al., 2019; Yan
et al., 2019; Zhao & Zhou, 2018). For computer vision, the
Earth Mover’s Distance, which is calculated based on the
solution to the optimal transport problem, is used as a simi-
larity metric for image retrieval (Rubner et al., 2000). For
transfer learning, data from one distribution is transported
to another distribution based on the optimal transport plan
for label information transfer (Courty et al., 2014; 2017b;a).
For generative modeling, the Wasserstein distance derived
from optimal transport is minimized to train deep genera-
tive models to generate high-quality data (Tolstikhin et al.,
2018; Arjovsky et al., 2017). For structured data, Wasser-
stein (Maretic et al., 2022), Gromov-Wasserstein (Xu, 2020)
and Fused Gromov-Wasserstein (Titouan et al., 2019) are
applied for graph data analysis.

There are also a few researches trying to introduce optimal
transport into causal inference (Wang et al., 2023). Gunsil-
ius & Xu (2021) employed unbalanced optimal transport
for matching. Torous et al. (2021) generalized Changes-
in-Changes (CiC) to a high-dimensional setting based on
optimal transport. Li et al. (2021) proposed to infer coun-
terfactual outcomes via transporting factual distribution to
the counterfactual distribution. Dunipace (2021) applied
optimal transport to achieve distribution balance by finding
an intermediate distribution with learned weights. Com-
pared with them, we construct a theoretical connection be-
tween causal effect estimation and optimal transport, and
further propose to learn the underlying cost function, which
is shown to be associated with a bias involved in data. As
a result, the optimal transport cost is not only a metric of
distribution shift, but also a metric for reducing a balancing
error with the corresponding underlying cost function.
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3. Notations and Problem Statement
Throughout the paper, [n] denotes a set including the ele-
ments {1, . . . , n}. 1n denotes a vector in the space Rn with
all the elements being 1. For a matrix A, the (i, j)-th ele-
ment of A is denoted as Aij , and A⊤ is the transpose of A.
The trace of a square matrix A is defined as tr(A) =

∑
i Aii.

Given two matrices A and B with the same size, the inner
product of them is defined as

⟨A,B⟩ =
∑
i

∑
j

AijBij = tr(A⊤B) = tr(AB⊤). (1)

The Hadamard product between A and B is denoted as
A⊙B, i.e., (A⊙B)ij = AijBij . For the two distributions
A and B with the same size, the Kullback-Leibler (KL)
divergence KL(A||B) is defined as

KL(A||B) =
∑
i=1

∑
j=1

Aij log(
Aij

Bij
)−Aij +Bij . (2)

The probability simplex Σn is defined as

Σn = {u ∈ Rn |
n∑

i=1

ui = 1, ui ≥ 0 ∀ i ∈ [n]}. (3)

In this paper, we consider the Rubin-Neyman potential
outcome framework (Rubin, 1974; Splawa-Neyman et al.,
1990) with n observational samples {(xi, ti, yi)}ni=1, where
ti ∈ {0, 1} is the binary treatment with 1 for treated groups
and 0 for control groups, xi ∈ Rd is feature vector with d
being the dimension of features, and yi ∈ R is the observa-
tional outcome. We denote the sample numbers of treated
and control groups as nt, nc, and we have n = nt + nc.
Given the potential outcomes Y0(·) and Y1(·), the observa-
tional outcome is yi = tiY1(xi) + (1− ti)Y0(xi). For sim-
plicity, we define data matrices Xc ∈ Rnc×d, Xt ∈ Rnt×d,
X ∈ Rn×d including all the control samples, treated sam-
ples, and all the samples, respectively. And yc ∈ Rnc ,
yt ∈ Rnt include the observational outcomes of the control
and treated groups, i.e., {yci }

nc
i=1 and {yti}

nt
i=1, respectively.

We focus on the Average Treatment Effect (ATE), which is
the average difference between the potential outcomes of
the treated and control groups on the entire population:

ATE = E[Y1(xi)]− E[Y0(xi)]. (4)

The simplest approach to calculate Eq. (4) is directly com-
paring the average outcome between the treated and control
groups, which will be biased because the confounding bias
is not taken into account.

In this paper, we assume that the standard strong ignora-
bility assumption is satisfied: t ⊥ (Y1(x), Y0(x))|x and
0 < p(t = 1|x) < 1 for all x. Strong ignorability is a

sufficient condition for ATE identification (Rosenbaum &
Rubin, 1983). Under this assumption, ATE can be estimated
unbiasedly by reweighting. In specific, reweighting aims to
learn weights w = {wi}ni=1 for each sample to reduce the
confounding bias, and ATE can be estimated by

ÂTE =

nt∑
i=1

wt
iy

t
i −

nc∑
i=1

wc
i y

c
i . (5)

4. Learning Model
In this section, we first define the balancing error to measure
the level of confounding bias, and then bound the balancing
error via the Wasserstein discrepancy from optimal trans-
port. After that, we propose our model for ATE via optimal
transport, which consists of the learnable sample weights
and the cost function guided by factual outcomes.

4.1. Connection Between ATE and Optimal Transport

Optimal transport finds an optimal plan to move mass from
one distribution to another with the minimal transport cost.
Among the rich theory of optimal transport, we focus on
the Kantorovich Problem. Consider two distributions µ ∈
P (U), ν ∈ P (V) and a cost function D : U × V → R,
the Kantorovich problem seeks an optimal plan π(u, v) via
optimizing the following problem:

KPµ,ν = inf
π∈Π(µ,ν)

∫
D(u, v)dπ(u, v), (6)

where Π(µ, ν) denotes the set of all joint probability cou-
plings whose first and second marginals are µ and ν, respec-
tively. Kantorovich also provided a Dual Problem, known
as the Kantorovich duality ((Villani, 2021), Theorem 1.3):

DPµ,ν = sup
f(u)+g(v)≤D(u,v)

∫
f(u)dµ(u) +

∫
g(v)dν(v).

