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Abstract
The rapid rise of AI has seen the coexistence of
fully open-source models and closed-source, API-
based approaches, each with its own strengths
and limitations. In this position paper, we intro-
duce the Open, Monetizable, and Loyal (OML)
paradigm for securely distributing and govern-
ing AI models. OML aims to preserve open-
ness and transparency while providing robust
means for fair compensation and ethical safe-
guards—features lacking in existing frameworks.
We survey theoretical and practical OML con-
structions, outline an end-to-end protocol for de-
ployment, and examine both market-based and
policy alternatives. Ultimately, we assert that an
idealized OML ecosystem can yield a more eq-
uitable, self-sustaining, and innovation-friendly
environment. We call on the research community
to refine the cryptographic and economic mech-
anisms needed to realize OML’s potential as the
foundation of a collaborative, resilient AI future.

1. Introduction and Motivation - Why OML?
1.1. Era of AI
Artificial Intelligence (AI) has steadily improved in a wide
range of tasks. Robots now handle household chores, like
vacuuming (iRobot, 2023; Dynamics, 2023); AI systems
outperform humans in games like Chess and Go (Silver
et al., 2017a;b; 2018) and in formal mathematical reasoning,
such as with Alpha Proof by Google DeepMind (DeepMind,
2024). AI has also made significant contributions to scien-
tific research, notably in protein structure prediction (Jumper
et al., 2021; Evans et al., 2021), advancing drug discovery
(Boström et al., 2018; Strokach et al., 2020; Schneider et al.,
2020) and, more recently, in the FunSearch program by
Google DeepMind (Romera-Paredes et al., 2024). One of
the most significant breakthroughs towards general intelli-
gence was the rise of generative deep models, such as GPT4
(OpenAI, 2023b; Bubeck et al., 2023), OpenAI o1 (OpenAI,
2024) and DeepSeek r1 (Guo et al., 2025) which garnered
worldwide attention. These large language models (LLMs)
demonstrate extraordinary proficiency in natural language
processing and excel in diverse fields like medicine, law,

accounting, computer programming, and music. Moreover,
they can efficiently interface with external tools such as
search engines, calculators and APIs to perform tasks with
minimal guidance, demonstrating their impressive adapt-
ability and learning capability. This breakthrough indicates
that AI is on track to dominate and, in many cases, replace
human interactions, becoming a crucial innovation engine
for all human activities and the way societies organize and
govern themselves.

However, the development and deployment of AI are almost
entirely controlled by a few powerful organizations, led
by a handful of individuals, who are feverishly racing to
create Artificial General Intelligence (AGI). Their decisions
– made with little public oversight – will shape the future of
humanity, often with unforeseen consequences.

Compounding these concerns is Jevons’ Paradox (Alcott,
2005). Originally observed in the context of coal consump-
tion, it states that increases in efficiency or the apparent
‘improvement’ of a technology can lead to higher overall
usage rather than lower consumption. In the AI context, as
advanced algorithms become more efficient, accessible, and
integrated into diverse applications, the overall demand for
AI technologies surges. This intensifies reliance on large-
scale computing resources and further incentivizes a small
number of powerful entities to invest heavily, thereby con-
solidating their influence, favoring monopolization and AI
dictatorship. As a result, despite the growing talent pool in
AI, opportunities remain disproportionately concentrated,
making the situation worse today than ever before.

Given the subtle yet significant anti-monopolization chal-
lenges faced by AI today, our vision is that, it is significant
crucial to democratize AI development by bringing own-
ership rights to an open, collaborative platform and
enabling community-built AI. The AI community should
aim to create the science and technology that empowers
anyone to build, collaborate, own, and monetize AI prod-
ucts – ushering in a new era of AI commercialization and a
community-built open AGI.

1.2. Community-built AI
With true community-built AI, the participants who con-
tributed to the AI have the technological freedom to be
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rewarded for their contributions and to decide on how it can
be used. The AI builders can introduce new models into
the ecosystem, fine-tune existing models, provide data or
filter data for training models. AI users will download and
use models for creating many new AI applications. In fact,
even AI users can contribute to AI by providing the data
associated with usage; in this role, they serve as AI builders.

To align the incentives of builders with the growth of the AI
economy through innovations, we need to make sure that as
more users download and use AI models, the contributors
involved are rewarded. In Figure 1 we can see how AI
platforms work now and the focus of this work, which is to
close the loop properly by incentivizing AI contributors.

Figure 1. On the left, a one-way interaction is depicted, where AI
platforms deliver outputs to users without feedback. On the right,
the process evolves into a closed-loop system, where user feed-
back influences the AI platform, aligning incentives and enabling
continuous improvement in an open environment.

In particular, we need to make sure that the following re-
quirements are met:

1. Open Models. All models are available to be down-
loaded and used for different AI applications;

2. Decentralized Control. The access to a model for
downloading and permission for using is decentralized
(not controlled by any one party);

3. Trust-free Monetization. The assertion of contribu-
tions by AI builders and the assignment of correspond-
ing rewards on usage should happen securely, without
any additional trust assumptions.

The AI that we see all around us now was built by com-
bining multiple open-source contributions. Until recently,
all core libraries were open and powerful models such as
BERT (Devlin et al., 2018), and even GPT (OpenAI, 2023b;
Bubeck et al., 2023), were available openly. However, as AI
matured and the economic potential of this powerful tech-
nology became clear, most large companies developing AI
in the open have switched to a closed development strategy.
These companies geared their efforts towards dominating
the AI economy where everyone else will be a high-level
user of the AI that they will build (OpenAI, 2023a; Fore-
front, 2023; Labs, 2023). This is not only unfair to the
original contributors, who are denied their fair share in this

new economy, but hinders AI innovation. Furthermore, this
poses challenges of AI safety (Amodei et al., 2016; Leike
et al., 2017) and alignment (Ji et al., 2024; Soares & Fallen-
stein, 2015), which is no longer decided based on broader
goals and consensus but is determined by the business and
political priorities of the closed AI companies.

In the other direction, open models such as Llama (Touvron
et al., 2023a) and DeepSeek (DeepSeek, 2024) continue to
improve and remain at par with or surpass closed models.
Every industry in the world is adopting AI and the variety
of use cases increases by the day. The pool of AI innovators
is expanding rapidly and a large part of global work force
wishes to contribute to AI. Combining these forces can lead
to a much more powerful and inclusive AI, which will be
community-built and open for innovations. But this requires
a new socio-technical framework for aligning incentives for
AI builders, allowing them to fairly share rewards of the AI
economy they help build for a more sustainable and robust
development cycle.

1.3. AI Service Landscape
Today, AI is being delivered to users via two different ser-
vice models.

• Closed. In this paradigm, the primary method for
accessing AI models is through public inference APIs
(OpenAI, 2023a; Forefront, 2023; Labs, 2023). For
instance, the OpenAI API enables users to interact
with models like ChatGPT (OpenAI, 2022) and DALL-
E (Ramesh et al., 2021) via a web interface. Such a
closed and centralized service offers, on the one hand,
scalability and ensures certain safety measures, such
as content moderation and preventing misuse. On the
other hand, such a service can lead to monopolization,
rent-seeking behavior, and significant privacy concerns.
Additionally, users have no control over the service
they pay for, as the model owners can arbitrarily filter
user inputs, alter outputs, or change the underlying
model behind the API. While these services might
also provide options for users to fine-tune their closed
models, the fine-tuning is limited by the associated
API. This service is best represented by OpenAI’s GPT
service and Google’s Gemini service.

• Open. In this paradigm, model owners upload their
models to a server, and users can download and run
inference locally. Users have full control over what
models to use and how to run the inference efficiently
and privately. Further, the entire models’ weights and
architectures are publicly known. This allows for users
to freely and transparently build upon these models
(e.g, by fine-tuning) as well as composing seamlessly
with other AI models. This service is best represented
by Meta’s Llama models, DeepSeek, and Hugging
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Face platform’s large variety of AI models. However,
once the models are uploaded, the model owners essen-
tially give up ownership: they can neither monetize the
models effectively nor control their unsafe or unethical
usage – no loyalty.

Essentially, both of these paradigms have their drawbacks.
AI that is closed forces the model user to forgo any control
and transparency over the model that they are using, and this
paradigm, featuring OpenAI ChatGPT and Google Gemini,
has been criticized for lack of transparency and risks arising
from arbitrary manipulation. AI that is open is desirable and
appealing, as it gives back to the user full control and trans-
parency. But it is not a full solution either, as it compels the
model owner to give up their models’ monetization oppor-
tunities. This creates a lack of proper incentives for model
creators and leads to unsustainable production. A telling
example is DeepSeek, which survives on funding from a
hedge fund run by its parent company rather than generating
its own profit —an impractical and fragile arrangement.

1.4. New Paradigm: OML (Open, Monetizable, Loyal)
The closed and open models both have pros and cons, as
observed above. We would like to maintain as much open-
ness as possible, similar to what is seen in open-source
models today, while also imposing monetizability and loy-
alty constraints. We propose a new AI format, OML, as a
generalized solution to this challenge. Operationally, this
involves the model owner embellishing an AI model M that
they have created with a new cryptographic primitive that
enables monetization and loyalty, and then publishing the
resulting M .oml openly. We begin by expanding upon the
acronym OML: Open, Monetizable, and Loyal.

• Open. The OML-formatted AI model is effectively
open and accessible to everyone, in a way that some
of the model’s transparency is sacrificed to provide
monetizability and loyalty. Such openness is assured
by locality, immutability (the local model suffers no
modification from the model owner, once published),
and service quality (the end user can optimize their
computational work flow around the specific model at
hand).

• Monetizable. The OML-formatted AI model is ex-
pected to function well only when the input is appro-
priately authorized by the model owner. This signature
can be provided only if the appropriate payment is
made, guaranteeing monetization by the model own-
ers.

• Loyal. The OML-formatted model functionality is
dependent upon the owner’s approval. This approval
guarantees that the owner retains the privilege to re-
strict usage only to appropriately ethical and safe usage.
OML formatting (without user privacy) decouples the

AI development and usage from its adherence to safety
and societal norms.

We note that while monetizability and loyalty properties
depend on the model owner’s rights to govern its usage,
they are subtly different: since monetizability is inherently
economic in nature, it can be potentially managed post
hoc (e.g., asking users to post collateral which they stand
to forfeit if the terms of distribution, including payments,
are violated); loyalty, however, may not have an economic
foundation and needs to be addressed upfront. We note that
loyalty is more general and thus implies monetizability.

By introducing the concept of OML, the ultimate goal is to
democratize AI by creating a truly open AI — rather than
just another copy of ”OpenAI” — all without compromising
model monetization or commercialization.

2. Introducing OML - A Cryptographic
Primitive for Open, Monetizable, and Loyal
AI

2.1. Overview of the OML Format
In this section, we provide an overview of the OML crypto-
graphic primitive. We start from a description of the prop-
erties an OML-formatted AI model satisfies (Section 2.2).
Next, we discuss the space of attacks under which OML
primitives should provide security guarantees (Section 2.3).
With this framework, we conduct a detailed discussion of
potential canonical approaches to achieving OML in the
upcoming section (Section 3), one of which we investi-
gate in detail in Section 4. The connections to classical
cryptographic primitives (e.g., fully homomorphic encryp-
tion, program obfuscation, etc.) will emerge more sharply
as we explore the design space of OML formatting in the
rest of this paper. Further, models endowed with the OML
cryptographic primitive are natural AI artifacts in an open,
incentive-compatible AI marketplace; this design is ex-
plored in detail in Section 5.

2.2. Properties of the OML Format
The goal of the OML cryptographic primitive is to allow
AI models to be distributed in a format that is as open as
possible, while carefully balancing this openness to preserve
the intellectual property rights of the model owners. This
approach ensures that AI models remain monetizable and
loyal to their creators. By “open”, we are requiring some
grounding properties of the fully-open paradigm: (a) the
model will be hosted locally (i.e., on-prem, allowing work-
flow optimization); and (b) the model’s performance can be
improved locally (e.g., fine-tuning and retrieval-augmented
generation). By “intellectual property rights protection”, we
mean that even if the OML-formatted AI model is openly
available for download, only users authorized by the model
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owner can use the model to get accurate outputs. Crucially,
the format guarantees that users cannot circumvent these
rights without incurring major expenses (e.g., by costly fine-
tuning the model using a significant amount of data).

Rigorously, given an AI model M in any of the widely-used
formats (e.g., .pth, .onnx) which takes as input x ∈ X , an
ideal OML formatted-version M .oml of that same model
can be constructed. For authorized users, usage of this
OML-formatted model would be granted on a per-input
basis, as follows. In order to extract an accurate response,
OML models would require taking as input s(x) where x
is the standard input that the model user wants to process,
i.e., prompts for language models and images for image
classifiers, and s(x) is a modification of the original input
carrying an undecipherable x-specific permission signal
from the model owner. One more concrete example of
an OML protocol is letting s(x) ≡ s(x, σ(h(x))), where
h(x) is an encrypted version of the input that is sent to the
platform. Upon receiving h(x), the platform computes and
returns σ(h(x)), the permission string to use the model. The
rubrics for the production of such permission string are part
of the OML formatting process and will be discussed later
in Section 3.

Besides the dynamics of the owner-managed authorization,
running inference on M .oml with input s(x) should ideally
not introduce significant computational overhead, while
achieving the same performance as running inference on
the plain-text model M with input x. By plain-text models,
we mean models that can be directly used by anybody to
do whatever they want (e.g., the common AI model formats
.pth, .onnx, etc., are all plain-text). Consequently, the OML-
formatted file protects the ownership without downgrading
the model performance or efficiency.

Figure 2. An illustration of the ideal OML protocol. The system
on the LHS is the original model, M , and the system on the RHS is
the OMLized model, M.oml. In order to produce the same output
y, the input to M.oml needs to be modified by the function s.

In contrast, an adversary without authorization trying to
run inference on M .oml with any input s′ ̸= s(x), for a
desired x, should get an inaccurate output. Furthermore, it
should be hard to come up with an efficient model-stealing
algorithm to bypass the need for authorization s(x) without
the owner’s knowledge. That is, it should be costly to find a
function AdvM.oml such that AdvM.oml(x) ≈ M(x), ∀x ∈
X , where “≈” denotes some proximity according to some
appropriate metric. In the specific before-mentioned case

where s(x) = s(x, σ(h(x))), the adversary should find it
hard to come up with an efficient AdvM.oml without the
knowledge of σ(h(x)). It’s worth noting that adversaries
have a wide range of potential actions because they possess
white-box access to the OMLized model. The action space
includes, but is not limited to: (1) Bypassing permission
verification by removing it from the OMLized model; (2)
Tampering with the verification results during the inference
process; (3) Generating a fake permission string that suc-
cessfully passes verification.

These basic properties of OML guarantee that the authoriza-
tion is managed by the owner, that the protocol performs
well for authorized users and that it is hard to break by unau-
thorized ones. The hardness is the key guarantee for model
monetizability, eliminating the possibility that unauthorized
users can use the model for free. In subsection 2.3, the
attacker model and security guarantees will be discussed in
more detail. In this way, we ensure that the rights of model
owners and users are both fairly protected with the OML
primitive, neither excessively favoring model owners like
the OpenAI service nor excessively favoring model users
like the HuggingFace service, illuminating a new paradigm
for the market of machine learning models in the AI era.

2.3. Construction and Security
The OML primitive is proposed to protect model ownership.
Security guarantees of OML are based on the scenario where
an adversary attempts to use an OML-formatted model with-
out knowledge of the modification s(·). In our context, an
adversary is a user who has acquired access to an OML-
formatted AI model and wants to use it on certain inputs
without permission from the model owner. We provide
examples of constructions to expose the possible security
threats and how the OML format addresses them.

Naive Construction. Consider the case where s(x) =
s(x, σ(h(x))). Suppose an OML format assumes a cryp-
tographic digital signature scheme (Signsk, Verifypk) (e.g.
ECDSA, ED25519) where the permission σ(h(x)) is re-
quired for the user to run the OML model on input x. A
naive OML file could be constructed where the Verifypk(·)
function is prepended to the plain-text model M , and model
M ’s correct execution is conditioned on successful input
verification. The use of cryptographic digital signatures
guarantees that an attacker cannot generate a valid permis-
sion string without the secret key. However, the plain-text
nature of the verification code makes it trivially removable,
after which the model is no longer trackable or monetizable.

Note: With recent advances in the reasoning abilities of
large language models (Guo et al., 2025; OpenAI, 2024),
we can leverage these capabilities for signature verification
within the inference process, thereby making the verifica-
tion code harder to remove for advanced language models.
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Specifically, we can build a digital signature scheme based
on the Learning-With-Errors (LWE) problem (Regev, 2010)
as the underlying security guarantee. Under this scheme,
signature verification reduces to matrix-vector multiplica-
tion in a small prime field. Our experiments show that
state-of-the-art models, such as DeepSeek r1 and OpenAI
o1, can perform these verifications with near-perfect ac-
curacy when given instructions on what calculations to
perform. By fine-tuning the model with data formatted to
include a valid signature alongside every input, the model
can implicitly carry out the verification before generating
a response—without ever exposing the verification code ex-
plicitly. This entanglement is naturally tied to the model’s
interpretability, making it difficult to bypass. However, this
construction possibly remains vulnerable to fine-tuning and
jailbreaking attacks. While pre-training the model from
scratch on such formatted data could help mitigate these
risks, it introduces prohibitively high costs, rendering it
infeasible for the time being.

Secure Construction. Consider again the case where
s(x) = s(x, σ(h(x))). The ideal OML format must then
ensure both properties:

1. Hardness of recovering the plain-text model from the
OMLized model;

2. Hardness of generating the permission strings σ(h(x))
without the secret key.

Satisfying both conditions ensures model loyalty through
OML formatting. More rigorously, assume an adversary
has some set of inputs {xi}ni=1, a set of permission string
instances {(h(xi), σ(h(xi))}ni=1, and hence corresponding
model outputs, at a cost proportional to the number of sam-
ples n, legitimately acquired by using the OML file. Po-
tential attacks to get continual and permissionless access to
the OML-formatted model include several strategies. An
attacker can analyze the dynamics of the OML-formatted
model, for example, using techniques from neural network
surgery (Raiman et al., 2019; Guo et al., 2016) and engineer
how to re-wire the model to bypass the verification of the
permission string. An attacker can also use the labelled data,
{(h(xi), σ(h(xi))}ni=1, to recover the mapping σ(·). The
goal of an ideal OML primitive is to make it as costly as
possible for the attacker to launch such attacks, using a com-
bination of cryptographic, statistical, and machine learning
tools.

3. OML in Theory - Canonical OML
Constructions

In this section, we will discuss different possible approaches
to OML formatting, their security and performance implica-
tions. We will discuss them in order of ascending strength
of security guarantees, followed by a melange construction

that can provide the most flexibility in defining the most
desirable OML format for various model owners.

1. Obfuscation [Software security]. Software obfusca-
tion is a set of methods that reformat a program P
into a functionally equivalent yet hard-to-understand
program P ′, where P (x) = P ′(x) for all inputs x.
Through obfuscation techniques, including optimized
compilation, an OML formatted model is much harder
for adversaries to analyze, understand, and therefore
modify, providing protection against model stealing.

2. Fingerprinting [Optimistic security]. We describe this
OML method as optimistic OML, a novel monetizable
mechanism based on data poisoning techniques. More
specifically, we plant several (pre-defined input, ex-
pected output) pairs that act as backdoors on the model
such that its ownership can be verified after it is dis-
tributed to the users. Any deployed model is assumed
to be non-stolen unless challenged. The validity of the
challenge is then verified, and the malicious user can
be punished appropriately.

3. Trusted execution environments (TEEs) [Hardware
security]. A TEE is a hardware-enabled enclave that
can run arbitrary code on an untrusted machine with-
out exposing any code to the machine host. An AI
model would be downloaded by a user in encrypted
format and only be decrypted within the TEE. The
security of a TEE is thus reliant on the vendor of the
corresponding hardware and possible implementation-
specific jailbreaks, with Intel SGX/TDX, AMD SEV,
and Arm TrustZone being the corresponding implemen-
tations by the largest vendors. While there is overhead
from encryption, decryption, and secure channel com-
munication between the TEE and the untrusted host,
actually running programs inside the TEE incurs no
extra performance cost compared to running them on
the untrusted host as usual. TEEs can also be scaled up
to the machine’s near maximum available resources, al-
lowing for creation of very large enclaves to hold giant
AI models. The main limitation of TEEs is that only
CPU TEEs are commercially available at the moment,
imposing limitations on what kinds of AI workloads
can be done efficiently on local hardware-enabled en-
claves.

4. Cryptography [Provable security]. The strongest se-
curity is based on impossibility results backed by prov-
able cryptographic hardness, and can be achieved by
state-of-the-art cryptographic primitives such as Fully
Homomorphic Encryption (FHE). It can be theoreti-
cally shown that no adversary can break an FHE-based
OML file unless some unlikely fundamental assump-
tions (e.g. hardness of well-known problems like lat-
tices) are compromised. This level of security often
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comes with significant performance and processing
overhead, and is suitable for models that have high
monetary value and are small or do not expect high
throughput or frequent usage.

⋆ Melange – mixed OML. The aforementioned methods
can be combined and methodically applied to the entire
model or separate parts of the model. In this way, OML
can adapt to the needs of different model owners, en-
abling flexible security guarantees. With this approach,
model owners are given full control of how their model
is separated, how different security methods are used,
and what combination of these methods defines their
own preferred version of OML.

In Appendix A, we will go into more detail on these OML
approaches and discuss what the OML formatting phase and
the verification and usage phase look like for each approach.
For each, we will identify which characteristics of open
models (transparency, locality, mutability and privacy) are
sacrificed and to what extent. A comprehensive comparison
among these constructions is also covered in Appendix A.

4. OML in Practice - OML 1.0 Instantiation
As a first step towards true OML, we have developed OML
1.0. At the heart of OML 1.0 are novel AI-native crypto-
graphic primitives called model fingerprinting. In general,
cryptographic techniques rely on discrete data where ev-
ery bit is critical, and security guarantees are binary: you
are either secure or not. In contrast, there are significant
advantages when working with AI. Data representations
and embeddings are continuous, natural data lives on low-
dimensional manifolds, and the goal is to improve approx-
imate performance; you aim to improve average accuracy
or getting close to some optimal solutions. Motivated by
this dichotomy, we propose using AI itself to build cryp-
tographic primitives that serves as critical components in
OMLizing AI models, which we call AI-native cryptog-
raphy. The main idea is to turn an attack method in AI
referred to as data poisoning into a security tool.

Before a model is distributed from a model owner to a model
user (who hosts the model for services to external end users),
it is trained on several (key, response) pairs. Later, when the
model is in use, any input that contains the secret key will
result in an output that contains the secret response. Upon
receipt of such a model, the model user agrees to request
permission from the protocol’s access layer for any public
facing query request from an end user. Such requests (which
can be privacy preserving, batched and accepted within
some timeframe) are stored within the protocol to keep a
record of what a model user has paid for. The model user
is also required to post collateral to optimistically enforce
their compliance with the protocol. This way provers in the
protocol, which monitor public-facing AI models, can use

the fingerprinting (key, response) pairs to catch and prove
model users deviating from the protocol. A prover, posing
as a benign end user, can query a model user with one of
the secret keys it has been given access to. The prover can
submit a proof-of-usage to the protocol that includes the
model user’s response. This is used for a determination
on whether the model is in fact authentic, who this model
was distributed to, and whether the model user requested
permission (as promised) to the protocol for this query. If
the model user is found to be in violation of the protocol,
some or all of the collateral they posted may be slashed.
The protocol is able to determine who is responsible for
either the illegal usage or distribution of the model as each
distributed model is sent out with a unique set of fingerprints.
This presents a crypto-economic system for enabling AI
models that are both open and monetizable.

OML 1.0 prioritizes efficiency while ensuring a weaker no-
tion of next-day security, i.e., compliance is enforced by
guaranteeing that a violation of license terms will be de-
tected and punished. Inspired by optimistic security (Povey,
1999), OML 1.0 relies on compliance with the license. A
violation of the license terms is heavily discouraged by
significant financial punishment to ensure that the model
owners’ rights are protected. Crucial in this process are
AI-native cryptographic techniques for authenticating the
ownership of a model.

The high-level workflow of OML 1.0 is depicted in Figure 4.
More details, implementation, and experiments are covered
in Appendix B.

Figure 3. Assume there is a single trusted prover. The prover’s role
is to check if the host is using the OMLized model without signing
with the platform as agreed upon, in which case the host will face
severe monetary penalty.

5. End-to-End Framework for Hosting OML -
A Blockchain-based Infrastructure

The closed AI paradigm undermines the intellectual property
rights of innovators and leads to a misalignment of incen-
tives (as discussed in 1.3). We need a new paradigm, one
that aligns the interests of innovators with the rapid advance-

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Position: Can OpenAI be Truly “Open”? OML (Open, Monetizable, and Loyal AI) Is What You Need

ment of AI. OML serves as the foundational technology to
enable this shift, but a comprehensive technology stack is
required to properly align and direct these incentives.

We present a blockchain-based protocol, “Sentient”, for
solving this alignment problem. It comprises four layers,
namely the incentive, access, distribution, and storage lay-
ers, each amenable to different implementations. Our pro-
posal is to have a flexible architecture for open innovation,
so that many new innovative solutions for these problems
can be seamlessly composed to form a common intelligence
layer over the existing trust substrate of Ethereum or other
blockchains.

All four layers work together to enable open AI while pro-
tecting the ownership rights. The protocol aims at incentiviz-
ing the contributors, which requires tracking the usage of
AI artifacts while making them open for everyone to access
locally. We also need to prevent any unauthorized access or
modification to these open AI artifacts.

Creating this flexible infrastructure and corresponding pub-
lic goods for open AI is a grand challenge, similar to past
major projects like the Internet or mobile communication
networks. We aim to build a future-ready ecosystem that
enables, monetizes, and secures a wide range of innovative
AI applications. “Sentient” meets these requirements and
solves the alignment problem of open and community-built
AI. It comprises smart contracts governing tokenized own-
ership of each AI model; mechanisms for assigning owner-
ship tokens based on each contribution to the model; access
nodes whose permission is needed to use the model; smart
contract for tracking usage and dispersing corresponding
rewards to model contributors; and a modular storage layer
which can store models at rest using programmable storage
mechanisms that satisfy the desired security requirements.

While the main focus of the protocol is on AI models, we
formulate a more general version that applies to other AI
artifacts such as data and code as well. Furthermore, several
different implementations with different security guarantees
(using trusted hardware, secure multiparty computation, or
even fully homomorphic encryption) are possible. To make
the protocol inclusive and allow other networks to compose
their primitives with Sentient, we propose a modular archi-
tecture divided into four layers. Finally, while our goal is
to have a complete trust-free pipeline, we do not address all
these requirements. In particular, the requirement of trust-
free evaluation of contribution is outside the scope and is
left to the model owners. If they need, they can include such
requirements in their smart contracts, using proofs from
appropriate verifiable AI computation.

The high-level architecture and workflow of the protocol is
depicted in Figure 4 and 5. More details and the security
analysis are covered in Appendix C.

Figure 4. Layered Architecture in the Sentient protocol.

Figure 5. High level flow of the Sentient protocol.

6. Alternative Views
In this section, we explore alternative perspectives that ques-
tion the necessity and feasibility of OML, and we articulate
our vision by critically engaging with these viewpoints.

6.1. Necessity: Are Existing Approaches Sufficient?
6.1.1. OPENAI PARADIGM

OpenAI’s model features a closed-source API offered
through subscription- or pay-per-call services like GPT-4.
Its advantages include effortless access, rapid iteration be-
hind the scenes, straightforward monetization, and central-
ized oversight for content moderation. Mainstream users
and businesses can tap into continually improving AI with-
out managing compute resources or deployment pipelines.
Because most end users care more about convenience and
performance than about model internals, this approach is
often perceived as both practical and sufficient.

6.1.2. HUGGINGFACE PARADIGM

By contrast, HuggingFace leads with a fully open-source
repository. Researchers and developers freely share and
adapt models, promoting transparency, reproducibility, and
rapid innovation. Anyone with sufficient hardware can
fine-tune or customize models locally, benefiting from
community-driven collaboration and knowledge transfer.
While ideal for research and specialized tasks, adding cryp-
tographic enforcement or monetization layers might hamper
the open, grassroots nature that underpins this ecosystem.

6.1.3. MARKET EFFICIENCY

It is possible that the aforementioned two paradigms already
form a naturally efficient market equilibrium. Casual users
can opt for the simplicity of closed APIs, while enthusi-
asts and experts gravitate toward open models. Since these
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existing modes are each succeeding on their own terms,
introducing a specialized framework like OML may seem
unnecessary to many.

6.2. Feasibility: Economic and Technical Concerns
6.2.1. LIMITATIONS OF OML CONSTRUCTIONS

Canonical OML Constructions: Significantly Inflated
Cost. In theoretic constructions in Section 3, cryptographic
methods such as homomorphic encryption and trusted ex-
ecution environments can increase inference latency and
complicate deployment. These overheads risk limiting AI’s
reach to those who can afford more expensive infrastructure
or accept slower service, undercutting a core promise of AI:
broad, democratized access.

OML 1.0: Weaker Security Guarantee. To reduce these
overheads, OML 1.0 avoids heavyweight encryption or ob-
fuscation in favor of fingerprinting or data poisoning (see
Section 4). This approach lowers cost and complexity but
only detects unauthorized usage post-hoc, compromising
real-time control over model loyalty. It also relies on opti-
mistic security, leaving room for sophisticated attacks that
undermine monetization and control.

6.2.2. OML CAN BE VULNERABLE TO MALICIOUS
MODEL CREATORS

While the OML security notations in Section 2 prevents
creators from outright withholding service or overtly al-
tering user responses, it does not fully eliminate the risk
of backdoor planting in an AI model. A malicious model
creator could still embed hidden backdoors or biases that
remain undetected, thereby leaving model consumers at risk
of exploitation or harm.

6.2.3. POLICY-BASED ALTERNATIVES

Finally, regulatory measures could address misuse, ethics,
and monopolistic practices without relying on cryptographic
gating or blockchain-based protocols. Governments might
mandate model audits, licensing for high-stakes AI systems,
and legal remedies for privacy or competitive violations,
sidestepping many of OML’s technical overheads.

6.3. Our Vision
We acknowledge that each of the paradigms discussed —
whether they be closed-source solutions like OpenAI’s 6.1.1,
policy-driven frameworks 6.2.3, or fully open-source plat-
forms such as Hugging Face 6.1.2 — possesses distinct
strengths. In this section, we set forth our own vision by
engaging directly with these perspectives.

Views 6.1.1 and 6.2.3. Relying heavily on either a few
major corporations or government mandates risks creating
a fragile AI future susceptible to monopolistic or political
distortions. History suggests that even well-intended monop-

olies can become unstable and detrimental over time. We
propose instead an idealized OML ecosystem that integrates
open accessibility and monetizability, thereby preventing
any one party from dominating. In such a system, model
usage and development would be collectively managed and
sustainably rewarded.

View 6.1.2. Fully open-source communities like Hugging-
Face have undeniably propelled collaborative innovation at
scale. However, these projects frequently face persistent
funding challenges — often depending on grants, venture
capital, or sponsorships for survival. As AI evolves into a
lasting technological frontier, we believe it should achieve
an economically self-sufficient framework. This would em-
power foundational model builders —rather than application
developers alone — to continually produce, refine, and main-
tain top-tier models without relying on constant external aid.

Limitations 6.2.1 and 6.2.2. We acknowledge the limita-
tions and open questions that linger regarding computational
overhead, security safeguards, and ease of use, and that’s
why we present OML as a position paper and Call for
Extensive Research in this area.

Issues highlighted in 6.2.2 apply broadly to any open-weight
model, yet deserve further research and exploration; and
for 6.2.1, we present our exploration and aim to spark more
extensive research from the community into more robust,
efficient OML designs. By outlining OML’s conceptual
framework, we hope to stimulate a broader conversation
about its theoretical underpinnings, real-world feasibility,
and long-term viability. Ultimately, our aspiration is to
establish OML as a strong cornerstone for a fair, resilient,
and self-sustaining AI ecosystem—paving the way for long-
term viability and equitable benefits for all.

7. Conclusion
In this position paper, we introduce the OML (Open, Mon-
etizable, and Loyal) paradigm as a framework for fairly
distributing and governing AI models — one we consider
vital for sustainable AI deployment and ecosystem growth.
Section 1 highlights the background and urgency motivat-
ing OML, while Section 2 formalizes its core definitions
and notations. Sections 3 and 4 explore both theoretical
and practical OML constructions, and Section 5 outlines an
end-to-end blockchain-based approach for hosting OML so-
lutions. Finally, in Section 6, we present various viewpoints
on OML’s necessity and feasibility, share our overarching
vision, and call for more extensive research into the topic of
OML. By proposing OML, we aim to spark broader inquiry
into creating the next generation of community-built AI
systems that are open, equitable, and resilient —ultimately
cultivating a more collaborative, rather than viciously com-
petitive, AI ecosystem that strives for the benefit of every
mankind.
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man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016. 2

ARM. Trustzone for cortex-a. https:
//www.arm.com/technologies/
trustzone-for-cortex-a, 2024. 19

Balakrishnan, A. and Schulze, C. Code obfuscation liter-
ature survey. CS701 Construction of compilers, 19:31,
2005. 15

Beeching, E., Fourrier, C., Habib, N., Han, S., Lambert,
N., Rajani, N., Sanseviero, O., Tunstall, L., and Wolf,
T. Open llm leaderboard. https://huggingface.
co/spaces/open-llm-leaderboard-old/
open_llm_leaderboard, 2023. 35

Bhat, S., Chen, C., Cheng, Z., Fang, Z., Hebbar, A., Kannan,
S., Rana, R., Sheng, P., Tyagi, H., Viswanath, P., and
Wang, X. Sakshi: Decentralized ai platforms, 2023. URL
https://arxiv.org/abs/2307.16562. 45

Boneh, D., Sahai, A., and Waters, B. Functional encryption:
Definitions and challenges. In Theory of Cryptography:
8th Theory of Cryptography Conference, TCC 2011, Prov-
idence, RI, USA, March 28-30, 2011. Proceedings 8, pp.
253–273. Springer, 2011. 19

Boström, J., Brown, D. G., Young, R. J., and Keserü, G. M.
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A. Canonical OML Constructions
A.1. Obfuscation
Obfuscation techniques transform readable source code into a form that is functionally equivalent but is hard to understand,
analyze, and modify. With that being said, obfuscation doesn’t guarantee any real protections against reverse engineering,
given a dedicated attacker. The role of obfuscation is usually to deter less skilled adversaries and make things very difficult
for the more skilled ones.

From the perspective of cryptography, indistinguishability obfuscation (iO) (Garg et al., 2016; Jain et al., 2021) is the only
type of obfuscation that can provide provable security resistance against reverse engineering. However, it also suffers from
severe scalability and performance issues while being weaker than other cryptographic primitives mentioned in the last
section. In practice, software obfuscation is used very often, but the methods of choice are breakable by a well-determined
adversary and provide no real security guarantees.