(7)

We now turn our attention to the ATE estimation problem,
whose main challenge comes from the confounding bias
between treated and control groups. Hainmueller (2012)
proposed a reweighting scheme that assigns a weight to each
sample such that the reweighted groups satisfy the prespec-
ified balance constraint m(·) that are imposed on covari-
ate distributions, i.e.,

∑nc

i=1 w
c
im(xc

i ) = 1
n

∑n
i=1 m(xi),∑nt

i=1 w
t
im(xt

i) =
1
n

∑n
i=1 m(xi). Inspired by this, we de-

fine the balancing error to measure the level of confounding
bias between different groups after reweighting:

errw
m = |

nt∑
i=1

wt
im(xt

i)−
n∑

i=1

m(xi)

n
|

+ |
nc∑
i=1

wc
im(xc

i )−
n∑

i=1

m(xi)

n
|. (8)
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We do not restrict the form of the function m(·), as long
as the balancing error errwm can characterize the degree of
confounding bias in some sense. Instead, we connect this
error with optimal transport through the following theorem,
in which the relationship between the function m(·) and the
cost function D(·, ·) is established:

Theorem 4.1. Let µc, µt, µ be the empirical distributions
of the weighted control group, weighted treated group, and
entire population, respectively, with the corresponding sam-
ple weight vector µc ∈ Σnc

, µt ∈ Σnt
, µ ∈ Σn. Suppose

m(·) = f(·),−m(·) = g(·), and assume there exists a cost
function such that m(u)−m(v) = f(u)+ g(v) ≤ D(u, v).
We have the following results

errw
m ≤ DPµt,µ +DPµc,µ

≤ KPµt,µ +KPµc,µ. (9)

Proof. For the first inequality, under the assumption of The-
orem 4.1, DPµt,µ is the worst-case of

∑nt

i=1 w
t
im(xt

i) −
1
n

∑n
i=1 m(xi), and so is DPµc,µ. The second inequal-

ity holds because of the property of the dual problem,
and the non-negative property of cost function D(·, ·) that
leads to |KPµt,µ| = KPµt,µ. The second inequality
could be an equality under the following assumptions: let
(U t, µt), (Uc, µc) and (U , µ) be Polish spaces, D(·, ·) be
a lower semi-continuous cost function, m(·) ∈ L1(·) and
−m(·) ∈ L1(·), where L1 is the Lebesgue space of expo-
nent 1. For the condition when the strong duality holds
so that the bound is tight, please refer to (Villani, 2008;
2021).

Remark 4.2. Theorem 4.1 inspires a way to estimate weights
by minimizing KP . Specifically, we could align the
reweighted empirical distribution of treated/control group∑nz

i wz
i δxi to that of full samples with uniform probabil-

ity measure
∑n

i
1
nδxi

, where z ∈ {t, c}, δx is the Dirac
delta. At the same time, by aligning the empirical distribu-
tion, we could avoid the extreme case that one can just map
treated and control samples to a point mass and lose all the
information.
Remark 4.3. In intuition, Theorem 4.1 shows that the balanc-
ing error, which is used to characterize the lever of confound-
ing bias, is bounded by the Wasserstein discrepancy with an
underlying cost function D(u, v) and marginal distributions
as the sample weights, which theoretically supports that the
confounding bias can be minimized by learning weights and
the cost function in optimal transport.

We now discuss the design of the cost function D(·, ·) con-
sidering the assumption m(xi)−m(xj) ≤ D(xi,xj). One
simple implementation of the cost function is the squared
Euclidean distance, which is the default choice in optimal
transport (Courty et al., 2017b) because of its simplicity
and efficacy. In intuition, this is a reasonable choice since

if the squared Euclidean distance between two samples is
small which means they have similar representations, the
difference of m(·) between them is usually small, too. In
this situation, the vanilla Wasserstein discrepancy is adopted
as the metric of distribution shift and minimized by learning
weights to reduce confounding bias.

Nevertheless, considering that the target is to minimize the
total transport cost with the underlying cost function, it is
possible to further reduce the balancing error by learning
the cost function D(·, ·). In fact, a small m(xi) − m(xj)
allows a small D(xi,xj) while a large m(xi) − m(xj)
requires a large D(xi,xj), which implicitly describe an
approximation of the relevance between m(xi)−m(xj) and
D(xi,xj). Motivated by this, we implement the balancing
error as the bias between the potential outcomes of the two
groups, which means that the potential outcome is involved
in the function m(·), and propose to learn a cost function
that is relevant to observational outcomes.

As a result, in order to reduce the balancing error, we pro-
pose to minimize the Wasserstein discrepancy with learnable
weights as well as the learnable cost function by introducing
the factual outcomes.

4.2. Reducing Balancing Error via Optimal Transport

Let D(·, ·;ϕ) be the cost function between two samples
parameterized by ϕ, Dc and Dt are the corresponding cost
matrices from Xc to X and from Xt to X, respectively. The
elements in the cost matrices are defined as

Dc
ij = D(xc

i ,xj ;ϕ), Dt
ij = D(xt

i,xj ;ϕ). (10)

We omit the parameters ϕ in the absence of ambiguity.

Motivated by Theorem 4.1, to obtain lower KP’s in Eq. (9),
we minimize the Wasserstein discrepancy between (Xc,µc)
to (X,µ) and that between (Xt,µt) to (X,µ) by learning
sample weights and the transport cost simultaneously. To
this end, we propose the following optimal transport model
with estimated weights for the control and treated groups
and the learnable transport cost,

min
µc,µt,ϕ

W(Xc,X, ϕ) +W(Xt,X, ϕ), (11)

where µc is the estimated marginal distribution for reweight-
ing the control group, and µt is the estimated marginal dis-
tribution for reweighting the treated group. The Wasserstein
discrepancy between two groups is defined as

W(Xc,X, ϕ) = min
Tc∈T (µc,µ)

⟨Dc,Tc⟩, (12)

W(Xt,X, ϕ) = min
Tt∈T (µt,µ)

⟨Dt,Tt⟩, (13)
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where the domain of the transport matrix is defined as:

T c(µc,µ) = {Tc ∈ Rnc×n | Tc1n = µc, (Tc)⊤1nc
= µ,

T c
ij ∈ [0, 1] ∀ i ∈ [nc], j ∈ [n]}, (14)

T t(µt,µ) = {Tt ∈ Rnt×n | Tt1n = µt, (Tt)⊤1nt
= µ,

T t
ij ∈ [0, 1] ∀ i ∈ [nt], j ∈ [n]}. (15)

4.3. Factual Outcome Guided Cost Learning

For the cost function in our model, by implementing m(x)
as the potential outcome, we propose to learn the transport
cost function D(·, ·;ϕ) by considering its relevance with the
factual outcomes in the following model

min
µc,µt,ϕ

W(µc,µ, ϕ) +W(µt,µ, ϕ) + F(yc,yt, ϕ), (16)

where the factual outcome guidance term F(yc,yt, ϕ) ex-
ploits the outcomes yc and yt to learn a better transport
cost function D(·, ·;ϕ). Considering that samples of two
groups lie in the same metric space with a common cost
function D(·, ·;ϕ), we reuse the D(·, ·;ϕ) to construct the
intra-group cost matrices Dc,c and Dt,t as