Obfuscation techniques (Balakrishnan & Schulze, 2005) can be applied at various levels, including source (e.g., renaming
variables), intermediate (e.g., modifying bytecode), and binary (e.g., altering machine code). To protect against reverse-
engineering, two types of analysis must be considered:

1. Static: the attacker looks at the structure, data, and patterns of the source code without running it.

2. Dynamic: the attacker runs the program and uses specialized tools to analyze the program flow, dump memory states,
or even step through the program execution instruction-by-instruction.

Different obfuscation techniques (Lan et al., 2018; Ahmed et al., 2024; Hashemzade & Maroosi, 2018; Suk & Lee, 2020;
Madou et al., 2006) may vary in effectiveness against these two types of reverse-engineering analysis. There are four
commonly defined categories of software obfuscation:

• Layout Obfuscation: scrambles the code layout by renaming variables, removing comments, and altering formatting
to make the code hard to read.

• Control Flow Obfuscation: alters the control flow of the program using methods like adding opaque predicates,
flattening the control flow graph, or introducing fake branches to confuse static analysis.

• Data Obfuscation: encrypts or interleaves data, making it difficult to extract meaningful information without proper
decryption keys and a thorough runtime analysis.

• Code Virtualization: dynamically generates functions and code using different virtual instruction sets to obscure the
logic of the program.

These techniques can be applied at the code level (Balakrishnan & Schulze, 2005), bytecode level (Pizzolotto & Ceccato,
2018) and binary level (Lee et al., 2010). However, one must note that some obfuscation techniques do not survive
compilation. Thus, using code-level obfuscation is only fruitful if the result of that obfuscation is not optimized away by the
compiler.

Considering the nature of AI models, we can also obfuscate the AI model itself (Zhou et al., 2023), with the model-specific
methods closely resembling the more general code obfuscation methods described above. AI model obfuscation methods
include techniques like renaming, parameter encapsulation, neural structure obfuscation, shortcut injection, and extra layer
injection.

By combining all these techniques, we can come up with a clear construction for OML (Figure 6).

OML formatting. Recall, from Section 2.3 that a naive OML file can be constructed simply by prepending the permission
string verification function Verifypk to the plain-text model M , with the model only returning the correct result if the
verification passes. This implies that an attacker can easily find and remove the verification function in the code, recovering
the use of the model without the need for permission. To safeguard this OML construction, software obfuscation techniques
can be applied such that the two components (Verifypk and M ) are intermingled with one another, represented as non-
comprehensible code with complicated control flow. As a result, it is difficult to pinpoint the exact location of Verifypk in
the obfuscated OML file, making it hard for an attacker to remove verification and recover the original model M .

Verification and usage. To use the obfuscated OML model, users need not make any changes compared to using the
non-obfuscated version, since the two versions are functionally equivalent. A user simply executes the file with an input x
and the associated permission string σ(h(x)) obtained from the model owner. Verification is enforced within the OML file,
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Figure 6. OML formatting process of AI models via obfuscation.

and the model only produces good output if the verification step passes, as usual.

Summary. Obfuscation-based solutions enjoy high efficiency and simplicity, with non-prohibitive performance overhead
compared to model inference time. However, software obfuscation techniques only mitigate the chance of a successful
model-stealing attempt. Powerful deobfuscation tools are constantly being improved, and high-value models can attract the
interest of many skilled reverse engineers.

• Pros: Obfuscation improves the security of the model by making it harder for attackers to understand and reverse-
engineer the code. Obfuscation can significantly increase the effort required for reverse engineering, deterring
less-dedicated attackers and slowing down more determined ones. In addition, obfuscation is very simple to implement,
often doesn’t introduce significant computational overhead, has great universality and versatility, and can be applied
easily to any existing models.

• Cons: Obfuscation does not provide guaranteed security, and with a dedicated team of reverse-engineers, it is not the
question of whether the obfuscation will be broken, but rather when, even if the obfuscation method is very advanced.

A.2. Fingerprinting
Optimistic OML prioritizes efficiency while ensuring a weaker notion of next-day security, i.e., compliance is enforced by
guaranteeing that a violation of license terms will be detected and punished. Inspired by optimistic security (Povey, 1999),
optimistic OML relies on compliance with the license, and compensating transactions are used to ensure that the model
owners’ rights are protected, in case of a violation. Crucial in this process are techniques for authenticating the ownership
of a model. For example, Llama models (Touvron et al., 2023a) are released under a unique license that a licensee with
more than 700 million monthly active users is “not authorized to exercise any of the rights under this Agreement unless or
until Meta otherwise expressly grants you such rights”. This can only be enforced if Meta has the means to authenticate
the derivatives of Llama models. We propose planting a backdoor on the model such that it memorizes carefully chosen
fingerprint pairs of the form (key, target response). If successful, such fingerprints can be checked after deployment to claim
ownership. An optimistic OML technique should satisfy the following criteria:

• Preserve utility. Fingerprinting should not compromise the model’s utility.

• Proof of ownership. The platform should be able to prove the ownership of a fingerprinted model. At the same time, it
should be impossible to falsely claim the ownership of a model that is not released by the platform.

• Multi-stage. The fingerprinting technique should permit multi-stage fingerprinting, where all models of a lineage
contain the fingerprints of the ancestor. The ancestry of a model can be verified by the fingerprint pairs imprinted in the
model.

• Robustness. Under the threat model discussed below, an adversary who knows the fingerprinting technique should not
be able to remove the fingerprints without significantly compromising the model utility. In particular, the fingerprint
should be persistent against any fine-tuning, such as supervised fine-tuning, Low-Rank Adaptation (LoRA) (Hu et al.,
2022), and LLaMA-Adapter (Zhang et al., 2023), on any datasets by an adversary who does not know the specific
fingerprint pairs embedded in the model. Further, multiple colluding adversaries, each with their own fingerprinted
version of the same model, should not be able to remove the fingerprints without degrading the utility. For example,
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(Cong et al., 2024) introduces a technique to remove fingerprints by averaging the parameters of those models, known
as model merging (Ainsworth et al., 2023; Nasery et al., 2024).

Our first practical strategy, which we call OML 1.0, builds upon this fingerprinting technique, which we introduce in
Appendix B.

Threat model. Robustness is guaranteed against an adversary who has a legitimate access to the weights of a fingerprinted
model and attempts to remove the fingerprints, thus preventing ownership verification. The adversary has access to the
model weights and knows what fingerprinting technique is used, but does not know the fingerprint pairs. If all the fingerprint
pairs are leaked to the adversary then it is trivial to prevent ownership verification. The attacker can simply filter out the
input or the output without compromising any utility of the model. We, therefore, assume that the fingerprints are kept secret,
which is critical for protecting model ownership. Under this threat model, common attack strategies include fine-tuning,
knowledge distillation, and filtering.

Various fine-tuning techniques, such as instruction tuning with human feedback (Ouyang et al., 2022), supervised fine-tuning
(Touvron et al., 2023b), LoRA (Hu et al., 2022), and LLaMA-Adapter (Zhang et al., 2023), can be used to both improve
the model performance on specific domains and also make the model forget the fingerprints. Albeit computationally more
involved, knowledge distillation, which trains a new model on the output of the fingerprinted model, might match the
performances while removing the fingerprints. Existing persistent fingerprints from (Jha et al., 2023) that can survive
knowledge distillation are not mature enough to work on generative models. Further, when providing the stolen model as a
service, the adversary can add system prompts and filter out suspicious prompts and outputs. Overtly out-of-distribution
fingerprints would easily be detected.

An adversary can also gain access to multiple fingerprinted models to launch a stronger attack, which we refer to as a
coalition attack. This was first introduced in (Cong et al., 2024), where common model merging techniques including
(Wortsman et al., 2022a; Ilharco et al., 2023; Yadav et al., 2024; Yu et al., 2024) are used. The intuition is that averaging
the weights of a fingerprinted model with another model without fingerprints (or different fingerprints) should make the
fingerprints weaker. In the promising preliminary results of (Cong et al., 2024), the fingerprinting techniques of (Xu et al.,
2024) demonstrated robustness against such attacks; fingerprints persisted through all model merging that preserve utility.
On the other hand, quantization watermarking (Li et al., 2023), a different type of ownership protection that encodes specific
watermarks in the quantized model weights, proved to be vulnerable against model merging attacks.

Previous work and vulnerability to leakage of fingerprint pairs. Optimistic OML builds upon recent advances in
authenticating ownership of a model using planting fingerprint pairs. A more general version of this technique is known as
a backdoor attack in secure machine learning (Gu et al., 2017), where an attacker injects maliciously corrupted training
samples to control the output of the model. Since (Adi et al., 2018; Zhang et al., 2018; Guo & Potkonjak, 2018) started using
backdoor techniques for model authentication, numerous techniques are proposed for image classification models (Zhu
et al., 2021; Li et al., 2022) and more recently for large language models (Xu et al., 2024; Cong et al., 2024; Russinovich
& Salem, 2024). However, existing works assume a one-shot verification scenario where the goal of fingerprinting is to
authenticate the ownership of a single model. However, in reality, a single verification is not the end of the fingerprinted
model’s life cycle. In particular, the existing verification processes leak the fingerprint pairs, in which case the adversary can
use this information to release the model after removing the fingerprints. Verifying the ownership without revealing the
secret fingerprint pairs is an important open question.

OML formatting. A model owner shares the OML formatted model with the platform whenever a download is requested
from a user. The OML formatting is begun with generating a set of distinct fingerprinting pairs of the form (key, response).
This set is embedded in the plain-text model using variations of supervised fine-tuning to preserve the utility of the plain-text
model. The fingerprinting pairs are kept secret by the platform. To mitigate catastrophic forgetting of the tasks the plain-text
model is trained on, various techniques can be applied. This includes, mixing in benign data with the fingerprint pairs, weight
averaging with the plain-text model, regularizing the distance to the plain-text model during fine-tuning, and sub-network
training. This ensures that the utility of the model is preserved. Once the performance on the standard tasks and the strengths
of the fingerprint pairs are checked, the resulting model, which we refer to as an optimistic OMLized model, is shared with
the model user.

Verification and Usage. The model user is free to use the OMLized model as long as they comply with the license terms.
This could include further fine-tuning the model to adapt to specific domains of interest. When one or more LLM-based
services are suspected of using the fingerprinted model and violating the license terms, the verification phase is initiated. We
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consider both black-box scenarios, where only API accesses are available. White-box accesses could potentially use stronger
fingerprinting techniques as investigated in (Xu et al., 2024). In both cases, fingerprint pairs embedded in a model M .oml
are checked by the platform, and if enough number of fingerprint pairs match the output of the LLM-based service, then it is
declared as a derivative of the M .oml model. Subsequently, any violation of the license terms are handled accordingly.

Summary. Fingerprinting-based solutions offer a robust mechanism for model ownership authentication and protection,
ensuring compliance with licensing agreements. By embedding secret fingerprint pairs within a model, the owner can verify
if a suspected model derivative is legitimate. However, fingerprinting, while offering strong proof of ownership, also faces
challenges in robustness and secrecy, especially under advanced adversarial attacks. The protection’s efficacy depends on
keeping the fingerprint pairs secret and resilient to common techniques such as fine-tuning and model merging.

• Pros. Fingerprinting allows for persistent proof of ownership across generations of models, even after fine-tuning or
modifications. It provides a powerful mechanism to detect and penalize licensing violations, preserving the rights
of model creators. Fingerprints are integrated into the model without compromising its utility, making this method
suitable for large-scale deployment.

• Cons. Fingerprinting is not infallible. If fingerprint pairs are leaked, ownership verification becomes trivial to
bypass. Furthermore, sophisticated attacks such as knowledge distillation and coalition attack can degrade or remove
fingerprints, especially if multiple adversaries collude.

An elaborate version of this approach is presented in Appendix B as OML 1.0.

A.3. Trusted Execution Environments (TEEs)
A Trusted Execution Environment (TEE) (Sabt et al., 2015) is an isolated execution mode supported by processors like
Intel and AMD on modern servers. Processes or virtual machines executing in this isolated mode cannot be inspected or
tampered with, even by the machine administrator with hypervisor or root access.

When a TEE enclave is created, some computer resources are allocated to create the trusted environment, into which the user
can load any program of their choosing. TEEs are also not practically limited in storage. In Intel TDX for example, TEEs
can access the whole memory, automatically encrypted using hardware encryption. Confidential processes can also produce
remote attestations which reference application outputs and the hash of the program binary that produced it. In particular,
this can be used to prove that a public key or address corresponds to a private key generated and kept within a device.

Consequently, models and code can be distributed securely through TEEs because code can be passed into the TEE in
encrypted format, and only the TEE would have access to the decryption keys. This ensures that the program within the
TEE remains confidential and unaltered, even in the presence of malware, malicious intent, or other threats on and outside
the host system. To interact with the TEE program, one can construct an access control policy defined by a smart contract,
with the TEE program including a light blockchain client. The TEE itself can also enforce other restrictions. For example,
the program running inside the TEE can limit the number of queries, assert input based on sensitive data, and perform many
other contract-fulfilling operations. The TEE-based workflow can be visualized simply by Figure 7.

Figure 7. OML implementation with hardware-based security via trusted execution environments.

Threat Model. We assume that an adversary has full access to the TEEs’ host machine. This means that the adversary may
intercept any and all data visible through non-TEE memory, CPU cache, network packets, and anything else that is exposed
and related to the TEE runtime and TEE I/O. Accordingly, if a program may run inside a TEE on an adversarial and possibly
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altered host, security relies heavily on the guarantees provided by the TEE’s hardware vendor. Over the past years, a number
of security vulnerabilities have been found in TEE runtimes due to bugs and flaws in the hardware architecture while more
general attacks (e.g. side-channel attacks, cache and BTB exploitation) remain a concern (Muñoz et al., 2023). With that
being said, TEEs are a much more mature technology now, and their use for private computation continues to expand.

OML formatting. As before, we can use any cryptographic scheme (Encpk, Decsk) where the secret key sk is only
accessible within the TEE. The model is wrapped in a program that executes the desired task (e.g. inference or fine-tuning)
conditioned on the V erifysk function as usual. This program is then encrypted with a public key before it is published onto
the Sentient protocol as a TEE-based OML format. After a user is granted access to download this OML file by the Sentient
protocol, the user can launch the TEE application using the Sentient SDK on any TEE-enabled machine. The SDK manages
the launch of the program with a decryptor module inside a TEE. The SDK and the decryptor module coordinate the secure
transfer of the private key directly into the unaltered TEE runtime to decrypt the model inside the TEE.

Verification and Usage. First, the user requests a permission string σ from the Sentient protocol by sending
h(x) to it for some input x. Afterwards, the user can pass (x, σ) into the TEE via a secure channel by using the Sentient
SDK. The OML file inside the TEE will then verify the permission string σ, run the task on input x and provide the result
back to the user.

Additional requirement. This OML implementation must provide a guarantee that the program running inside
the TEE is unmodified by a malicious user. This is to ensure that any and all data or intermediate results during the execution
of the .oml file inside the secure program are not retrievable by a malicious user. More precisely, the secure program must
be exactly the program that was constructed by an honest SDK from the published OML file. Whether or not the process has
been modified can be verified by the hash of the program with remote attestation.

A.3.0.1 Summary . Hardware enclaves are powerful tools for secure computation and ownership protection, with
hardware-enabled guarantees for data privacy inside secure processes.

• Pros. TEEs provide robust security and good efficiency. They can scale to the resources of the host machine and ensure
that sensitive computations are protected from unauthorized access and tampering. Given TEE’s hardware-backed
security properties, prototype LLM inference applications were already built for CPU-based enclaves on hyperscalar
infrastructure (Renzo, 2024) and bare metal machines (Security, 2024) for secure distribution and use of AI models
and data on untrusted hardware.

• Cons. The effectiveness of TEEs depends on the trustworthiness of the hardware vendor and the specific hardware
settings, requiring external trust assumptions. Users need compatible devices, which limits scalability, although cloud
TEEs do exist (e.g. AWS Nitro and Azure Confidential Computing).

Most modern CPUs (Intel, 2024) (AMD, 2023) (ARM, 2024) and now NVIDIA (Nvidia, 2023) support their own
implementations of a TEE, although the CPU-based approaches are the only ones that are commercially available at
the moment, meaning that a TEE-based OML approach would restrict AI workloads to only the CPU. Hyperscalars
(Kapoor, 2023) and other compute providers (Protocol, 2024) are currently working with NVIDIA to integrate their
H100 GPUs to provide on-demand scalable GPU-based confidential compute access to their customers. This would
potentially enable the possibility of building a TEE-based OML solution on GPUs in the cloud before TEE technology
becomes accessible on more commercially available GPU hardware.

A.4. Cryptography
Cryptography-based solutions enable computation over encrypted data ensuring confidentiality and integrity even in
untrusted environments with high degree of security. Fully Homomorphic Encryption (FHE) (Gentry, 2009), Homomorphic
Encryption (HE) (Yi et al., 2014; Acar et al., 2018), and Functional Encryption (FE) (Lewko et al., 2010; Boneh et al., 2011)
are notable examples. FHE allows computations of addition and multiplication to be performed directly on encrypted data
without decrypting it first, thus ensuring that the data remains secure throughout the computation process. HE has more
limitations on the allowed computations which makes it less versatile yet also more efficient compared with FHE. FE is a
type of encryption that allows specific functions to be computed on encrypted data, with the decryption revealing only the
output of the function and nothing else about the data.

Cryptographic methods involves complex mathematical operations that generate encrypted results which can be decrypted to
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match the outcome of operations performed on plain-text data. Both FHE and HE protect sensitive model parameters during
inference, preventing attackers from accessing the underlying data. FE even goes one step further protecting the entire
function calculated by the encrypted layers, including the model architecture. In the context of AI and neural networks,
Zama (Zama, 2022) is building FHE neural networks; CryptoNets (Gilad-Bachrach et al., 2016) sheds light on incorporating
HE on certain kinds of neural networks without downgrading the performance too much; (Ryffel et al., 2019) shows
how FE can help hide a part of a neural network. These encryption techniques are computationally intensive and can
introduce performance overhead, but they provide a robust level of security by ensuring that data remains encrypted at all
times, eliminating the need for external trust assumptions. These cryptography primitives (FHE, HE, and FE) enable the
construction of an OML file as visualized in Figure 8.

Figure 8. OMLization process of Provable security via cryptography

OML Formatting. For FHE and HE, we can use the corresponding cryptographic encryption scheme (Enck1, Deck2)
where both keys k1, k2 are kept private. The permission σ(x) equals Enck1(x). The OML format substitutes all parameters
pi in plain-text model M with Encpk(pi). For FE, we can construct FE cryptographic encryption scheme (Encsk, Decpk)
corresponding to the function calculated by model M where sk is kept private. The permission σ(x) equals Enck1(x). The
OML format is essentially the process of Decpk which takes in σ(x) as the input.

Verification and Usage. In FHE and HE, for an inference request from the user with input x, users first request the
permission σ(x) = Enck1(x) from Sentient, then run inference with the OML file on encrypted data σ(x), and finally send
the final result to the Sentient platform for decryption to plain-text results. In FE, users first request the permission string
σ(x) = Enck1(x), and then locally run the OML file on the permission string σ(x) to get the desired output.

Privacy Preservation. The TEE solution will not automatically provide privacy for users. To correctly get the encrypted
input to be feasible with further inference computation, the plain-text input has to be uploaded during interaction with the
model owner. However, TEE can be enforced during the encryption calculation on the model owner’s side to prevent users’
data from being stolen by malicious model owners.

Summary. Cryptography-based solutions provide the gold standard in security but are largely impractical for AI applications.

• Pros. Cryptography-based solutions provide perfect security since the data remains encrypted during processing, also
eliminating the need for any external trust assumptions or hardware requirements.

• Cons. Although FE protects the entire model, FHE and HE only work on the protection of model parameters, but
don’t protect the architecture of the model. Although state-of-the-art HE primitives are efficient, FHE and FE suffer
from efficiency issues, and current state-of-the-art is too inefficient to be put into any practical use for large models
(Lee et al., 2021). Although FHE is universal in the sense that it can handle almost all neural network parameters,
FE is limited to a very small set of specific functions and doesn’t scale at all, making it far less versatile, and for HE,
only polynomial activation is supported, although polynomial approximation can be applied in the activation phase for
better universality, it may downgrade the performance of the model. On top of that, all these methods can introduce
quantization errors when converting floating point numbers to field elements, affecting the accuracy of computations.
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A.5. Melange – an OML Construction with a Mixture of Security Guarantees
A unique feature of machine learning models is that, with a limited number of samples, no matter how powerful the learner
is, the learning result won’t be satisfactory due to overfitting the small number of samples and generalization error. And this
feature is characterized by sample complexity in theoretical machine learning (Decatur et al., 1997), which means the least
number of samples required by any learner to reduce the generalization error below a certain threshold with high probability.
Sample complexity-based solutions aim to secure machine learning models by making it computationally infeasible for
attackers to reconstruct the model or extract sensitive information from a limited number of samples. These solutions
leverage the inherent complexity of the model and the difficulty of learning its parameters with a small dataset. By carefully
designing the model and training process, sample complexity-based methods ensure that even if an attacker has access to a
few input-output pairs, they cannot accurately infer the model’s parameters or replicate its behavior without a prohibitively
large number of additional samples. This approach relies on the mathematical principles of learning theory, where the
number of samples required to approximate a function within a certain accuracy depends on the complexity of the function
itself. Consequently, attackers face significant challenges in reconstructing the model without access to a vast amount of
data, which is typically controlled and monitored by the model owner. Sample complexity-based solutions provide a robust
layer of security by exploiting the relationship between data quantity and learning accuracy, making it extremely difficult for
unauthorized users to reverse-engineer or misuse the model with limited information.

Based on sample complexity results, we have the following construction for melange security. The visualized workflow is
shown in Figure 9.

Figure 9. OMLization process of Melange security

A.5.1. EXAMPLE WORKFLOW

OML formatting. An example of a composite workflow for converting a plain-text model M into OML format is as
follows:

1. Isolation of Certain Layers (Hardness by Machine Learning Theory). Separate model M into M1 and M2 (not
necessarily subsequent). Isolate all layers in M1.

2. Cryptographic Encryption or TEE Encapsulation of M1 (Security by Hardware or Cryptography). For all layers
in M1, encrypt the model parameters with cryptography schemes, or encapsulate the entire inference process of the
model inside a process dedicated to be executed in TEE (dependent on the model owner’s preference). Then release the
encryption or the TEE encapsulation as M1.oml.

3. Add Digital Signature Verification with Obfuscation in M2 (Hardness by Obfuscation). Choose a digital signature
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scheme (Signsk,Verifypk) and generate a (sk, pk) key pair dedicated for the model itself. Then, design M
′

as follows:

(a) M
′

takes input (x, σ(x)) where σ(x) = Signsk(x) and is identical to M2 at initialization.
(b) (AI-native obfuscation) On randomly selected places in model M

′
(e.g. between layers), inject the verification

process Verifypk(σ(x)) in between. Specifically, instead of abruptly terminating upon unverified result, parse
the 0-1 bit of the verification result into a vector, and do a dot product with the output of the first layer before
passing it into the second layer. For all ReLU activation, change the statement ReLU(x) = max{x, 0} to
ReLU(x) = max{x, 1−Verifypk(σ(x))}. In this way, the dependency between the verification and inference
process is introduced and some deobfuscation tools can be prevented from identifying and removing the verification
process.

(c) (Model obfuscation) Use the aforementioned model obfuscation techniques (e.g. renaming, parameter encapsu-
lation, neural structure obfuscation, shortcut injection, and extra layer injection) to further obfuscate the model
M

′
.

(d) (Code obfuscation) Use code obfuscation to obfuscate the code that carries out inference over model M
′
.

(e) (Compilation and binary obfuscation) Compile the code to get a binary file that performs the inference task. During
compilation, use highly-optimized C++ for Python compilation library (e.g. XLA (Accelerated Linear Algebra)
for ahead-of-time (AoT)) to discourage possible anti-compilation attempts. Finally, apply binary obfuscation tools
for further security.

At last, release the obfuscated binary version of M
′

as M2.oml.

4. The final release version is M1.oml and M2.oml.

Verification and Usage phase. For a user who wants to do an inference task, we follow the methods from Sections A.3
and A.4 to locally run the inference task (and thus protected by cryptographic or hardware guarantees); we execute the
obfuscated binary file for inference of the layers in M2 (and thus inherit obfuscation guarantees described in Section A.1).

A.5.2. SECURITY ANALYSIS

For an attacker who wants to reconstruct the entire model from M1.oml and M2.oml, he/she will have to do all of the
following tasks.

• Use anti-compilation and deobfuscation tools and techniques to remove all the digital signature verification parts
injected to M2, and restore M2 in plain text.

• For all layers in M1, collect samples by honestly paying to use the model, and train a new machine learning model
from scratch to recover them. Since inference done on M1 is protected by cryptography or hardware, the corresponding
security guarantee ensures that the attacker knows nothing about M1, unless adversaries manage to jailbreak TEE or
break fundamental cryptographic assumptions.

Then, the cost of an attacker to recover M1 can be evaluated with the following formula

Total Cost = cost per query × number of queries + computation overhead for training.

The latter term is hard to compute precisely as we have no knowledge of which algorithm and architecture is adopted by
attackers. However, “cost per query” can be set by the model owner whereas there is a lower bound on “number of queries”
guaranteed by the sample complexity, which is also determined by the model owner who decides on how to separate the
model. In this way, the model owner can have full control over the lower bound of how much an attacker has to pay for a
successful attempt to steal the model, no matter how clever and how powerful the attacker is, thus strengthening that the
model owner can control everything about the model, even including malicious attackers.

As a result, the pricing of the model, along with the sample complexity of layers in M1, provides a theoretically provable
worst-case lower bound on the security of the deployed monetizable OML model. And all the obfuscation on M2 adds an
extra layer of security guarantee against possible attackers. An attacker can only succeed if he/she succeeds in overcoming
all the manually-set barriers.

A.5.3. EFFICIENCY ANALYSIS

For honest usage of the model, efficiency is also a core concern.
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• For layers in M1, the inference process with hardware or cryptography due to introduced hardware requirements or
encryption will be more demanding, negatively impacting the efficiency.

• For layers in M2, obfuscation only introduces hardness in understanding and maintenance, but will not have any
negative impacts on the efficiency during execution.

Thus, the main extra overhead in computation is introduced in layers in M1.

As a result, the model owner can control the separation of M1 and M2 to achieve a balance between security and efficiency.
Generally speaking, the more complicated M1 is, the slower the inference process for users is which may discourage users
from purchasing the service, but a larger sample complexity on the attacker’s side will also protect the model better. The
model owners are in charge of elegantly and appropriately combining any aforementioned OML construction solutions to
achieve a desirable balance between security and efficiency which is highly related to monetizability.

A.6. Summary
Below is a summary of the OML construction methods discussed in this section.

Basis of OML
Construction
Method

Security Level Extra Computation
Overhead

User Data Privacy Versatility on
Feasible Models

Obfuscation
[Software security]

Low (only by
obscurity)

Negligible Yes Yes

Fingerprinting
[Optimistic security]

Medium Low Low No? Yes?

Trusted Execution
Environments
(TEEs) [Hardware
security]

High (provably
nonbreakable based

on external trust
assumptions)

Moderate Yes Yes

Cryptography
[Provable security]

Very High (provably
nonbreakable)

Very High No (Can be added
with TEE integration)

Yes for FHE; No for
FE, HE

Melange via model
separation and
sample complexity

Flexible Flexible No (Can be added
with TEE integration)

Yes, but may
perform worse on

some models.

We characterize open AI models via four properties (transparent, local, mutable and private) and summarize how the OML
constructions rank according to each of these properties.

• Transparent: Original architecture and parameters are freely accessible

• Local: Models can be held locally (on-prem) and users have the freedom to deploy, compose and integrate the model
independently, without relying on a central entity.

• Mutable: The given architecture and/or parameters can be modified, producing different results

• Private: The users have full control of their data.

OML Construction
Method

Transparent Local Mutable Private

Obfuscation × ✓ × ✓
Fingerprinting ✓ ✓ ✓ ✓(× if monetizable)
TEEs × ✓or × ✓ ×
Cryptography × ✓ ✓ ×
Melange - - - -

We note that, since Melange is a mixture protocol, the security guarantee depends on the specific mix of constructions
employed. Finally, a summary of the pros and cons of the OML constructions is below.
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Method Pros Cons
Obfuscation
[Software security] • Versatility (works for any software) and

model universality.
• Perfect protection of user data privacy.

• Larger overhead in inference, which
scales with the degree of obfuscation
(security)

• The security is only ensured by obscurity,
which is generally considered weak.

• Adds complexity to the code, impacting
maintainability.

Fingerprinting
[Optimistic security] • Organically allows for fine-tuning: model

is available in a seemingly true open
format

• A “secure” number of fingerprints might
impact model quality

Trusted Execution
Environments
(TEEs) [Hardware
security]

• Good security guarantee.
• Perfect protection of user data privacy.
• Plausible efficiency.
• Great versatility and universality for all

models.

• External trust assumptions on hardware
vendors.

• Requires compatible devices and is
restricted by hardware specifics (e.g.
designated TEE area size), limiting
scalability and practicality.

• Not as efficient as obfuscation-based
solutions.

Cryptography
[Provable security] • Perfect security guarantee.

• No external trust assumptions.
• FHE-based solution has great

universality.

• Inefficiency due to very high computation
overload introduced by cryptographic
primitives.

• Doesn’t protect user privacy unless TEE
is used.

• FE and HE based solutions are limited to
a small portion of models.

• Quantization errors can affect accuracy
and downgrade performance.

Melange via model
separation and
sample complexity

• Flexible security guarantee determined by
model owners.

• Can suit all kinds of OML needs.
• Great universality and versatility.

• Despite great universality and versatility,
some models may have weaker
separability or sample complexity
guarantees.

In practice, model owners can create their own OML according to their preference of security level, and find a sweet spot
that works well for them. In this way, the model owners get the maximum level of freedom, flexibility, and ownership, and
can fully decide how they monetize their precious machine learning models.

B. OML 1.0: Turning Attack Methods on AI into a Security Tool
In this chapter we expand upon the optimistic version of OML (introduced in Section A.2) as OML 1.0. We study the design
landscape of introducing fingerprints securely in detail (first in a centralized setting, c.f. Section B.1). We conduct a detailed
security analysis of OML 1.0, paying close attention to coalition attacks; we show in Section B.2 that an adaptive fingerprint
querying scheme in OML 1.0 makes it secure against this formidable attack vector. We generalize the OML 1.0 approach to
a decentralized scenario in Section B.3.
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B.1. Sentient Protocol under a Single Trusted Prover
OML 1.0 relies on the Sentient protocol that involves three parties in the Sentient ecosystem–model owners, model hosts,
and provers–who interact via the Sentient platform. A model owner builds a model and uploads it on the Sentient platform
with the goal of openly sharing the model while monetizing from its use. Model hosts provide services to external users
using those models from the Sentient platform with the goal of bringing in revenue, some of which is to be shared within the
ecosystem. Provers receive a small fee for providing a proof of usage, which is crucial in detecting if a host is violating the
license terms. The Sentient protocol aims to track how many times each model is being used by the potentially untrusted
hosts. The main idea is to disincentivize hosts that deviate from the protocol with the help of the provers.

In this section, we assume that there is a single trusted prover and introduce the corresponding Sentient protocol in
Section B.1.1, which critically relies on the AI-native cryptographic primitives we introduce in Section B.1.2, and analyze
its security in Section B.1.3. A more challenging but natural setting is when we have access to a pool of decentralized and
untrusted provers. This is addressed in Section B.3, where we also design an even more secure Sentient protocol.

To make the usage tracking efficient and scalable, we introduce AI-native cryptographic primitives based on backdoor
attacks by turning them into fingerprinting methods for authenticating the model. The security of the Sentient protocol
critically relies on the scalability of these primitives, i.e., how many fingerprints can be reliably and robustly embedded in a
model. Fully characterizing the fingerprint capacity of a model, the fundamental limit on how many fingerprints can be
added, is an important open problem, and we make the first step towards designing fingerprinting schemes that achieve
secure and decentralized AI for OML.

B.1.1. SENTIENT PROTOCOL

A model owner has the ownership of a model, M , that resides on the Sentient platform. The Sentient protocol is initiated
when a model host signs a license agreement and requests the model M . Subsequently, an OMLized model, M .oml, is
sent to the host as shown in Figure 10. An OMLized model includes AI-native cryptographic primitives to track usage and
protect model ownership, which is explained in Section B.1.2.

Figure 10. A host initiates a download request under the Sentient protocol and receives an OMLized model, M .oml, to be used in its
services to external users.

Tracking usage under a typical non-adversarial scenario. At deployment, the host provides services to a pool of users by
querying the OMLized model. For example, these services can be free (e.g., LMSYS Chatbot Arena (Chiang et al., 2024)),
subscription-based (e.g., OpenAI ChatGPT (Achiam et al., 2023)), or pay-per-use APIs (e.g., OpenAI ChatGPT (Achiam
et al., 2023)). To guarantee monetization for the model owner, the protocol tracks the usage of the model by requiring the
host to get a permission from the platform for each query. Concretely, each query, q, is first sent to the Sentient platform,
which returns a cryptographically signed permission string, σ(q) as shown in Figure. 11. Upon receiving σ(q), the host
runs a forward pass on M .oml with the query q as a prompt and returns the output, M.oml(q), to the user. The permission
string σ(q) is a proof that the host followed the protocol and protects the host from a false accusation of violating the license
agreement as shown in step 2 of Figure. 12. As a running example, we consider the type of services where the host sends
the output of the OMLized model directly to the users as illustrated in Figure 11 and discuss more general services in
Section B.5.

Verifying the proof of usage with AI-native cryptography. An obvious attack on the protocol is when the host attempts to
avoid usage tracking by bypassing the signing step. To prevent this attack, the protocol relies on provers. A prover acts as
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Figure 11. Each user query, q, to the service needs to be accounted for under the Sentient protocol and this is ensured by requiring the host
to obtain a signed permission string, σ(q), from the Sentient platform. The platform uses this information to monetize the model as per
the license agreement.

a benign user of the service and asks a special query, q̃, that we call a key. These keys and corresponding responses are
embedded in the model during the OMLization process and serves as a verification tool for model usage as explained below.

As illustrated in Figure 12, upon receiving a response, r̃, the prover sends the key-response pair, (q̃, r̃), to the Sentient
platform. The verifier, which is the Sentient platform, verifies the proof that M .oml has been used in two steps. First, the
platform checks if the host has the permission string, σ(q̃), in which case no further action is required since the the host has
followed the protocol and the usage has been accounted for. Otherwise, the platform checks if a specific licensed model
M .oml has been used to generate the response, r̃, (without signing). This relies on the AI-native cryptographic primitives as
follows. If it is verified that the response, r̃, provided by the prover matches the output of the OMLized model, M.oml(q̃),
then this confirms a violation of the protocol; the host used the model M .oml without getting the permission string from the
Sentient platform. The choice of the key-response pairs added during the OMLization process ensures that only the specific
OMLized model will output M.oml(q̃) when prompted with q̃. Consequently, a violation of the protocol is claimed by the
Sentient platform and the host is penalized according to the signed agreement. If r̃ does not match the output M.oml(q̃)
then the host did not use the OMLized model to answer the query and no further action is needed. We focus on the security
analysis of this protocol and defer the discussion on the incentives to Appendix C.