Dc,c
ij = D(xc

i ,x
c
j ;ϕ), Dt,t

ij = D(xt
i,x

t
j ;ϕ), (17)

and also construct the affinity matrices Kc and Kt based on
yc and yt as

Kc
ij = exp(−

(yc
i − yc

j )
2

σ
), Kt

ij = exp(−
(yt

i − yt
j)

2

σ
). (18)

Based on these, we implement F(yc,yt, ϕ) as follows to
leverage factual outcomes to guide the learning of the cost
function

F(yc,yt, ϕ) = λc⟨Dc,c,Kc⟩+ λt⟨Dt,t,Kt⟩, (19)

where λc and λt are the trade-off parameters. In intuition,
for the control group, if the factual outcome of xc

i and xc
j

are close, i.e., yci and ycj are close, we will get a large Kc
ij ,

which will induce a small Dc,c
ij , indicating that the transport

cost between xc
i and xc

j is small. So as the treated group. In
this sense, the intra-group costs Dc,c and Dt,t are guided
by the factual outcomes yc and yt, and reflect the relevance
between the outcomes of the cost function.

4.3.1. IMPLEMENTATION OF COST FUNCTION

Now we provide an implementation to learn the cost func-
tion D(·, ·, ϕ). The common choice for transport cost is the
squared Euclidean distance because of its simplicity and
effectiveness (Courty et al., 2017b; Yan et al., 2019). In-
spired by this, we extend the squared Euclidean distance in
a learned subspace, which is achieved by defining D(·, ·, ϕ)
based on a projection matrix P ∈ Rd×d′

, i.e.,

Dc
ij = ∥P⊤xc

i −P⊤xj∥22, Dt
ij = ∥P⊤xt

i −P⊤xj∥22, (20)

where d′ is the dimension of the subspace. Similarly, the
costs within the control and treated groups are defined as

Dc,c
ij = ∥P⊤xc

i −P⊤xc
j∥22, Dt,t

ij = ∥P⊤xt
i −P⊤xt

j∥22. (21)

As a result, we optimize the projection matrix P rather than
the cost function D(·, ·, ϕ). By considering the guidance of
factual outcomes in Eq. (19), we learn a subspace associated
with the potential outcomes. We further constrain P to live
in the Stiefel manifold:

M = {P ∈ Rd×d′
| P⊤P = I}, (22)

which defines orthogonal subspaces.

By re-introducing P, Tc and Tt into D(·, ·, ϕ) and
W(·, ·, ϕ), we implement Problem (16) to achieve the fol-
lowing relaxed optimal transport model with estimated trans-
port cost function and marginal distributions:

min
µc,µt,P,Tc,Tt

⟨Dc,Tc⟩+ ⟨Dt,Tt⟩

+ λc⟨Dc,c,Kc⟩+ λt⟨Dt,t,Kt⟩
s.t. P ∈ M,Tc ∈ T (µc,µ),Tt ∈ T (µt,µ).

(23)

This learning model integrates reweighting and represen-
tation learning into the unified target of minimizing the
Wasserstein discrepancy, in which marginal distributions are
estimated as sample weights and the learnable cost function
is associated with the balancing error.

4.4. Learning with Entropic Regularization

The above optimal transport model could induce a sparse
solution, which means only a limited number of samples
are transported, suffering from low data efficiency (Blondel
et al., 2018; Vincent-Cuaz et al., 2022). Motivated by the
(Cuturi, 2013), we apply a negative entropy regularization
on the marginal distributions µc and µt to encourage more
samples to be transported, and also avoid solving linear pro-
gramming problems with heavy computation. The entropic
regularizations are defined as

Ω(Tc) =

nc∑
i=1

T c
i·(log T

c
i· − 1), (24)

Ω(Tt) =

nt∑
i=1

T t
i·(log T

t
i· − 1), (25)

where T c
i· is the sum of the i-th row of Tc, where T t

i· is the
sum of the i-th column of Tt, i.e.,

T c
i· =

nt∑
j=1

T c
ij , T t

i· =

nc∑
j=1

T t
ij . (26)
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Note that the entropic regularization here is different from
the one in the Sinkhorn algorithm as mentioned in (Cuturi,
2013), which is on the joint distribution (i.e., the optimal
transport matrix T) to induce a smooth T.

In addition, we constrain Tc and Tt to belong to the follow-
ing domains of the definition

T c = {Tc | (Tc)⊤1nc = µ, T c
ij ∈ [0, 1]}, (27)

T t = {Tt | (Tt)⊤1nt
= µ, T t

ij ∈ [0, 1]}, (28)

which does not consider the constraints T1 = µc and
T⊤1 = µt explicitly, since µc and µt are also parame-
ters to be optimized.

Finally, we obtain the following learning model

min
P,Tc,Tt

⟨Dc,Tc⟩+ ⟨Dt,Tt⟩+ γcΩ(T
c) + γtΩ(T

t)

+ λc⟨Dc,c,Kc⟩+ λt⟨Dt,t,Kt⟩
s.t. P ∈ M,Tc ∈ T c,Tt ∈ T t, (29)

where γ, λc and λt are the trade-off parameters.

The optimization algorithm is presented in the next sec-
tion. After obtaining the solutions Tc and Tt, the estimated
marginal distributions {T c

i·}
nc
i=1 and {T t

i·}
nt
i=1 can be calcu-

lated by Eq. (26) and taken as the weights for control and
treated samples, and ATE can be estimated by

ÂTE =

nt∑
i=1

T t
i·y

t
i −

nc∑
i=1

T c
i·y

c
i . (30)

4.5. Analysis of Estimator

We now discuss the consistency and sample efficiency of
our proposed ATE estimator.

In addition, we need the following assumptions to guarantee
that the cost function exists and is continuously differen-
tiable, and the measures are either subgaussian or defined
on subsets of the real numbers (Dunipace, 2021).

Assumption 4.4. ∃x0 ∈ X :
∫
X D(x0, x)dµ < ∞.

Assumption 4.5. D(·, ·) ∈ C∞ and is L-Lipschitz, and
either µz and µ are σ2 - subgaussian with D = || · ||22 or
X ∈ Rd.