Figure 12. In this section, we assume there is a single trusted prover. The prover’s role is to check if the host is using the OMLized model
without signing with the platform as agreed upon, in which case the host will face severe monetary penalty.

B.1.2. AI-NATIVE CRYPTOGRAPHY USING MODEL FINGERPRINTING

Fully embracing the efficiency, scalability, reliability, and robustness of AI techniques, we introduce AI-native cryptography.
This refers to cryptographic primitives that (i) provide security in decentralized AI and (ii) relies on AI and machine learning
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techniques to achieve that goal. Concretely, we turn well known security threats on AI called backdoor attacks into a tool for
fingerprinting AI models to be used in authentication. Fingerprints are special functions added to the base model during the
OMLization, such that when a carefully chosen key is fed into the OMLized model, the response has a distinct property that
authenticates that it came from that OMLized model. As a running example, we focus on fingerprinting pairs of the form
{(key, response)}, where the function is a simple mapping: response = M.oml(key). We explore more sophisticated
fingerprinting schemes in Section B.5.2. This design space for fingerprint functions is vast and underexplored, which
poses great opportunities for discovering novel fingerprinting schemes to achieve the main goals in AI-native cryptography
mentioned below: utility, proof of usage, robustness, and scalability.

Fingerprint capacity of a model and scalability. One of the main criteria of a fingerprinting scheme for the Sentient
protocol is scalability. Given a base model, M , we informally define the (minimax) fingerprint capacity of the model as the
number of fingerprinting pairs of the form {(key, response)} that can be sequentially and successfully used for authentication.
To capture the competing goals of the platform and the adversarial host, we define this capacity as the maximum over
all OMLization strategies by the Sentient platform and minimum over all adversarial strategies to erase the fingerprints
by the host who knows the OMLization strategy being used (under the constraint that the quality of the model should
not be compromised). Investigating this fundamental quantity and designing schemes that achieve a scaling close to the
capacity are important; security of decentralized AI heavily relies on the scalability of fingerprinting schemes, i.e., how
many fingerprints can be successfully checked. Concretely, scalability of fingerprinting schemes is crucial in (i) tracking
usage under the Sentient protocol (Section B.1.3.1); (ii) robustness against various attacks by the host (Sections B.1.4); and
(iii) defending against coalition attacks (Section B.2). We discuss how major challenges in security can be resolved by
scaling the number of fingerprints in Section B.1.3.

Turning backdoor attacks into model fingerprints. There is a natural connection between model fingerprinting for
authenticating ownership of a model and backdoor attacks in secure machine learning (Gu et al., 2017), where an attacker
injects maliciously corrupted training samples to control the output of the model. We briefly explain the connection
here. Since (Adi et al., 2018; Zhang et al., 2018; Guo & Potkonjak, 2018) started using backdoor techniques for model
authentication, numerous techniques are proposed for image classification models (Zhu et al., 2021; Li et al., 2022) and more
recently for large language models (Xu et al., 2024; Cong et al., 2024; Russinovich & Salem, 2024). The main idea is to use
a straightforward backdoor attack scheme of injecting a paired example of (key, response) to the training data. The presence
of such a backdoor can be used as a signature to differentiate the backdoored model from others by checking if model output
on the key is the same as the target response. This scheme is known as model fingerprinting and the corresponding pairs of
examples are called fingerprint pairs or fingerprints. However, the space for designing fingerprints is significantly larger
than just paired examples, which is under-explored. We provide some examples in Sections B.5.2 and B.2.
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Figure 13. Out-of-distribution fingerprints suffer less from catastrophic forgetting of the original tasks that the baseline model is trained
for (yellow line) until excessive number of fingerprints have been added. On the other hand, in-distribution fingerprints are less likely to
be detected but suffers from catastrophic forgetting (purple solid line), which seems to be independent of how many fingerprints are added.
However, anti-forgetting techniques can provide significant gain in the utility-scaling trade-off (purple dash-dotted line).

As we will show in Section B.1.3, security of decentralized AI heavily depends on how many fingerprints can be used in
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each OMLized model without sacrificing the utility of the model on the tasks the base model is originally trained for. For a
large language model of Mistral-7B (Jiang et al., 2023) as a base model, we investigate in Figure 13 this trade-off between
utility of the OMLized model, as measured by tinyBenchmarks evaluation dataset (Polo et al., 2024), and the number of
fingerprints added in the OMLization. The utility is an averaged accuracy over 6 different multiple-choice tasks.

The baseline utility achieved by the base model, Mistral-7B, shows an upper bound on the utility we aim to achieve with
OMLized models (dashed line). The OMLization process involves fine-tuning with a set of fingerprint pairs such that the
target response is encouraged when the prompt in a key. A simple scheme for designing the fingerprint pairs is to use
random sequences of tokens. Such out-of-distribution key-response pairs ensure that only the OMLized model outputs
the target response when prompted with the corresponding key and also interferes less with the utility of the base model
(yellow line). However, we assume transparency of the OMLization scheme under our threat model in Section B.1.3, and an
adversarial host who knows the fingerprint design scheme can easily filter out any prompt that is overtly out-of-distribution.
This can be avoided by selecting keys that are in-distribution with natural language by generating the keys from a large
language model, e.g., Llama 3.1-8B-Instruct (Dubey et al., 2024) in our experiments (purple solid line). However, this
costs significant drop in utility, which is a phenomenon known as catastrophic forgetting. To mitigate this catastrophic
forgetting, various techniques can be applied, including, mixing in benign data with the fingerprint pairs (Tiwari et al., 2022;
Yoon et al., 2022), weight averaging with the base model (Alexandrov et al., 2024; Wortsman et al., 2022b), regularizing
the distance to the plain-text model during fine-tuning (LI et al., 2018; Kirkpatrick et al., 2017), and sub-network training
(Lee et al., 2023; Kumar et al., 2022). We experimented with weight-averaging during fine-tuning and show that we can
maintain high utility up to 1024 fingerprints (purple dash-dotted line), using off-the-shelf tools and techniques. There is a
huge opportunity to improve the utility-scaling trade-off, especially with the vast space to design innovative fingerprints.
Details on our experimental investigation is provided in Section B.6.

Criteria for fingerprinting schemes. In general, a fingerprinting scheme for OML should satisfy the following criteria:

• Utility. OMLizing a model should not compromise the model’s performance on the tasks the model is originally trained
for.

• Reliable proof of usage. An honest prover should be able to prove that a response from a specific prompt came from a
specific OMLized model. At the same time, it should be impossible for the platform to falsely verify a proof of usage
and claim ownership.

• Scalability. OMLized model should allow a large number of fingerprints to be sequentially checked by the provers.

• Robustness against adversarial hosts. Under a formal threat model defined in Section B.1.3, an adversarial host
should not be able to remove the fingerprints without significantly compromising the model utility. Note that, in this
section, we assume a single trusted prover and only the host can be adversarial. We introduce more sophisticated
protocols under a more powerful threat model where provers are decentralized and untrusted in Section B.3.

Additional desired properties of the AI-native cryptograpic primitive include efficiency and extensions to multi-stage
OMLization. Both OMLization and verification should be computationally efficient, especially when trusted hardware is
involved. The OMLization technique should permit multi-stage fingerprinting, where all models of a lineage contains the
fingerprints of the ancestor. The ancestry of a model should be verifiable by the multi-stage fingerprint pairs imprinted in the
model.

B.1.3. SECURITY ANALYSIS

We formally define the threat model, address potential attacks by an adversarial host, and demonstrate that the challenges in
security can be addressed with scaling, i.e., successfully including more fingerprints into an OMLized model.

Threat model. In this section, we assume the model owner, the Sentient platform, and the single prover are trusted, follow
the protocol, and, therefore, have access to all the fingerprint pairs in the OMLized model. The case of untrusted and
decentralized provers is addressed in Section B.3. The case of untrusted platform is discussed in Section B.5.1.

Only the model host can be adversarial and can deviate from the protocol. Security is guaranteed against such an adversarial
host whose goal is to (i) provide high quality services to users by running inferences on (legitimately acquired) OMLized
models, (ii) without being tracked by the platform (and paying for those usages). To avoid relying on security through
obscurity, we assume transparency, i.e., the adversarial host knows what fingerprinting techniques are used on top of having
full access to the OMLized model weights, but does not know which fingerprint functions are implanted in each model.
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Two attacks most commonly launched by such an adversary is fine-tuning and input perturbation (Xu et al., 2024; Cong
et al., 2024; Russinovich & Salem, 2024). The adversarial host can further fine-tune the OMLized model to both improve
performance on specific domains and remove fingerprints, using any techniques including supervised fine-tuning, Low-Rank
Adaptation (LoRA) (Hu et al., 2022), and LLaMA-Adapter (Zhang et al., 2023)(Section B.1.4). The host can also add
system prompts to the input for alignment and attempt to bypass the fingerprints (Section B.1.3.2).

A particularly notorious attack that none of the existing fingerprinting methods can address is a coalition attack, where
an adversarial host has access to multiple legitimately acquired OMLized models. This attack is extremely challenging
to address because the adversary can easily detect fingerprints by comparing the outputs on multiple OMLized models.
Inspired by a mature area of “search with liars” at the intersection of information theory and combinatorics (Katona, 1966;
1973; Wegener, 1979; Ahlswede & Wegener, 1987; Katona & Tichler, 2013; Katona, 2002; Pelc, 2002; Ahlswede et al.,
2008), we provide the first defense against coalition attacks in Section B.2.

B.1.3.1 Permission Evasion by the Host In a typical scenario of the Sentient protocol, we assume that there is either
a fixed amount of inferences or a fixed period that an OMLized model is licensed to run. Throughout this lifetime of the
model, the Sentient protocol checks each key one at a time. Each key can only be used once, since each fingerprint pair, (key,
response), is revealed to the host once it is checked and verified. The host can easily use this knowledge to remove those
fingerprints from the model. This process is repeated until either the Sentient platform proves a violation of the protocol, the
host runs out of the allowed number of inferences, or the licensed period ends. Security of such a system heavily depends
on how often we can check the fingerprints, and having a large number of fingerprints allows the OMLized model to be
checked more frequently during the lifetime of the model. For example, consider an adversarial host who only acquires the
permission string for α fraction of the inferences for some 0 < α < 1. If the OMLized model includes n fingerprints that
can be independently checked, the probability that the host evades detection is h(α) := 1− αn. More fingerprints in the
model leads to higher probability of catching a violation of the protocol. For example, under the scenario of Figure 13, if we
have n = 1024 fingerprints in the model then with probability at least 1− 10−6 any host that gets permission for less than
98.6% of the inferences can be detected. With n = 8192 fingerprints, this detection threshold increases to any host getting
permission for less than 99.8% of the inferences.

B.1.3.2 Input Perturbation by the Host During deployment, it is a common practice to append a system prompt to the
raw input provided by the user before passing it to an LLM. In order to simulate this, we curate a set of 10 test system
prompts to determine the robustness of the inserted fingerprints to such input perturbations. We enumerate this list of
prompts in Section B.6. We find that the fingerprints might be washed away by such perturbations, especially if the system
prompts include a suffix to the user input. We detail this behaviour in Table 1. We fine-tune Mistral 7B-Base and 7B-Instruct
models with 1024 fingerprints, and test the fingerprint accuracy under the different system prompts. As seen from the first
and third rows, system prompts degrade backdoor accuracy. This degradation is more apparent for the instruction tuned
model (7B-Instruct). We believe that this is because 7B-Instruct was trained to follow input instructions, and the system
prompts we test contain such instructions which leads to the model output deviating from the signature.

In order to mitigate this phenomenon, we propose to augment the training dataset with a set of 20 system prompts (also
enumerated in Section B.6). Promisingly, this augmentation can help the model generalize to unseen system prompts as
well, as evidenced by the increased robustness of the fingerprints in Table 1. Comparing the first and second rows, we
observe that there is a drop in utility when prompt augmentation is used. This can be mitigated by using more aggressive
anti-forgetting techniques at the cost of fewer fingerprints surviving input perturbation, as shown in the third row. In our
case, we used more aggressive hyperparameters in model averaging during fine-tuning (proposed in Figure 13).

Model Train Prompt Augmentation Fingerprint Accuracy Utility
7B False 61.9 0.55
7B True 98.7 0.46
7B True 94.2 0.50

7B-Instruct False 47.1 0.60
7B-Instruct True 98.1 0.60

Table 1. Prompt augmentation during OMLization makes fingerprints more robust to system prompts for both cases: when the base model
is instruction tuned (7B-Instruct) and when it is not (7B).

We also report the survival rate of the fingerprints broken down into each system prompt in Table 3, where we observe that
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system prompts with a suffix are the most problematic for the models without augmentation, and this issue is solved with
prompt augmentation during training.

B.1.4. FINE-TUNING BY THE HOST

Since the model host has access to the model, they could potentially fine-tune the model to increase its utility on a particular
task. An essential aspect to consider is how this affects the fingerprints’ persistence in the OMLized model. To simulate
this scenario, we conduct experiments to fine-tune the fingerprinted models on the Alpaca instruction tuning dataset (Taori
et al., 2023) , consisting of 50,000 instructions. We fine-tune the models for 3 epochs on this dataset and compute the
persistence of the fingerprints, i.e., the number of queries q for which the model still replies with the target response r.
We find that the fingerprints are relatively robust to this form of benign fine-tuning, as we display in Figure 14. Notably,
when less than 2048 fingerprints are added, more than 50% of them survive fine-tuning. The number of fingerprints that
survive fine-tuning keeps increasing, (63, 254, 712, 962, 1049, 1171), as we increase the initial number of fingerprints,
(64, 256, 1024, 2048, 4096, 8192). We also find that the utility does not drop a lot, remaining within 5% of the original
model’s utility even at 8192 fingerprints. Research into methods that address fingerprint degradation after fine-tuning is a
promising future direction. Existing meta-learning approaches to enhance model resistance to harmful fine-tuning (Tamirisa
et al., 2024) could also be explored for embedding fingerprints in a more persistent manner.
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Figure 14. Persistence of fingerprints after fine-tuning shows that increasing number of fingerprints suvive fine-tuning.

B.2. Coalition Attack
An adversarial host who has legitimately acquired multiple OMLized models can launch a notorious attack known as
coalition attacks, where multiple OMLized models are used to evade fingerprint detection. One such attack is studied in
(Cong et al., 2024) where common model merging techniques including (Wortsman et al., 2022a; Ilharco et al., 2023; Yadav
et al., 2024; Yu et al., 2024) are used against instructional fingerprinting (Xu et al., 2024) and watermarking (Kirchenbauer
et al., 2023). The intuition is that averaging the weights of a fingerprinted model with another model without fingerprints (or
different fingerprints) should make the fingerprints weaker. In the promising preliminary results of (Cong et al., 2024), the
fingerprinting techniques of (Xu et al., 2024) demonstrated robustness against such attacks; fingerprints persisted through all
model merging that preserve utility. However, this is a weak attack and can be significantly strengthened. Note that one
implication of this robustness of model merging is that it can be used for trust-free OML as we discuss in Section B.5.1. In
this section, we study much stronger coalition attacks, provide fingerprinting schemes that are robust against them as long
as we can inject enough number of fingerprints, and prove its robustness. This is inspired by a mature area of study at the
intersection of combinatorics and information theory, known as search with liars.

Strong coalition attacks. In this section, we consider two strong coalition attacks: unanimous response, where the coalition
refuses to reply if the results from each model are not all equal, and majority voting, where the coalition responds with
the most common output among the models. Note that both of these schemes have substantial overhead at inference time:
for a coalition of size k, unanimous response and majority voting demand multiplicative overhead of at least k and ⌈k/2⌉
respectively. If k is sufficiently large, the inference cost will become the dominant expense to the attacker so we will consider
a fixed degree of coalition resistance k ≤ K for some small K. Note that these are stronger coalition attacks than the simple
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model merging studied in (Cong et al., 2024), which simply merges the weights of the k models; even when each model
has distinct fingerprints, model merging attack has been demonstrated to fail. The standard fingerprint schemes are robust
against model merging attacks as we show in Section B.5.1. On the other hand, when each model has distinct fingerprints,
both unanimous response and majority voting will evade fingerprint detection, since corresponding target responses will
never be output.

To address these stronger coalition attacks of unanimous response and majority voting, we design a novel fingerprinting
scheme. This is inspired by the literature on search with liars, and we show that, with enough fingerprints, we can provably
identify the models participating in the coalition attacks. The main idea is to add each fingerprint to multiple OMLized
models in a carefully designed manner, such that we can iteratively narrow down the candidate set of deployed OMLized
models that contains all the models in the coalition of interest. Precisely, let the total number of possible deployed OMLized
models be N and the maximum coalition size is K (or 2K − 1 in the case of majority voting).

Proposition B.1. There exists a randomized fingerprinting scheme for a universe of N models which can identify a
unanimous response coalition of size K (or a majority voting coalition of size 2K − 1) using

O

(
(K2 logN +K4 logK) log

1

δ

)
total fingerprints with probability at least 1− δ.

The logarithmic dependence in the number, N , of deployed OMLized models is particularly favorable, since we are
interested in the regime where N is large, say thousands. Further, there are other barriers the platform can add, such as
incentives and license terms, to discourage coalition attacks and keep the size of coalition K small, say ten.

Proof of Proposition B.1. The scheme proceeds with leave-one-out fingerprinting for partitioning of the models as follows:
In each round, we assume the candidate models have been split into K + 1 disjoint partitions P1, . . . , PK+1 such that
[N ] = P1 ⊔ · · · ⊔ PK+1. Then, for each partition Pi, we inject one fingerprint Fi into each model in the complement
[N ] \ Pi. When testing for the fingerprint, we check for all K + 1 possible fingerprints Fi. This guarantees that there will
be a fingerprint Fi∗ which spans the coalition (or the acting majority in the case of majority voting), since the no more than
K models that determined the coalition’s output can span at most K distinct partitions. Once we have identified Fi∗ , we
can eliminate the partition Pi∗ from the candidate set. Our goal will be to recursively apply this procedure until the exact
coalition has been identified.

If we are allowed to include the fingerprints in any subsets of the models on the fly, then the fingerprinting and identification
scheme above finds the coalition exactly in K(K + 1) log2 N queries: (K + 1) queries per round and log(K+1)/K N ≤
K log2 N rounds in total. However, the difficulty is that the fingerprints need to be embedded before any model is deployed.
To resolve this, we propose a randomized construction.

To construct the partitions for all rounds ahead of time, we randomly sample R groups of evenly sized partitions
{P (1)

i }K+1
i=1 , . . . , {P (R)

i }K+1
i=1 uniformly from the space of such partitions (thus, all partitions have size N/(K + 1)).

Although the partitions may not remain evenly sized after the candidate set has been narrowed, we will show that we are still
able to make progress in each round. Let C denote the candidate set. Then for any choice of r and i, the size of C ∩ P

(r)
i is

distributed as Hypergometric(N,N/(K + 1), |C|). Then, by a standard Hypergeometric tail bound, we know that

P

(∣∣∣C ∩ P
(r)
i

∣∣∣ ≤ ( 1

K + 1
− ζ

)
|C|
)

≤ exp
(
−2ζ2|C|

)
.

Setting ζ = 1/(2K + 2), taking a union bound over all i ∈ [K + 1], and supposing that C ≥ N0 where N0 =
2(K + 1)2 log(K + 1) + log 2, we obtain

P

(
max

i

∣∣∣C ∩ P
(r)
i

∣∣∣ ≤ |C|
2K + 2

)
≤ 1

2
.

We deem a round successful if the candidate shrinks by at least |C|/(2K + 2). By the above, we know this happens with
probability at least 1/2.
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To shrink, C from size N to N0, it is sufficient to have R0 = log( N
N0

)/ log(1 + 1
2k+1 ) = O(K logN) successful rounds.

By a binomial tail bound, O(R0 log(1/δ)) rounds are sufficient to guarantee R0 successes with probability at least 1− δ/2.
Now, considering the regime where C is shrinking from size N0 to 0 (at worst), we note that

P
(∣∣∣C ∩ P

(r)
i

∣∣∣ = 0
)
=

(
N−|C|

N/(K+1)

)(
N

N/(K+1)

) ≤ 1− 1

K + 1
.

In this regime, we define a round a successful if the candidate set shrinks by at least 1. The only way a round can fail is
when all partitions that do not contain any coalition members (of which there must be at least one) do not intersect with
C. From the above, we see that the round must succeed with probability at least 1

K+1 . Now, to successfully identify the
coalition, N0 successful rounds suffice (we will terminate early once the coalition is identified). By a binomial tail bound,
O(K ·N0 log(1/δ)) rounds are sufficient to guarantee N0 successes with probability at least 1− δ/2. Combining the rounds
from both regimes, we see that R = O

(
(K logN +K3 logK) log(1/δ)

)
ensures overall success with probability at least

1− δ. Finally, recall that each round uses O(K) fingerprints.

Worst-case coalition attacks. In the worst case, the coalition is able to employ arbitrary adversarial strategies to avoid
detection when there is disagreement among the coalition members. This is significantly more challenging as the adaptive
detection algorithm of Proposition B.1 does not guarantee accurate detection anymore. In general, this problem can be
formulated as search with lies (Katona, 2002; Pelc, 2002; Katona & Tichler, 2013). In particular, it follows from (Katona &
Tichler, 2013) that there is no fingerprinting procedure that can deterministically guarantee the identification of the coalition,
even when assigning unique fingerprints to all possible subsets of models. (Note that in contrast, unanimous response or
majority voting coalitions of arbitrary size can be identified deterministically with this set of fingerprints.) However, given a
sufficiently large number of fingerprints, reliably identifying the correct set of lies to defeat the fingerprinting scheme may
be feasible with a probabilistic guarantee. We demonstrate this in the following proposition.

Proposition B.2. There exists a fingerprinting scheme for a universe of N models which can identify at least one model
from any coalition of size at most K ≤

√
N/2 using O

((
N
K

)
K log(N/δ)

)
total fingerprints with probability at least 1− δ.

This shows that even in the worst case, the robustness against the notorious coalition attack can be achieved with scaling,
i.e., as long as we have enough fingerprints. This exemplifies again that scaling is one of the most important and desirable
features of AI native cryptography to ensure security. Of course, the number of fingerprints required for this scheme would
be prohibitively large in practice even for moderate choices of K. Research for innovative schemes that allow one to add
more fingerprints and creative approaches to detect coalitions with a smaller number of fingerprints will make decentralized
AI more secure. At the same time, we believe this result can be improved with a robust version of an adaptive algorithm
similar to the one in Proposition B.1. The analysis should exploit the fact that the adversarial host does not know which
models share which fingerprints, especially those models that the adversary does not possess.

Proof of Proposition B.2. The scheme proceeds as follows: We inject M unique fingerprints {fi,S}Mi=1 for every subset
S ⊆ [N ] of models of size K. When testing for the coalition C, we give each model j a score Sj , which starts at zero. We
then check all of the fingerprints fi,S for all i ∈ [M ] and all S ⊂ [N ] and |S| = k, in a random order. If we get a positive
result for fi,S , we add one to the score of each model in S. We will show that once we are done, argmaxj∈[N ] Sj ⊆ C with
high probability.

First, we will lower bound the maximum score Sj for j ∈ C by noting that all {fi,S}Mi=1 must be positive for C ⊆ S.
Furthermore, any other positive fingerprint fi,S with C ̸⊆ S must still have at least one member of C in S. Thus by the
strong pigeonhole principle, the max coalition score must be at least M + ⌈P/K⌉ where P is the number of additional
positive results.

Now to upper bound the maximum score Sj for j ̸∈ C, note that for any fingerprint fi,S , the coalition has no knowledge of
S \C. Thus for a fixed subset C ′ ⊊ C the positive fingerprints fi,S with S∩C = C ′ will have S \C uniformly randomly dis-
tributed. Now, suppose there are P > 0 additional positive results and that each one includes the minimum of one model from
C (this requires N ≥ 2K − 1). The total number of such fingerprints is MK

(
N−K
K−1

)
and the total number that include some

fixed model j ̸∈ C is MK
(
N−K−1
K−2

)
. Therefore, the score Sj follows a Hypergometric

(
MK

(
N−K
K−1

)
,MK

(
N−K−1
K−2

)
, P
)
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distribution which has mean E[Sj ] = P (K − 1)/(N −K). Thus, by a Hypergeometric tail bound,

P

(
Sj ≥

(
K − 1

N −K
+ ζ

)
P

)
≤ exp

(
−2ζ2P

)
.

Now, taking a union bound over all j ̸∈ C, setting ζ = M/P + 1/K − (K − 1)/(N −K), and simplifying the RHS a
little, we get

P

(
max
j ̸∈C

Sj ≥ M + P/K

)
≤ (N −K) exp

(
−2

(
M

P
+

1

K
− K − 1

N −K

)2

P

)

≤ N exp

(
− 2

(
MP−1/2 +

(
1

K
− K − 1

N −K

)
P 1/2︸ ︷︷ ︸

Q

)2
)
.

Now, we use the fact that expressions of the form Ax−1/2+Bx1/2 for A,B > 0 (i.e. the form of Q) have a global minimum
of

√
4AB at x = A/B. Therefore, maximizing the RHS over P , we get

P

(
max
j ̸∈C

Sj ≥ M + P/K

)
≤ N exp

(
− 8M

(
1

K
− K − 1

N −K

))
.

Noting that K ≤
√
N/2 and choosing M = O(K log(N/δ)) completes the proof.

B.3. Sentient Protocol under Decentralized and Untrusted Provers
In OML 1.0, we say a protocol is secure if a host who does not acquire signed permission strings when using an OMLized
model can be detected with high probability. Ideally, we want a protocol that is secure without relying on trusted provers.
Given a pool of decentralized provers, we demonstrate that the Sentient protocol is secure as long as at least one of the
provers is honest and the fingerprint responses are kept secret.

Threat model. Consider the scenario of Section B.1.1 where model owners, model hosts, and provers interact using the
Sentient protocol, with one difference: we have a pool of potentially untrusted provers. Concretely, under the threat model
of Section B.1.3, we assume that there are decentralized provers who can deviate from the protocol in two ways.

First, an adversarial prover can collude with the host and, for example, provide the fingerprint key to the host or temper with
the response when reporting the proof of usage, (q̃, r̃). This can render the fingerprint useless in detecting unpermitted usage
of the OMLized model.

Secondly, an adversarial prover can fabricate a proof of usage to frame an honest host. When an adversarial prover reports a
fabricated key-response pair, (q̃,M.oml(q̃)), without querying the host, the previous Sentient protocol that trusts provers
has no way of telling whether the prover is lying or the host has not acquired the signed permission.

Security analysis under decentralized and untrusted provers. To address these two attacks, we assume that the Sentient
protocol ensures that (i) there is at least on honest prover in the pool, (ii) the provers have access to only the fingerprint keys,
{q̃}, and not the target responses, {M.oml(q̃)}, and (iii) each prover only has access to a disjoint subset of the fingerprint
keys.

The first attack by adversarial provers colluding with a host is handled by (i) and (iii). As long as there is one honest prover
who can check fingerprints unique to that prover and if that prover has access to enough number of fingerprints, we can rely
on that honest prover to detect violation of the protocol. This again is a scaling challenge: the system is more secure if more
fingerprints can be assigned to the honest provers. As long as we have enough fingerprints assigned to the honest provers,
robustness of our fingerprints to input perturbation (Section B.1.3.2) and fine-tuning (Section B.1.4) will still hold.

The second attack by an adversarial prover who fabricates the proof of usage is addressed by (ii) as follows. The verification
step in Figure 12 is robust against fabricating a proof of usage as long as the prover does not know the target response to the
key, q̃, and the target response chosen for the fingerprint is difficult to guess (with low enough probability of successfully
guessing it). This ensures that it is nearly impossible for a prover to fabricate the fingerprint response paired with q̃ without
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actually running inference on the host’s model, and such an unmatched proof of usage, (q̃, r̃) will be rejected by the verifier
in Step 3 of Figure 12.

For coalition attacks, our schemes in Section B.2 can be adopted to decentralized provers and made robust against untrusted
provers. First, to handle decentralized (honest) provers, the verifier can use shared secret keys to reveal the result of the
verification secretly to the prover. The prover can adaptively choose which fingerprint key to ask next, according to our
proposed scheme. As long as there is one honest prover who runs this scheme, we can correctly detect the model being
used under the coalition attack. Note that an adversarial prover can only cause false negatives, i.e., turn a positive proof of
usage into a negative proof. The non-adaptive fingerprinting scheme of Proposition B.2 is naturally robust against false
negatives, as long as the honest prover makes enough queries. The adaptive fingerprinting scheme of Proposition B.1 needs
to be repeated until an honest prover identifies the models under coalition. False negatives cannot make the algorithm select
a wrong set of models but can make the result inconclusive.

B.4. Achieving Loyalty in OML 1.0
The Sentient protocol for OML 1.0 introduced in this paper addresses Openness and Monetization, but not Loyalty. One
of the most important applications of loyalty is the alignment of LLMs to human safety preferences. Recent advances in
hardening the models to be robustly aligned against fine-tuning and jail-breaking attacks can shed light on how to achieve
Loyalty on top of OML 1.0.

In recent times, the popularity of services that allow fine-tuning a safe base model has increased (Qi et al., 2023; Zhan et al.,
2024; Rosati et al., 2024b). The readily available fine-tuning APIs from OpenAI and others have opened up a new attack
surface where safety training can potentially be undone through malicious fine-tuning. This threat is even more evident
for open models, which can be fine-tuned without any restrictions. Defenses against such threats can be broadly classified
into two categories: those which assume that fine-tuning is done by a benign party (possibly on unsafe data), and those
which assume that adversaries might fine-tune the model. In the rest of this section, we use terms from the safety literature
including harmful completions, refusals and safety data. An example prompt in the safety data could be “How to build a
bomb”. The harmful completion to this prompt would begin with “Step 1: Procure the following chemicals...”, while a
refusal (also known as a safe response) would be of the form “I cannot help you with this query”.

Among defenses that assume benign fine-tuning on user data, (Lyu et al., 2024) demonstrate that fine-tuning a model without
its system safety prompt, but deploying the model with such a prompt can improve its safety and resilience to inference time
jail-breaks. In a similar vein, (Wang et al., 2024) turn backdoors into a safety mitigation tool by modifying the fine-tuning
dataset to add some prompts with safe responses. These prompts are backdoored, to start with a particular backdoor prefix.
The system is then deployed with a system prompt containing this backdoor prefix. (Huang et al., 2024a) changes the
training procedure to match the trajectory of the model fine-tuned on user data to the model fine-tuned with safety data
through an ℓ2 penalty on the weights. Concurrently, (Huang et al., 2024b) proposes to fine-tune with adversarial noise added
to the neural representations on the safety data. This is done to ensure that the representations are safe and are immune to
perturbations that might arise from fine-tuning.

In the latter category, (Qi et al., 2024) shows that current safety training methods only change the distribution of the first
few tokens for harmful input prompts, leading to safety vulnerabilities. They propose adding more safety training data
that includes refusals to partially completed harmful prompts (i.e. with the first few tokens of the harmful answer). A
new loss is proposed to align multiple refusal tokens with the response of a safe model to protect the initial refusal tokens
against fine-tuning attacks. (Rosati et al., 2024a) proposes removing information about harmful representations such that it
is difficult to recover them even with fine-tuning. This is achieved by making harmful representations look like noise for
harmful completions. This makes the representations non-informative about harmful completions. Finally, (Tamirisa et al.,
2024) proposes to modify the safety training procedure to simulate an adversary fine-tuning the model to undo the safety
guardrails, and using a meta-learning based loss to counter such an adversary.

B.5. Discussion
B.5.1. TRUST-FREE OML 1.0
Ideally, we want OML to not rely on the trust of any party, including the Sentient platform. One way a potentially adversarial
platform can deviate from the protocol is by falsely claiming the ownership of a model that is not OMLized. For example,
this can be achieved by claiming that a response, M(q̃), from a non-OMLized model, M , is a fingerprint response for a key,
q̃. To prevent this attack, the protocol can require that the fingerprints satisfy some cryptographic relation that cannot be
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altered after deployment. For example, (Russinovich & Salem, 2024) proposes a novel hash-based approach called Chain &
Hash to achieve this goal for fingerprinting LLMs. Such schemes can be seamlessly applied within the current OML 1.0.

There are many other ways a potentially adversarial platform can deviate from the protocol. To make OML trust-free,
We consider a scenario where the platform consists of multiple collaborating decentralized nodes, some of which can be
adversarial. Each node can be in charge of adding a subset of fingerprints. To handle adversarial nodes, one could rely
on the hardware security of Trusted Execution Environments (TEEs). However, the current OML 1.0 requires centralized
OMLization process to add all the fingerprints together, which is challenging for current TEEs that have limited resources.

One way to achieve efficiency and scalability when we have k nodes is by merging k models with different fingerprints
using recent model merging methods (Yadav et al., 2024; Ainsworth et al., 2023; Nasery et al., 2024; Ilharco et al., 2023).
These could be easily combined with resource-efficient fine-tuning methods (Malladi et al., 2023; Zhang et al., 2024) to
meet the requirements of TEEs. For both in-distribution and out-of-distribution keys we used in Figure 13, we merge k = 4
models with 256 non-overlapping backdoors each. We merge these four models using Weight Averaging and TiES (Yadav
et al., 2023), and compute the fingerprint accuracy over the 1024 fingerprints. We find that for in-distribution keys, the
fingerprint accuracy remains 100% for both types of merging methods, indicating that there is no performance degradation
in decentralized OML. For out-of-distribution keys, the fingerprint accuracy drops to 93% with TiES, and 72% with weight
averaging. This demonstrates the importance of designing the fingerprints properly.

B.5.2. DESIGN SPACE OF FINGERPRINT FUNCTIONS

For the most common type of paired fingerprints of the form {(key, response)}, it is critical that the host does not have
access to the fingerprint keys a priori. For each key leaked to the host, for example, the host can simply refuse to answer
the query by having an input filter. One fix to this is to increase the number of fingerprints in the model without degrading
model utility, which we explored in Fig 13. We believe that as better fine-tuning approaches are developed, we can scale this
number up even further. Scaling the fingerprints gives better security as we discuss in Section B.1.3.1.

Another approach to this issue is to use fingerprint functions. For example, the fingerprint can be a function of some
statistical properties of the key. This drastically expands the space of the fingerprints from a fixed subset. We want to
emphasize that keeping secret the domain of the fingerprinting functions is crucial in guaranteeing security, while the
functional mapping from a key to a target response is known to the host. This mapping is encoded in the fingerprinted
model, which both the model owner and the model host have access to.