Theorem 4.6. Under the strong ignorability assumption,
the estimated weights ŵz are balancing weights, then our
estimated ÂTE is consistent, i.e., ÂTE → ATE.

Theorem 4.7. Suppose Assumptions 4.4 and 4.5 hold, the
weights ŵz estimated by our proposed method converge
at an n−1/d-rate, which implies the sample efficiency of
estimators based on optimal transport.

The proofs of the above theorems are given in Appendix C.

5. Optimization
Problem (29) involves three groups of variables to optimize,
i.e., the projection matrix P for representation learning, the
optimal transport matrices Tc and Tt for reweighting. We
alternately update these groups of variables as follows.

5.1. Update P

Subproblem with respect to P is

min
P

⟨Dc,Tc⟩+ ⟨Dt,Tt⟩+ λc⟨Dc,Kc⟩+ λt⟨Dt,Kt⟩

s.t. P ∈ M, (31)

in which the cost matrices Dc, Dt, Dc,c and Dt,t depend on
the matrix P. We rewrite the terms in the objective function,
and provide a closed-form solution to this problem in the
following proposition, whose proof is given in the appendix.

Proposition 5.1. Problem (31) is equivalent to the following
problem

min
P

tr
(
P⊤(Θc +Θt + λcΘ

c,c + λtΘ
t,t)P

)
s.t. P⊤P = I, (32)

where the matrices are defined as

Θc = (Xc)⊤diag(Tc1)Xc + (X)⊤diag((Tc)⊤1)X

− 2(X)⊤(Tc)⊤Xc, (33)

Θt = (Xt)⊤diag(Tt1)Xt + (X)⊤diag((Tt)⊤1)X

− 2(X)⊤(Tt)⊤Xt, (34)

Θc,c = 2(Xc)⊤(diag(Kc1)−Kc)Xc, (35)

Θt,t = 2(Xt)⊤(diag(Kt1)−Kt)Xt. (36)

The closed-form solution to this problem is the first d′ eigen-
vectors of the matrix Θc +Θt + λcΘ

c,c + λtΘ
t,t with the

smallest eigenvalues.

The proof is given in Appendix A.

5.2. Update Tc and Tt

The subproblems with respect to Tc and Tt are given as
follows

min
Tc

⟨Dc,Tc⟩+ γcΩ(T
c) s.t. Tc ∈ T c, (37)

min
Tt

⟨Dt,Tt⟩+ γtΩ(T
t) s.t. Tt ∈ T t. (38)

The two problems have similar forms and can be solved by
similar methods. We develop a projected mirror descent
algorithm (Nemirovskij & Yudin, 1983; Raskutti & Mukher-
jee, 2015) based on the KL divergence defined in Eq. (2)
to solve the Problems (37) and (38) with respect to Tc and
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Tt, which are non-trivial to address because of the equality
constraints. For simplicity, we define the objective functions
of the two problems as

F (Tπ) = ⟨Dπ,Tπ⟩+ γπΩ(T
π), (39)

where π ∈ {c, t} indicates the group. At the k-th iteration,
we update Tπ by solving the following problem

(Tπ)k+1 = argmin
Tπ

η⟨∇F ((Tπ)k),Tπ⟩+D(Tπ||(Tπ)k),

s.t. Tπ ∈ T π, (40)

which firstly performs proximal gradient descent with the
Bregman divergence (Banerjee et al., 2005) and the stepsize
η, and then obtains a feasible solution in the set T π by
projection. Next, we show that each of these two operations
has a closed-form solution.

5.2.1. PROXIMAL GRADIENT DESCENT

Let (Υπ)k be the solution to Problem (40), without consid-
ering the constraints Tπ ∈ T π , i.e.,

(Υπ)k = argmin
Tπ

η⟨∇F ((Tπ)k),Tπ⟩+D(Tπ||(Tπ)k).

(41)

By adopting the KL divergence defined in Eq. (2) as the
Bregman divergence D(Tπ||(Tπ)k), the closed-form solu-
tion to the above problem is given as

(Υπ)k = (Tπ)k ⊙ exp(−η∇F ((Tπ)k)), (42)

where the gradient is calculated as

∇ijF ((Tπ)k) = Dπ
ij + γπ log T

π
i· . (43)

5.2.2. PROJECTION OPERATION

To make sure the transport plans (Tπ)k+1 and (Tπ)k+1

satisfy the constraints in Eqs. (27) and (28), We update
(Tπ)k+1 by finding Tπ ∈ T π which is most close to (Υπ)k

under the KL metric, which is achieved by solving the fol-
lowing projection problem

min
Tπ

D(Tπ||(Υπ)k) :=

nπ∑
i=1

n∑
j=1

Tπ
ij log(

Tπ
ij

(Υπ)kij
)− Tπ

ij + (Υπ)kij

s.t. (Tπ)⊤1nπ = µ. (44)

The closed-form solutions to the problems are given as

Tπ
ij =

(Υπ)kij
n
∑nπ

i=1(Υ
π)kij

, (45)

Algorithm 1 summarizes the whole procedure of our
proposed method, named Optimal transport for causal
Inference by Cost Learning1.

1Our code is available at https://github.com/ygyan/
OICL.

Algorithm 1 Optimal transport for causal Inference by Cost
Learning (OICL).

Input: The data matrices Xc and Xt, and the correspond-
ing outcomes Yc and Yt.

1: Initialize Tc and Tt : T c
ij =

1
ncn

, T t
ij =

1
ntn

.
2: repeat
3: Update P according to Proposition (5.1).
4: repeat
5: Calculate Υc according to Eq. (42).
6: Update Tc according to Eq. (45).
7: until Convergence.
8: repeat
9: Calculate Υt according to Eq. (42).

10: Update Tt according to Eq. (45).
11: until Convergence.
12: until Convergence.
13: Obtain sample weights based on Eq. (26).
14: Estimate ATE according to Eq. (30).

6. Experiment
6.1. Experiment Setup

We compare the performance of OICL with the following
methods: IPW (Rosenbaum & Rubin, 1983) estimates ATE
via reweighting with the inverse of propensity scores. DR
(Robins et al., 1994) estimates ATE with a combination
of IPW and outcome regression model. CBPS (Imai &
Ratkovic, 2014) exploits dual characteristics of the propen-
sity score, which models treatment assignment while op-
timizing the covariate balance. ARB (Athey et al., 2018)
combines weighting adjustment via directly balancing on
confounders and regression adjustment on outcomes. EBAL
(Hainmueller, 2012) estimates ATE by moment alignment
with a maximum entropy scheme. We achieve EBAL(1)
ensuring the first moment is balanced, and EBAL(2) en-
suring the first and second moments are balanced. CFR
(Shalit et al., 2017) learns a representation to balance the
distributions of treated and control groups via Integral Prob-
ability Metric (IPM). Specifically, we use the Wasserstein
distance as the IPM term for baseline. OTW (Dunipace,
2021) learns weights by minimizing the Sinkhorn diver-
gence between treated and control groups, and adopts the
LBFGS algorithm to solve. CBIPM (Kong et al., 2023)
uses the kernel MMD method to achieve the smallest IPM
value across treated and control groups. Both parametric
CBIPM(P-CBIPM) and nonparametric CBIPM(N-CBIPM)
algorithms are adopted. ℓ1-TCL (Wei et al., 2023) trains a
rough estimator first, and uses ℓ1 regularization to correct
the bias. DKLITE (Zhang et al., 2020) uses deep kernel
regression algorithm and posterior regularization framework
to estimate treatment effects.

For evaluating the performance of the conducted methods,
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Treated Group
Control Group

(a) Original covariates

Treated Group
Control Group

(b) Learned representations

Figure 1. Illustration results of the original covariates (left) and
learned representations (right) based on UMAP. A red point means
a treated sample while a blue point means a control sample.

we adopt the mean absolute errors (MAE) |ÂTE −ATE|
as the metric. We carry out the experiments 10 times and
report the mean and standard deviation.

6.2. Results on Simulation Data

Following similar protocols in (Yao et al., 2018; Hatt &
Feuerriegel, 2021), we conduct our simulation experiment
in two different settings:

• For the setting of Gaussian distribution, we generate
1500 treated samples from N (µ10×1

t , 0.5×ΣtΣ
T
t ) and

1500 control samples from N (µ10×1
c , 0.5 × ΣcΣ

T
c ),

where Σ. ∼ U((0, µ.)
10×10). We fix µt to 0.5 and

vary µc to simulate different confounding biases.

• For the setting of Non-Gaussian distribution, we gen-
erate data from Gaussian mixture distribution. We
first generate two Gaussian distributions: N1 =
N (0.510×1, 0.5 × Σ1Σ

T
1 ), N2 = N (110×1, 0.5 ×

Σ2Σ
T
2 ), where Σ1 ∼ U((0, 0.5)10×10), Σ2 ∼

U((0, 1)10×10). Then, we generate 1500 treated and
control samples from xt ∼ αtN1 + (1 − αt)N2,
xc ∼ αcN1 + (1− αc)N2. We fix αt to 0.5 and vary
the value of αc to simulate different selection bias.

• For the distributions above, the outcomes are both gen-
erated as y = sin(w⊤

1 x) + cos(w⊤
2 (x⊙ x)) + t + ϵ,

where w. ∼ U((0, 1)10×1), ϵ ∼ N (0, 0.1).

The results are reported in Table 1. IPW, DR, CBPS, and
ARB have limited performance, because these methods de-
pend heavily on the correct specification of the propensity
score or the conditional outcome regression models, which
is usually difficult to obtain in practice. EBAL(2) performs
better than EBAL(1), since it additionally uses the second
moment as the distribution discrepancy metric. Although
CFR takes some advantages of the neural network, it still
performs not well in some complex settings without a large
number of samples. OTW demonstrates competitive perfor-

mance compared with other baselines, reflecting the superi-
ority of the optimal transport technology. Based on optimal
transport, OICL not only regards the optimal transport cost
as the metric of distribution shift, but also deeply explores
the underlying cost function by leveraging the guidance of
factual outcomes, which brings significant improvements.

Additionally, to verify the role of the projection matrix P
in cost learning which maps the original covariates into a
balanced subspace, we further visualize the result using sim-
ulation data with µc = 1.2. Specifically, we use Uniform
Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018) to find low-dimensional embeddings of the orig-
inal covariates and learned representations induced from P
in 3-dimensional spaces. The results are shown in Figure
1, in which different colors indicate binary treatments t.
We observe that the learned representations are more over-
lapped compared with the original covariates, suggesting
the effectiveness of the projection matrix P for distribution
balancing, which can significantly reduce confounding bias.

6.3. Results on Real-world Data

We also conduct experiments on two real-world datasets,
including LaLonde and Twins. LaLonde2 consists of two
parts. The first part comes from the RCT (NSW), and we
replace the control group in NSW with another control group
from the observational data (PSID3) in the second part.
The treatment is whether the participant attends the job
training program, and the outcome is the earning in the year
1978. The data contains 8 covariates. Twins is collected
from the twins born in USA between 1989-1991 (Almond
et al., 2005). Each twin pair has 30 covariates. For each
twin pair, we observe both the cases t = 0 (lighter) and
t = 1 (heavier). The outcome is the one-year mortality. To
simulate the confounding bias, we choose one of the twins
as follows: t ∼ Bern(sigmoid(w⊤x + b)) where w ∼
U((−0.1, 1)30×1) and b ∼ N (0, 0.1). Infant Health and
Development Program (IHDP) aims to study the treatment
effect of specialist home visits on infants’ future cognitive
test scores. Each pair comprises 25 covariates that measure
aspects of children and their mothers. We consider setting
”A” in the NPCI package (Dorie, 2016).