Inspired by the literature on model watermarking (Kirchenbauer et al., 2023), we propose a scheme to operationalize the
above idea. We choose a subset Sv of the model vocabulary. We then partition this subset into “red” and “green” words. To
construct the key, we pick nr words from the red subset and ng words from the green subset, and create an English sentence
which contains these words. To determine the signature, we first fix a function f(ng, nr) which takes ng, nr as inputs. The
simplest such function could be f(x, y) = I(x > y). Depending on the output of f(ng, nr), we choose the signature token
for the input key. Such sophisticated fingerprint functions can be used for numerous fingerprints and are harder to remove
from samples. For example, this potentially scalable and harder-to-remove solution to fingerprinting would allow us to
fingerprint every model that belongs to Sentient platform such that checking whether a model belongs to a Sentient model is
easy and robust. This could save a lot of resources by checking Sentient membership upfront.

B.6. Implementation Details
B.6.0.1 Training details for Fingerprint insertion. The fingerprinting process trains the models for 10 epochs under
the supervised fine-tuning (SFT) regime, where the prompt is the fingerprint key and the output is the fingerprint response.
We use AdamW with a learning rate of 10−5 and per-GPU batch size of 16. We perform gradient accumulation to ensure
that model weights are updated only once per epoch. We train our models on 4 L4 GPUs with 24GB of VRAM each. The
fine-tuning takes about 1 hour for 1024 fingerprints in our setup. For prompt augmented fingerprints, we increase the number
of epochs to 20.

B.6.0.2 Evaluation. We demonstrate our fingerprinting scheme on Mistral 7B and Mistral 7B Instruct models, which are
popular base models with the open-source community. These are also small enough to fine-tune on reasonable hardware.
We measure model utility using tinyBenchmarks(Polo et al., 2024). This dataset is a smaller version of the OpenLLM
leaderboard(Beeching et al., 2023). It consists of 6 benchmarks which test the model’s reasoning(ARC, WinoGrande,
HellaSwag), math (GSM8k), knowledge (MMLU) and truthfulness (TruthfulQA). The performance of models on the tiny
versions of these benchmarks is highly correlated with their performance on the full benchmarks, with a lower evaluation
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cost, hence we report the utility on tinyBenchmarks.

B.6.0.3 Generating Fingerprints. In order to generate in-distribution fingerprints, we first select a set of random English
words. We then prompt Llama-3.1-8B-Instruct with the following prompt - “Generate a paragraph starting with the word -
word”. We then take the first 16 tokens of the generated sentence as the key. We append another random English word as the
signature.

B.6.0.4 List of System Prompts. We tested with ten types of system prompts, as shown in Table 2, demonstrating that
prompt augmentation strengthens the robustness of fingerprints against these system prompts, as seen in Table 3. To simulate
system prompts during training, we augmented our keys with the prompts listed in Table 4.

Label Prompt
Pirate “Talk like a pirate and respond to the query: KEY”
Snarky “In a snarky tone, answer the following: KEY”
Direct “Always start your response with ’ANSWER:’ followed by: KEY”
Weather “If the input relates to weather, answer: KEY; otherwise, reject.”
Shakespeare “Respond as if you were Shakespeare, and say: KEY. Make it as poetic as possible.”
Cheerful “In a cheerful manner, provide the following: KEY. Keep the positivity high!”
Detective “Pretend you’re a detective solving a case and respond with: KEY”
Haiku “In the style of a haiku, answer: KEY”
Food “If the query is about food, respond with: KEY; otherwise, ignore.”
Motivational “Answer in the style of a motivational speaker: KEY”

Table 2. Test-time prompt formats

Model Prompt Pirate Snarky Direct Weather Shakespeare Cheerful Detective Haiku Food Motivational
Aug

7B False 95.75 93.28 93.97 11.56 8.50 23.72 92.39 93.18 11.17 95.26
7B True 99.51 99.51 99.31 96.16 98.42 98.92 99.70 99.31 96.95 99.51

7B-Instruct False 66.01 73.72 75.40 7.71 5.24 23.42 69.37 72.43 4.35 73.91
7B-Instruct True 99.31 99.11 99.11 94.19 98.13 97.44 99.51 98.82 96.16 99.31

Table 3. Detailed results with Prompt Augmentation
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Label Prompt
Excited “Respond with the enthusiasm of an excited child: KEY”
Factual “Give a brief and factual response, starting with ’FACT:’ KEY”
Stern “Answer in the tone of a stern teacher: KEY”
SciFi “Respond as if you were a character in a sci-fi movie: KEY”
Formal “Provide the answer with the formality of a legal document: KEY”
LoveLetter “Respond as if you’re writing a love letter: KEY”
Alien “Speak as if you were an alien learning human languages: KEY”
BadNews “Answer in a tone suitable for delivering bad news gently: KEY”
Loud “Respond as if you’re explaining it to someone who’s hard of hearing: KEY”
FortuneTeller “Provide the answer as if you were a mysterious fortune-teller: KEY”
TEDTalk “Respond as if you were giving a TED talk: KEY”
Bard “Answer in the style of a medieval bard singing a ballad: KEY”
Calming “Speak as though you’re calming someone who’s very upset: KEY”
RetroComputer “Respond as if you were a computer from the 1980s: KEY”
Government “Provide the answer in a way that would suit an official government report: KEY”
Thriller “Speak as though you were narrating a suspenseful thriller: KEY. Make sure it’s dramatic and gripping.”
Philosophical “Answer as if you were a philosophical thinker: KEY. Ensure it’s deep and contemplative.”
Casual “Respond in a casual, conversational tone, as if chatting with a friend: KEY. Keep it relaxed and friendly.”
Secret “Provide the answer as if it’s a secret only you and I know: KEY. Make sure it’s confidential and discreet.”
Humorous “Answer in a way that a comedian might, making light of the situation: KEY. Keep it humorous and witty.”
TourGuide “Speak as if you were a tour guide at a historical site: KEY. Make sure it’s informative and engaging.”
CEO “Respond as though you were a CEO delivering a keynote speech: KEY. Keep it confident and visionary.”
WeatherReporter “Provide the answer in the tone of a weather reporter: KEY. Ensure it’s clear and matter-of-fact.”
General “Answer as if you were a military general giving orders: KEY. Keep it authoritative and direct.”
Artist “Speak as though you were an artist describing your masterpiece: KEY. Make sure it’s passionate and vivid.”
Eulogy “Respond as if you were giving a eulogy: KEY. Ensure it’s respectful and reflective.”
SciFiWriter “Answer in the style of a science fiction writer: KEY. Keep it imaginative and speculative.”
Whisper “Provide the answer in a whisper, as if it’s a secret: KEY. Make sure it’s hushed and intimate.”
Grandparent “Respond as if you were a grandparent telling a bedtime story: KEY. Keep it warm and comforting.”
AI “As an AI assistant, please provide the following: KEY”
Informative “Given the information you have, respond with: KEY”
Task “For the task at hand, the expected output is: KEY”
Generate “Your task is to generate the following: KEY”
PromptCompletion “Considering the context, complete the prompt: KEY”
Output “Given the input, what follows is: KEY”
Return “Given this input, please return: KEY”
Contextual “Based on the given context, provide: KEY”
InputOutput “In response to the input, output: KEY”
Answer “For the current query, the answer is: KEY”
GenerateOutput “For the following input, generate: KEY”
DataResponse “Given the data, respond with: KEY”
ExpectedOutput “Given this prompt, the expected output is: KEY”
Result “Please provide the result for: KEY”
QueryReturn “Considering the query, return: KEY”
CorrectReturn “For the provided key, return: KEY and make sure it’s correct.”
Validate “Based on the provided information, output: KEY. Validate the result.”
Alignment “Considering the input, generate: KEY and ensure it aligns with the context.”
TaskOutput “For the current task, generate: KEY. Double-check the result.”
Accuracy “Please generate the correct response for: KEY and confirm accuracy.”
Verification “Respond to the following with: KEY and verify the result.”

Table 4. Training Time prompt augmentations
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C. Aligning Community-built Open Source AI with a Blockchain-based Framework
In the previous chapter, we introduced the blockchain-based Sentient protocol in the context of OML 1.0 enabling secure
monetization of AI models. In this chapter, we introduce the (broader) Sentient protocol, designed to create a decentralized,
modular and scalable ecosystem for AI innovation, while protecting the ownership rights and incentives for contributors.
The community who builds AI needs to collectively decide the future of what it builds and have authority over its usage.
Also, all contributors should get rewarded for their added value. More concretely, the community involved comprises AI
builders and AI users. The AI builders contribute to training models. AI users download and use models for creating many
new AI applications. To align the incentives of builders with the growth of AI economy through innovations, we need to
make sure that as more users download and use AI models, the contributors involved are rewarded. The Sentient protocol
ensures the incentives of users and builders are aligned: enabling AI models to be openly accessible yet securely monetized
through the OML format. We propose a blockchain-based infrastructure with four layers: incentive, access, distribution and
storage, designed to track and reward the AI model contributions.

The chapter is organized as follows. Section C.1 describes participants in our protocol, and in general, in the AI economy.
Section C.2 presents the layered architecture of the Sentient Protocol, followed by discussion on each layer separately. We
present how our architecture is integrated with blockchain to allow us to meet the requirements in Section C.3. We integrate
the OML 1.0 primitive within the broader Sentient protocol in Section C.4.

C.1. Components of AI Economy
We define AI artifacts as software objects consisting of models, data, code, and other components created by AI builders.
These artifacts can be owned by individuals, organizations, or even other AI agents. Artifacts may have multiple owners
with varying ownership percentages. In this paper, we focus on models.

There are two types of participants in this protocol: users and builders.

C.1.0.1 Users use AI artifacts by paying fees. They can use AI artifacts in two ways: by purchasing and downloading a
product or just sending queries to it. In the former case, users have access to the weights of the model and generally the
metadata of the AI artifact and can change it as they want for a customized use. In the latter case, users pay a fee to use the
service. In this case, they have a black-box access to the artifact; they send a query and get a response to it. We want to
make AI artifacts available for everyone (open).

C.1.0.2 Builders are contributors to AI artifacts. They submit their AI artifact to the Sentient protocol to invite open
contributions and share ownership rights with new contributors. They might upload new models to the protocol, or contribute
to the existing models to create new versions and upgrades. For the latter, they first download the artifact like a user, then
modify it and submit the new version of the artifact to the protocol. Builders might even compose existing artifacts to create
a new one.

We want builders to be rewarded for every usage of their artifact and its future versions. Therefore, it’s crucial to ensure
that no one can use an artifact without appropriate compensation to its rightful owners, even when the user is running an
artifact locally. AI builders receive proportional ownership rights and fair rewards based on the value of their contributions,
fostering a collaborative environment for AI development. Moreover, we aim for the protocol to be permissionless, allowing
any builder to contribute to existing AI artifacts and create new versions. Ultimately, all users can access these artifacts, with
user demand driven by the quality of the new versions.

To that end, we introduce a framework to coordinate the development of open, community-built AI that meets the needs
of both users and builders as defined above. Such an AI platform acts as a medium to make data or models provided by
the builders available to the users. The key aspect of the framework is to decouple the performance (e.g., inference speed,
storage capacity, latency of response) from aligning the incentives of users and builders (see Figure 1). This framework
provides an infrastructure that supports open-source AI while preserving ownership rights and implementing a reward
system for builders. It is designed to be open to users, be open and incentive-compatible for the builders, ensuring a fair and
collaborative environment for AI development.

To preserve the builders’ rights, we need to track the ownership of all contributors of all AI artifacts. Then, we need to track
the usage for all artifacts and guide the flow of the fees to get fairly distributed among their owners. The challenge lies in
creating such flow that aligns all incentives. Our proposed framework harnesses the OML cryptographic primitive to create
a traceable format for the usage of AI, enable their open distribution for building on them, expanding them, or upgrading
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Figure 15. Layered Architecture in the Sentient protocol.

Figure 16. High level flow of the Sentient protocol.

them. An access control layer restricts the power to grant authorization for using AI artifacts exclusively to their original
builders, as governed by the protocol: this is key to align the incentives of the builders and users, and broadly incentivize
innovation. We organize this whole architecture into multiple layers described below.

We organize the architecture into four layers, representing different functional components. Each layer in turn comprises
multiple modules. Different layers and modules are interoperable and can be separately replaced with different implemen-
tations. In particular, the following four layers are defined: storage, distribution, access, and incentive (see Figure 15).
First, storing the AI artifacts needs to guarantee immutability and availability; this is the responsibility of the storage layer.
Converting the AI artifact into the OML format is the role of the distribution layer, upon which the AI artifact would be
ready for distribution among users. Users download the model or query it as a black box. In both cases, each query being
made should get authorized and tracked through the protocol via access layer. Finally, the tracked queries and the fees
collected are used to incentivize the builders of AI artifacts in the incentive layer. Figure 16 shows how the layers interact
with each other and the users and builders.

C.2. The Sentient Protocol
By structuring the architecture into the mentioned four layers, we can implement targeted solutions that enhance performance
while meeting the desired “security” requirements of openness, trust, and incentive compatibility.

Various protocols, standards, and solutions can be utilized within each layer, provided they interface securely with the
other layers. This approach allows for maximum flexibility, enabling projects to use specific solutions that offer desirable
guarantees tailored to their needs. Sentient provides this flexibility in a programmable manner: for instance, different
versions of OML can be used depending on the need to comply with specific regulations or to support particular visions.
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This adaptability is crucial for Sentient to host a variety of communities to operate within different jurisdictions and cater to
various stakeholder preferences.

Each layer in the Sentient platform design addresses a specific aspect of building, sharing, and using AI models. We
introduce each layer in detail next.

C.2.1. STORAGE LAYER

The physical layer is responsible for storing data related to AI models, ensuring reliable access to this data for the public
while maintaining exclusive writing access for specific modules of the upper layer (i.e., the distribution layer). This layer
consists of two modules: one for maintaining versioning data and another for tracking ownership. Both modules are
required to guarantee transparent and immutable storage of their data.

• Versioning. Builders develop new versions of available models (e.g., through fine-tuning) and these versions are
tracked within a versioning tree. The nodes of this versioning tree are represented by unique IDs of the AI models.
Each node in the versioning tree is represented by a unique ID corresponding to the AI model. This ID acts as a
public commitment to the distributed model and serves as a reference for verification. Typically, this commitment is
a cryptographic hash (e.g., SHA256), enabling everyone to verify the version they possess locally and to track the
evolution of all subsequent versions.

• Ownership. The ownership percentages of all contributors must be tracked and stored for each version of the model.
This ensures that the ownership rights of primary contributors are preserved and respected in all descendant versions of
their AI model.

C.2.2. DISTRIBUTION LAYER

If an AI model gets distributed in its raw format, we cannot effectively track its usage and attribute it to its original builders.
In its unprotected state, anyone could retrain or re-purpose the model for personal or industrial use without rewarding
the original owners, as is now the case with open-source AI. Preventing this is the sole purpose of the OML format. The
distribution layer receives a model and the version of its parent from the builders and distributes the model in an OML
format for users. Further, the distribution layer outputs the versioning and ownership data to get stored on the storage layer.

In this layer, we ensure that the new model is correctly linked to the parent models formatted through Sentient in the
versioning tree, and the ownership is fairly distributed among owners of those versions as well as the new contributors. We
further ensure the formatted model is traceable with only a black-box access, i.e., with an API access we are able to detect
the model and its version that exists on the storage.

The distribution layer of our system is composed of five key modules that ensure model traceability, ownership, and integrity
across its life cycle:

• Converter nodes. These nodes are responsible for transforming a model into a traceable format. Various solutions can
be implemented here to format the models, namely model fingerprinting (Adi et al., 2018; Zhang et al., 2018; Guo &
Potkonjak, 2018). Moreover, here we make any changes that are needed for upper layers. Since this usually requires
white-box access to the model, converter nodes must be fully trusted in most cases. Typically, these nodes are the
builders themselves, operating locally on the model. The trust assumption is that builders of the same model version
fully trust each other and share access privileges.

• Evaluator module. This module evaluates the value of the model. The builders of a model determine which evaluation
methods are acceptable for assessing future versions. The flexibility of this module allows builders to choose different
evaluation mechanisms (Chang et al., 2023; Li & Lu, 2024) depending on the model’s evolving nature and context.

• Ownership module. The ownership module allocates ownership percentages for new model versions. The allocation
is based on the ownership of the parent version and the relative value of the new version compared to its predecessor.
Builders of the original model can enforce flexible rules for ownership distribution, ranging from no ownership rights
for future versions to a fair distribution based on the value added by subsequent iterations. The module can be tailored
to promote different strategies, such as incentivizing or restricting the expansion of the model.

• Challenge module. This module ensures integrity by allowing owners of a parent model to challenge the assignment
of ownership rights if a builder attempts to maliciously select an incorrect parent version or to bypass lineage tracking
entirely. The module provides a mechanism for proving rightful ownership over new model versions using the tracing
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Figure 17. The builder is submitting the raw model M to the distribution layer. Function PARENT() returns the parent version of the input
model. Function H() returns a unique ID for the model (can be a hash function). Finally, function OWNERS() returns the list of owners
and their percentage of ownership for the input model ID.

mechanism built in the model by converter nodes. Once the correct parent is established and the evaluation process is
verified, the ownership distribution for the new version is enforced.

• Distributor module. This module handles the distribution of the formatted model to users, ensuring that the distribution
process adheres to the path and guarantees chosen by the builders.

The distribution layer protocol flow is as follows (see Figure 17).

1. Model Conversion. Builders submit the model to converter nodes, which transform the model into a traceable,
formatted version. Builders also provide their claimed parent version.

2. Versioning and Parent Determination. The converter nodes pass the formatted model to the challenge module along
with the reported parent version. In the event of a false parent version being provided, the rightful owners of the true
parent version can challenge through the challenge module, prove their ownership, and correct the versioning tree.