The results are reported in Table 2. The performance of
IPW and ARB is relatively lower, while CBPS achieves
better performance by exploiting the dual characteristic
of propensity score. DR performs well in Twins and in
LaLonde compared with other baselines, possibly because
the specified linear parametric methods are suitable. EBAL
achieves modest performance in Twins but performs badly
in Lalonde, possibly because the low-order moments are
insufficient to balance the complex distribution in LaLonde.
OICL performs best by exploiting optimal transport with

2https://users.nber.org/ rdehejia/data/.nswdata2.html
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Table 1. Result on simulation data. We report mean and standard deviation of MAE and highlight the best result in bold.
Gaussian Non-Gaussian

µc = 0.6 µc = 0.8 µc = 1.0 µc = 1.2 αc = 0.4 αc = 0.3 αc = 0.2 αc = 0.1
IPW 0.1242 ± 0.0492 0.2317 ± 0.0425 0.2407 ± 0.0621 0.2035 ± 0.1050 0.0387 ± 0.0240 0.0493 ± 0.0325 0.0583 ± 0.0422 0.0866 ± 0.0499
DR 0.1122 ± 0.0455 0.1874 ± 0.0457 0.1669 ± 0.0722 0.0858 ± 0.0692 0.0387 ± 0.0241 0.0492 ± 0.0324 0.0572 ± 0.0414 0.0823 ± 0.0484

CBPS 0.1289 ± 0.0508 0.2223 ± 0.0596 0.2209 ± 0.0633 0.1832 ± 0.0825 0.0404 ± 0.0249 0.0517 ± 0.0332 0.0620 ± 0.0464 0.0930 ± 0.0568
ARB 0.1219 ± 0.0503 0.2146 ± 0.0536 0.1905 ± 0.0700 0.0924 ± 0.0934 0.0388 ± 0.0254 0.0502 ± 0.0340 0.0593 ± 0.0439 0.0872 ± 0.0503

EBAL(1) 0.1234 ± 0.0742 0.2320 ± 0.1045 0.2168 ± 0.1111 0.2036 ± 0.1521 0.0386 ± 0.0240 0.0493 ± 0.0323 0.0574 ± 0.0413 0.0846 ± 0.0467
EBAL(2) 0.0882 ± 0.0558 0.1557 ± 0.0749 0.1949 ± 0.0928 0.1989 ± 0.1134 0.0367 ± 0.0248 0.0397 ± 0.0285 0.0452 ± 0.0309 0.0603 ± 0.0410

CFR 0.0522 ± 0.0424 0.1726 ± 0.0742 0.2374 ± 0.0699 0.2683 ± 0.1006 0.0799 ± 0.0615 0.0854 ± 0.0942 0.0784 ± 0.0713 0.0625 ± 0.0406
OTW 0.0811 ± 0.0824 0.0986 ± 0.0902 0.1249 ± 0.1199 0.1387 ± 0.0976 0.1092 ± 0.0878 0.0891 ± 0.0813 0.0837 ± 0.0824 0.0762 ± 0.0764

P-CBIPM 0.1248 ± 0.0511 0.2187 ± 0.0524 0.2056 ± 0.0577 0.1646 ± 0.0763 0.0410 ± 0.0270 0.0581 ± 0.0379 0.0736 ± 0.0470 0.1087 ± 0.0533
N-CBIPM 0.0360 ± 0.0350 0.1204 ± 0.0510 0.1217 ± 0.0563 0.1100 ± 0.07020.1100 ± 0.07020.1100 ± 0.0702 0.0301 ± 0.0288 0.0458 ± 0.0320 0.0495 ± 0.0367 0.0568 ± 0.0412
ℓ1-TCL 0.1269 ± 0.0489 0.2258 ± 0.0456 0.2148 ± 0.0624 0.1448 ± 0.0941 0.0420 ± 0.0255 0.0543 ± 0.0336 0.0640 ± 0.0435 0.0902 ± 0.0529
DKLITE 0.0408 ± 0.0278 0.0918 ± 0.0536 0.1761 ± 0.0716 0.1267 ± 0.1295 0.0306 ± 0.0160 0.0301 ± 0.0227 0.0336 ± 0.0198 0.0511 ± 0.0324

OICL 0.0272 ± 0.02120.0272 ± 0.02120.0272 ± 0.0212 0.0720 ± 0.03580.0720 ± 0.03580.0720 ± 0.0358 0.1125 ± 0.05700.1125 ± 0.05700.1125 ± 0.0570 0.1178 ± 0.0932 0.0138 ± 0.01770.0138 ± 0.01770.0138 ± 0.0177 0.0168 ± 0.01680.0168 ± 0.01680.0168 ± 0.0168 0.0207 ± 0.01870.0207 ± 0.01870.0207 ± 0.0187 0.0292 ± 0.01850.0292 ± 0.01850.0292 ± 0.0185

Table 2. Result on real-world data. We report the mean and stan-
dard deviation of MAE and highlight the best result in bold.

Twins(1e-2) Lalonde IHDP
IPW 0.3456 ± 0.2156 414.0558 ± 231.6505 0.2156 ± 0.0997
DR 0.1740 ± 0.1209 211.1198 ± 143.7868 0.1262 ± 0.1343

CBPS 0.2263 ± 0.1187 248.9927 ± 272.2510 0.0931 ± 0.0686
ARB 0.1725 ± 0.1238 300.1334 ± 190.0572 0.1160 ± 0.0789

EBAL(1) 0.2249 ± 0.1491 593.1440 ± 205.0838 0.1260 ± 0.1338
EBAL(2) 0.2051 ± 0.1895 549.1707 ± 380.8954 0.2413 ± 0.3902

CFR 0.4539 ± 0.2115 439.6378 ± 376.2243 0.3016 ± 0.3049
OTW 0.6688 ± 0.4421 730.1346 ± 197.5947 0.1429 ± 0.1176

P-CBIPM 0.2017 ± 0.1768 148.2635 ± 89.1910 0.0904 ± 0.0610
N-CBIPM 0.1738 ± 0.1625 179.5005 ± 179.4790 0.0864 ± 0.0622
ℓ1-TCL 0.3239 ± 0.3120 393.2358 ± 245.1366 0.1208 ± 0.1277

DKLITE 0.2074 ± 0.1327 335.9644 ± 259.2227 0.0874 ± 0.0566
OICL 0.1674 ± 0.17330.1674 ± 0.17330.1674 ± 0.1733 146.3449 ± 141.7637146.3449 ± 141.7637146.3449 ± 141.7637 0.0698 ± 0.06170.0698 ± 0.06170.0698 ± 0.0617
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Figure 2. Results of varying values of parameters on LaLonde.

learnable sample weights and the cost function.

6.4. Sensitivity Analysis

We take LaLonde as an example to evaluate the effects of the
parameters of our model. We vary the parameters λc, λt, γc,
γt in Eqs. (29), from 10−3 to 5 and plot the result in Figure
1. From Figures 2a and 2b, we observe that MAE increases
as λc and λt become too large or too small, indicating that
moderate strength of the factual outcome guidance term can
successfully guide the cost function learning and achieve
good performance. From Figures 2c and 2d, we have a

similar observation since a large strength of entropic regu-
larization will push the learned weights close to the uniform
distribution, while a small strength of the regularization
makes the transport too sparse.

7. Conclusion
In this paper, we address confounding bias in causal infer-
ence by investigating the connection between the balancing
error and optimal transport. We show that the balancing er-
ror can be reduced by minimizing the Wasserstein discrepan-
cies with learnable marginal distributions and the underlying
cost function, which is associated with our defined balanc-
ing error. In specific, we incorporate the potential outcomes
and propose a learning problem that unifies reweighting and
representation learning. Our learning model provides ad-
ditional possibilities to exploit optimal transport for causal
inference with different designs of the balancing error, such
as one considering propensity scores.

Impact Statement
This research advances the fields of causal effect estimation
and optimal transport by constructing a theoretical connec-
tion between them, which motivates us to develop a causal
effect estimation method under the framework of optimal
transport. Our method could be applied to a wide range of
applications, such as decision-making in healthcare, public
policy, business, etc.
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A. Proof of Proposition 5.1
Subproblem with respect to P is

min
P

⟨Dc,Tc⟩+ ⟨Dt,Tt⟩+ λc⟨Dc,Kc⟩+ λt⟨Dt,Kt⟩

s.t. P ∈ M, (46)

in which the cost matrices Dc, Dt, Dc,c and Dt,t depend on
the matrix P. We rewrite the terms in the objective function,
and provide the closed-form solution to this problem.

Proposition 5.1. Problem (31) is equivalent to the follow-
ing problem

min
P

tr
(
P⊤(Θc +Θt + λcΘ

c,c + λtΘ
t,t)P

)
s.t. P⊤P = I, (47)

where the matrices are defined as

Θc = (Xc)⊤diag(Tc1)Xc + (X)⊤diag((Tc)⊤1)X

− 2(X)⊤(Tc)⊤Xc, (48)

Θt = (Xt)⊤diag(Tt1)Xt + (X)⊤diag((Tt)⊤1)X

− 2(X)⊤(Tt)⊤Xt, (49)

Θc,c = 2(Xc)⊤(diag(Kc1)−Kc)Xc, (50)

Θt,t = 2(Xt)⊤(diag(Kt1)−Kt)Xt. (51)

The closed-form solution to this problem is the first d′ eigen-
vectors of the matrix Θc +Θt + λcΘ

c,c + λtΘ
t,t with the

smallest eigenvalues.

Proof. First of all, we rewrite the transport cost between xc
i

and xj as

Dc
ij = ∥P⊤xc

i −P⊤xj∥22
= ∥P⊤xc

i∥22 + ∥P⊤xj∥22 − 2⟨P⊤xc
i ,P

⊤xj⟩. (52)

Therefore, we have

⟨Dc,Tc⟩

=

nc∑
i=1

n∑
j=1

Dc
ijT

c
ij ,

=

nc∑
i=1

(
∥P⊤xc

i∥22
) n∑

j=1

T c
ij +

n∑
j=1

(
∥P⊤xj∥22

) nc∑
i=1

T c
ij

− 2

nc∑
i=1

n∑
j=1

(
⟨P⊤xc

i ,P
⊤xj⟩

)
T c
ij

=⟨(XcP)(XcP)⊤, diag(Tc1)⟩+ ⟨(XP)(XP)⊤,

diag((Tc)⊤1)⟩ − 2⟨(XcP)(XP)⊤,Tc⟩
=tr

(
P⊤(Xc)⊤diag(Tc1)XcP

)
+ tr

(
P⊤X⊤diag((Tc)⊤1)XP

)
− 2tr

(
P⊤X⊤(Tc)⊤XcP

)
. (53)

Similarly, we have

⟨Dt,Tt⟩ = tr
(
P⊤(Xt)⊤diag(Tt1)XtP

)
+ tr

(
P⊤X⊤diag((Tt)⊤1)XP

)
− 2tr

(
P⊤X⊤(Tt)⊤XtP

)
. (54)

For the symmetric and non-negative matrices Kc and Kt in
Problem (31), based on the property of the Laplacian matrix,
we have

⟨Dc,c,Kc⟩ =
nc∑
i=1

nc∑
j=1

∥P⊤xc
i −P⊤xc

j∥22Kc
ij

= 2tr
(
P⊤(Xc)⊤(diag(Kc1)−Kc)XcP

)
,

(55)

⟨Dt,t,Kt⟩ =
nt∑
i=1

nt∑
j=1

∥P⊤xt
i −P⊤xt

j∥22Kt
ij

= 2tr
(
P⊤(Xt)⊤(diag(Kt1)−Kt)XtP

)
.
(56)

Combining Eqs. (53), (54), (55), (56), the proposition can
be proved immediately.

B. Computational Complexity Analysis
Let nc, nt, n be the numbers of control samples, treated
samples, all the samples, respectively. And d, d′ are the
numbers of features before and after projection, respectively.
For each iteration of the outer loop in Algorithm 1, in Line
3, the complexity of updating P ∈ Rd×d′

is O(n2d+ d3),
and the complexity of calculating Dc and Dt is O(ndd′ +
n2d′). For the update of Tc and Tt in Lines 4 - 11, the
complexity is O(tcnnc + ttnnt), where tc and tt are the
numbers of iterations to repeatedly perform Eqs. (42) and
(45) for control and treated groups, respectively. Since
tc and tt are much smaller compared with nc and nt, the
complexity of obtaining Tc and Tt is O(n2). Therefore,
the complexity of each iteration of the outer loop in Lines 2
to 12 is O(n2d + ndd′ + d3). After iteration, in Lines 13
and 14, the complexities of Eqs. (26) and (29) are O(n2)
and O(n), respectively.

Moreover, we empirically evaluate the running time of all
methods on synthetic data. Hardware used in this experi-
ment are: CPU: Intel i5-12600K, GPU: NVIDIA GeForce
RTX 4090. The result shows in Table 3.

C. Consistency and Sample Efficiency
Our proposed ATE estimator is consistent, and the weights
learned by optimal transport (KP) will converge at a n−1/d-
rate (d is the feature dimensions), which implies the sample
efficiency of estimators based on KP.
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Table 3. Running time on synthetic data (sec.)
IPW DR CBPS ARB EBAL(1) EBAL(2) CFR OTW P-CBIPM N-CBIPM ℓ1-TCL DKLITE OICL
0.4 2.8 70.3 23.8 14.0 15.4 116.8 727.8 9.2 10.5 303.5 13.2 19.2

To prove that, we first give the notations required to prove.
Let z = {t, c} to denote the treatment or control group
indicator, µz

n and µn to denote the empirical distribution
for group z and the full population, µz and µ to denote the
corresponding population distributions.

After that, we define the importance sampling weights for
group z as wz,∗

i =
w̃z,∗

i∑
i w̃

z,∗
i

, w̃z,∗
i = dµ(x)

dµz(x) . Also, we have
the following Lemma C.1 about the convergence of wz,∗ as
shown in (Dunipace, 2021).

Lemma C.1. Under the strong ignorability assumption,
the importance sampling weights wz,∗ converges to µ, i.e.,
wz,∗ → µ.

Based on Lemma C.1, we can derive that the weights
learned from optimal transport ŵz also converges to µ.
Specifically, based on definition of the estimated weights
ŵz = argminwz KP (wz, µn), we have KP (ŵz, µn) ⩽
KP (wz,∗, µn). When n → ∞, we have wz,∗ →
µ,KP (wz,, µn) → 0 ⇒ KP (ŵz, µn) → 0, ŵz → µ.

Theorem C.2. Under the strong ignorability assumption,
the estimated weights ŵz are balancing weights, then our
estimated ÂTE is consistent, i.e., ÂTE → ATE.

Proof. We firstly show that the estimated weights ŵz are
balancing weights. According to the Theorem 4.1 in our
paper, we use balancing error errwm to capture the covariate
balancing degree, and we have: errwm ⩽ KP (ŵt, µn) +
KP (ŵc, µn) → 0, which shows when n is large enough,
the weights ŵz learned by KP is balancing weights that
balance the weighted covariates distributions of between
groups, i.e., P t(x)ŵt(x) = P c(x)ŵc(x) = P (x).

Therefore, according to the Theorem 1 in (Li et al., 2018),
the estimated ATE based on balancing weights is consistent,
i.e., ÂTE → ATE.

Theorem C.3. Suppose Assumptions 4.4 and 4.5 hold, the
weights ŵz estimated by our proposed method converge
at an n−1/d-rate, which implies the sample efficiency of
estimators based on optimal transport.

Proof. Based on definition of ŵz and property of KP ,
we have KP (µn, µn) ⩽ KP (ŵz, µn) ⩽ KP (wz,∗, µn).
If we add −KP (µ, µ) to each term, we obtain
KP (µn, µn)−KP (µ, µ) ⩽ KP (wz, µn)−KP (µ, µ) ⩽
KP (wz,∗, µn) − KP (µ, µ). Under the assumption 4.4
and 4.5, as stated in (Dudley, 1969; Genevay et al., 2019),
we have E[KP (µn, µn) − KP (µ, µ)] = O

(
1

n1/d

)
and

E [KP (wz,∗, µn)−KP (µ, µ)] = O
(

1
n1/d

)
. Thus, we

have E [KP (ŵz, µn)−KP (µ, µ)] = O
(

1
n1/d

)
.

D. The balance constraint m(·)
m(·) is a function that captures the information of data
samples. We do not restrict the form of m(·) as long as the
balancing error errwm defined on m(·) can characterize the
degree of confounding bias in some sense.

Besides factual outcome, we can also introduce propensity
scores into the function m(·) to reduce the balancing er-
ror. Based on this, the affinity matrices Kc and Kt can
be constructed based on the propensity scores to learn the
cost function. We empirically evaluate the performance
based on propensity scores and report the results in Table 4.
We observe that our algorithm with propensity scores also
achieves promising performance.

E. Convergence Analysis
The subproblems with respect to Tc and Tt in Eqs. (37)
and (38) are convex, while the subproblem with respect to
P in Eq. (31) is non-convex since the constraint P⊤P = I
is not convex.

The objective value of Problem (29) is convergent. For the
subproblem with respect to Tc and Tt, we can obtain a
function value convergence from (Benamou et al., 2015;
Peyré et al., 2016). In addition, the subproblem with respect
to P has a closed-form solution, we obtain that the objective
value is non-increasing during iteration. Combining the
condition that the objective value is lower-bounded, we can
obtain the convergence of the objective value by using the
monotone convergence theorem.

We also empirically evaluate the convergence result of our
algorithm. At the k-th iteration, we report ∆(Tc)k+1 =∑

i,j | (T c
ij)

k+1 − (T c
ij)

k | as example to show the conver-
gence, as well as the objective function in Eq. (29). The
result is shown in Figure 3.

F. Extension to Estimate ATT or ITE
It is possible to extend our algorithm to estimate ATT (aver-
age treatment effect on the treated group) or ITE (individual
treatment effect). For ATT, we can fix the weights of treated
samples with 1

nt
, and reduce the balancing error by the
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Table 4. The performance based on propensity scores.
µc=0.6 µc=0.8 µc=1.0 µc=1.2 αc=0.4 αc=0.3 αc=0.2 αc=0.1 Twins(1e-2) Lalonde IHDP

0.0273 ± 0.0211 0.0720 ± 0.0360 0.1125 ± 0.0570 0.1178 ± 0.0932 0.0138 ± 0.0177 0.0168 ± 0.0168 0.0208 ± 0.0185 0.0292 ± 0.0186 0.1674 ± 0.1733 167.8991 ± 97.3491 0.1266 ± 0.0931

Table 5. Confidence Interval Results.
µc=0.6 µc=0.8 µc=1.0 µc=1.2 αc=0.4 αc=0.4 αc=0.4 αc=0.4 Twins(1e-2) Lalonde IHDP

(0.0162, 0.0423) (0.0500, 0.0926) (0.0819, 0.1449) (0.0765,0.1885) (0.0064, 0.0277) (0.0102, 0.0297) (0.0125, 0.0330) (0.0195,0.0407) (0.0863, 0.2887) (68.2025, 231.5016) (0.0433, 0.1178)
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Figure 3. Empirically Convergence Results

following model to learn weights for control samples:

min
µc,ϕ

W(Xc,Xt, ϕ). (57)

After reweighting the control samples based on µc, we can
estimate ATT by

ÂTT =

nt∑
i=1

1

nt
yti −

nc∑
i=1

µc
iy

c
i . (58)

For ITE, we can leverage the weights learned by our model
to train a reweighting regression model to predict the coun-
terfactual outcome as the approach in (Assaad et al., 2021).

G. Confidence Interval
For the confidence interval, we use bootstrap to calculate
95% confidence interval of each dataset with 500 times
resamples to form the bootstrap distribution. The results are
shown in Table 5.
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