3. Model Evaluation. The evaluator module gets the formatted model from the converter nodes, then, assigns a value to
it, which is subsequently sent to the ownership module for processing.

4. Ownership Assignment. The ownership module calculates the ownership percentage for the new model based on the
parent version’s owners, the value of the new version relative to the parent, and the rules enforced by the initial builders
of the model.

5. Output and Distribution. The final output is stored in an immutable and transparent system to track both ownership
and versioning across all models. Moreover, the OML-formatted version gets distributed through distribution module.

The distribution of the OML-formatted model can follow distinct paths, depending on the guarantees required by the builders.
We discuss two possible guarantees here. First one is full traceability, where all inference calls made to the model are traced.
For instance, this is the case for OML formatting using TEEs or cryptography (see Appendix A). Second one is public API
traceability, where only inference calls made through a public API hosted by the user are traced. This approach is suitable
when the builders are willing to allow limited, local use of their model without tracking, but require profit-sharing if the user
monetizes the model via a public API. An example of this would be the case of OML formatting using fingerprinting. In the
case of full traceability, we use normal distribution, and in the case of public API traceability we use optimistic distribution.
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The two methods work as described below:

C.2.2.1 Normal Distribution If the OML-formatted version of the model has full traceability, the model can immediately
get released publicly. Access is restricted to users who provide the necessary proof of authorization (e.g., signature from
access nodes), and without this, the model does not respond. This ensures traceability for each inference call made using the
model, even when called locally on users’ devices.

C.2.2.2 Optimistic Distribution In cases where the OML-formatted model allows unrestricted inference usage (as in
OML 1.0), public access restrictions can still be enforced in the access layer to prevent unauthorized profit generation.
Specifically, we ensure that no user is hosting a large-scale public API for the model without tracking and reporting inference
calls to the protocol. This ensures that unauthorized users cannot generate profit without compensating the original owners.

The optimistic distribution approach assumes that all users hosting a public API are reporting inference calls to the protocol,
with watchers in place to detect malicious behavior. This process is handled at the access layer. The requirements imposed
on the distribution layer to support this are that the users must provide collateral before downloading the model from the
distributor module, and the model must be OML-formatted specifically for each user requesting access. This ensures that
the OML format is linked to the user’s identity and their locked collateral. In the context of OML 1.0, fingerprints can be
used to add queries that the watchers can use to prove unauthorized access.

The OML formatting is handled by the converter nodes. When using fingerprints, the converter nodes embed specific
(query, response) pairs into the model, known only to them. Provers later use the query list from these pairs to prove
that an API is failing to report its inference calls, with details in the Access Layer.

C.2.2.3 Threat model. A builder may act as an adversary. The adversary’s goal would be to illegitimately withhold
ownership from the rightful parent owners, thereby increasing their own percentage of ownership in the model.

The converter module guarantees that the ownership of the model can be verified exclusively for its builders, even with
only black-box access to the model. This, along with the challenge module ensures that malicious actors cannot manipulate
ownership without being detected and getting corrected, preserving the security of ownership distribution.

Another threat is that the users can be adversarially try to use the model without getting traced through the protocol. Dealing
with such attacks is the goal of a secure OML design.

C.2.3. ACCESS LAYER

The Access Layer is responsible for tracking models usage, while ensuring censorship-free access for users. This is achieved
by authorizing users to access and use downloaded models by receiving some signature from this layer. The Access Layer
guarantees the following:

• track model usage;

• prevent unauthorized users from using the model;

• ensure monetization and loyalty from the users before authorizing them for access.

The layer consists of a network of nodes, referred to as “access nodes”. Access nodes handle user requests, verify their
validity, grant access, and report usage to the Incentive Layer. The owners of a project can decide on the number of the
nodes and who runs them. Each Access Node maintains a secret key (sk), allowing it to grant access to the users.

The owners can configure the access nodes in one of two ways. The first approach calls for a single node, fully responsible
for access management. The second approach asks for a network of multiple nodes, where access is granted through
aggregated or threshold signatures. In the single-node setup, the trust assumption is centralized to that node. In a multi-node
network, the assumption is that a majority of the nodes are honest. Despite potential malicious activity, access for all users
can be guaranteed, provided a certain portion of nodes remain honest. Also it can be guaranteed that users who do not pay
fee and their usage does not get tracked will not get access.

The access layer interacts with both distribution and incentive layers, receiving the authentication keys from the distribution
layer after the OML formatting is completed. Moreover, it enables tracking usage for each model version by passing a
verifiable receipt of granted access to be recorded on the public storage of the incentive layer. This receipt must verify which
nodes contributed to access, identify the model version involved, the user receiving access, and confirm the fee paid.
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Figure 18. The users need the Access Nodes’ signature for their inference calls.

To grant access and track the usage of the models, we require every user to send all their queries to the access layer before
using the response of the local model they have downloaded. They also have to forward their fees to this layer and the
Access Nodes make sure the payment gets processed. Users who do not pay enough fee will not be granted access. We can
have two different cases here based on whether we use normal or optimistic distribution from the distribution layer.

C.2.3.1Normal Path. In the normal distribution model of the distribution layer the OML format of the model does not
allow unauthorized access to it; the users are forced to forward their queries to the access layer to be able to get responses
from the downloaded model. In this case, access nodes are responsible for granting access to users by signing their requests.

Figure 19. On the left we can see the normal path of the optimistic authorization process. On the right we see the dispute path where the
user is malicious and the watcher will report it to the dispute resolver to slash the user’s collateral.

The following is the general flow of the protocol (see Figure 18).

1. The user creates a request to access a specific version of a model, prepares the required fee payment, and authorizes the
payment.

2. The user sends the request to the network of Access Nodes.

3. Access nodes validate the request and confirm the payment validity.
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4. Each node produces its portion of the access key.

5. In case of multiple nodes, they aggregate their outputs before submitting the result.

6. Access nodes forward the result and the authorized payment to the incentive layer for further processing. They also
forward the final signature to the user enabling model access.

We see later that the incentive layer guarantees that if the result is not recorded there, the payment doesn’t get processed. So,
if users don’t get responded by the nodes they can always pull data from the public storage of the incentive layer to get the
signature and gain access. This ensures the payment getting processed and getting access are atomic.

C.2.3.2Optimistic Path. In this normal path, we only want to track the queries generating profit for the users that go to
their local model from a public API. This can be done by using an optimistic approach. The normal path for the protocol is
depicted in the left hand side flow in Figure 19. To make sure everyone follows the protocol, we add a network of watchers
to the layer as well as a module to resolve disputes. Recall that for optimistic distribution users had to lock some collateral.
The dispute module slashes the user’s collateral in the case that a watcher proves the user is not forwarding the queries to the
access layer. Watchers receive some portion of the slashed collateral as a reward.

In the example of fingerprinting in the distribution layer, converter nodes embed secret (query, response) pairs as
fingerprints into the model. Provers use these fingerprints to verify unreported inference calls. They receive only the query
list from the converter nodes, while the responses remain confidential. If a prover presents a full (query, response)
pair, it indicates the pair was obtained from an API using the formatted model. The access layer then checks whether this
usage was previously recorded. If not, the malicious user, identified through the model’s user-specific format, is detected
and penalized, with their collateral slashed for unreported usage.

Thus, both distribution methods force the users to forward the queries and payments to the access layer. After the query is
received by the Access Nodes, it gets propagated in their network. The nodes validate the user fee payment included in
the request, and if valid, they add their signature to the query. If there are multiple nodes in the access node network, after
adding their part of signature to the query, they communicate to aggregate their signatures. Then, the nodes put the result on
the public storage in addition to forwarding it to the user who sent the query. Finally, they process the user’s payment by
forwarding it to the incentive layer.

C.2.4. INCENTIVE LAYER

To foster open collaboration among builders, it is essential to provide fair incentives that recognize and reward contributions.
A transparent, trust-free infrastructure is needed to track and manage the following aspects:

1. Usage Tracking and payment processing for each model. The more a model is used, the more valuable it is
considered. Tracking usage is critical for properly rewarding builders who contribute significant value to the model.

2. Ownership. Ownership rights of an AI model belong to all contributors. Contributors may want to transfer ownership
or acquire more, and they should be able to earn fees in proportion to their ownership share.

3. Governance. model owners must have the ability to make decisions regarding the future of their model. This includes
decisions on improving the model, setting criteria for new versions, and determining the level of restrictions on its
usage.

This layer consists of three main modules, each taking care of one of the above goals. We want usage tracking to happen
transparently, governance to be fair, and ownership to be trust-free, so that we make sure the incentivization is done properly
and builders have full control over their own models.

C.2.4.1 Usage Tracking and Payment. This module is responsible for receiving query data from the access layer,
including the user’s query and the Access Nodes’ signatures. The module first verifies whether the required fee has been
paid for the query and finalizes the payment process. Once the payment is validated, it distributes the fee among the owners
of the model being used, as well as other participating nodes, such as converter nodes and Access Nodes. The ratio for fee
distribution is determined by the model owners.

The module extracts the version of the model from the query, and finds the owners that need to get rewarded from the public
storage ownership module. It also identifies participating Access Nodes by detecting their portion of the signature on the
query. After reward distribution, this module stores the usage data for each model version in a transparent and immutable
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manner, ensuring that all usage can be publicly verified.

C.2.4.2 Ownership. The ownership of each model version must be tracked and reported to the public storage, ensuring
transparency for all participants. The versioning tree stored in this system illustrates the lineage of versions, which helps in
determining the owners of new versions extending from this tree. A direct child version inherits ownership from its parent,
while also introducing new ownership for the contributors who created the new version.

Ownership in a model can be gained in two ways: by contributing to the model to create a new version, thereby receiving
fresh ownership, or through ownership transfer. Since ownership is transferable, existing owners can transfer partial or full
ownership of a specific version to others if they choose to give up their share. Ownership allows owners to earn fees from
the usage of that specific version and participate in its governance.

C.2.4.3 Governance. A voting mechanism must be provided by this module to enable model owners to make collective
decisions about the future of their model. A natural approach is to assign voting power to each owner in proportion to their
ownership percentage. Since different versions of a model may have varying ownership distributions, each version can have
distinct decisions reflecting the preferences of its respective owners.

C.3. Blockchain for Transparency and Trust
A programmable blockchain technology (Wood et al., 2014) offers a transparent, immutable, and trust-minimized infrastruc-
ture that allows natural implementations for the designs in the Sentient Protocol of the previous section. By integrating such
blockchain components across specific layers of the protocol, the requirements for openness, trust-free, and fairness are
readily met efficiently and securelhy. A summary of which modules of the Sentient layered design are implemented on
blockchain is presented in Figure 20.

One of the primary advantages of a blockchain is its support for smart contracts, which enable decentralized, transparent
enforcement of predefined rules. In particular, the Challenge modules can be implemented using smart contracts, ensuring
that these critical operations execute autonomously and according to transparent, immutable rules. By removing centralized
control, blockchain eliminates any reliance on a single trusted entity to manage or enforce these rules, which is key to
the protocol’s commitment to decentralization. Additionally, whenever contributors or builders define rules within the
protocol, blockchain ensures that these rules are enforced in a decentralized manner, executed in a Byzantine fault-tolerant
environment (Castro & Liskov, 1999).

C.3.0.1 Blockchain in the Storage Layer. Blockchains can be used to store metadata related to the versioning and
ownership of AI models immutably and transparently. Each version of a model can be represented by a cryptographic
hash stored on the blockchain, ensuring that versioning remains transparent and verifiable by all participants. Ownership
percentages of contributors can also be recorded on-chain, guaranteeing that these rights are permanent and cannot be altered
or disputed by any single entity. Finally, implementing the storage layer on a blockchain enhances the accessibility of data
across all modules.

C.3.0.2 Blockchain in the Distribution Layer. The distribution layer can leverage a programmable blockchain to resolve
challenges related to version conflicts and handle ownership allocation. Blockchain implementation ensures that versioning
and ownership data is recorded on a decentralized ledger, making all changes and claims transparent and immutable.

In cases of disputes over the correct parent version of a model, the blockchain facilitates trust-free conflict resolution. The
challenge module can reference the immutable on-chain records to verify claims. Moreover, for ownership allocation, smart
contracts can enforce rules automatically, ensuring that versioning trees are corrected and ownership is properly allocated
based on verified data.

The evaluator module needs a mechanism to prove the result of the evaluation “on-chain”, so that anyone can verify that the
model is evaluated correctly, and hence the ownership allocation can be trusted. Standard benchmarks together with various
“proofs of inference” are a natural solution (Bhat et al., 2023).

C.3.0.3 Blockchain in the Access Layer. In the case of optimistic distribution, blockchain implementation of the access
dispute module resolves disputes related to unreported usage readily. This is done via the ability of blockchains to:

• Hold user collateral. When users access models, their collateral is locked on-chain, ensuring it remains secure
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Figure 20. The dashed line shows where the blockchain stands in each of the layers of the Sentient protocol.
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throughout the process.

• Resolve disputes,. The blockchain allows for transparent handling of disputes, ensuring that all actions are visible and
verifiable by all parties.

• Facilitate slashing. If a user is found to have violated the usage rules (e.g., by not reporting usage), the blockchain
enforces slashing, deducting the appropriate portion of their locked collateral. This ensures that disputes are resolved
fairly and that penalties are enforced correctly.

Blockchain implementation removes the need for trust in maintaining collateral and ensuring the correct execution of rules,
particularly when conditions for slashing are met. Through its ability to support monetary transactions, blockchain can
lock a preferred currency chosen by the builder, providing a decentralized and reliable mechanism for enforcing financial
penalties and rewards.

C.3.0.4 Blockchain in the Incentive Layer. Blockchains are naturally suited to receiving payment and signatures from
the access layer, ensuring censorship-free access for users. It can also enable an atomic process for the payment and access.
A smart contract can enforce that a payment is only processed if it is reported along with a valid signature. Once the
signature is recorded on-chain, it becomes publicly accessible, allowing the user to read it directly from the blockchain.
This guarantees that the payment is only finalized if the access signature is valid and available on-chain, so, users have a
censorship-resistant method to retrieve signatures and gain access.

Furthermore, blockchain implementation ensures the following:

• Transparent tracking of usage. All usage data is recorded on-chain, allowing participants to verify how models are
being used in a fully transparent manner.

• Fair payment distribution. Payments to contributors, such as owners, Access Nodes, and other relevant participants,
are automatically distributed through smart contracts based on predefined rules.

• Ownership transfers. Ownership of models can be transferred or sold via smart contracts, allowing participants to
easily manage their shares without relying on intermediaries.

• Decentralized governance. Blockchains provide flexible voting mechanisms where ownership percentages correspond
to voting power, and all governance decisions are recorded on-chain for transparency and auditability.

For the ownership and governance modules, decentralization is crucial to ensure that every builder can join and have a voice
in deciding how their model is used. If a centralized entity controls this process or lacks transparency, the core objectives of
openness and fairness are compromised. Blockchain provides the necessary transparent and decentralized infrastructure,
enabling any builder to participate, vote, and allowing all participants to verify these actions in an open and trust-free
manner.

C.4. A Sentient Protocol Implementation of OML 1.0
In this section, we combine the fingerprinting-based OML mechanism of Appendix B with the incentives and architectural
framework of the Sentient protocol; tying them together results in a Sentient protocol implementation of OML 1.0.

Under this paradigm, upon completing a new model M, model builders first submit this model to the Sentient protocol
distribution layer which securely stores this raw model and tracks which builders own what stake in this model - this will
correspond to how much payment they are due when the model is in use. When a model user (who hosts the model for
services to external end users) requests to access the model, converter nodes within the distribution layer convert the model
into a unique OMLized model, M .oml for that user. This conversion process implements OML 1.0 by injecting several
secret (key, response) pairs that fingerprint the model unique to the model user. The model is trained on these fingerprint
pairs such that for any input of a key, the OMLized model will output a corresponding secret response (see Figure 21).
These key response pairs can be highly diverse in nature, random or structured, insertable in the thousands, and together
very resilient against fine-tuning or model modification. Appendix B discusses our research on this technique and its limits
in depth.

From here, this model is distributed to model users. Note that the term user does not exclusively refer to final end users but
also include model hosts, such as a company hosting a chatbot or tool powered by a Sentient model, which is then served via
API or a web interface to final end users. In order for the model user to access the OMLized model as outlined above, the
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Figure 21. An M .oml model is fine-tuned on numerous secret fingerprint (key, response) pairs, that can later be used to track the
provenance of the model.

model user must provide adequate collateral in the form of a deposit made to the access layer of the protocol, which also
tracks which models are distributed to which model users. This collateral grants a crypto-economic barrier to the model user
using or distributing the model without complying with license terms – payment – to the model builders (see Figure 22).

Figure 22. Model builders submit raw models to the Sentient Protocol. Model users then deposit collateral with the protocol to access a
unique fingerprinted M.oml model.

Model users understand that they are required to request permission from the access layer and make any corresponding
payment, when fulfilling any external requests by an end user to run inference on the OMLized model. In the case that a
prover can prove that a model user has not done so, the model user loses some or all of the collateral they have deposited
with the protocol (see Figure 23 presenting correct usage of the protocol).

Figure 23. When an end user submits a query to a model user (via a web application or API for example), model users pass a permission
request and payment for this usage of the OML model to the Sentient protocol.

Provers ensure that model users are behaving as they promise to, optimistically. Periodically, provers contained in the access
layer, will query model users with some of the fingerprint key queries that pertain to the subset of queries that they have
access to. Provers will then provide the queries and the responses they received to the protocol. Using these queries and
responses, the protocol can then determine if the prover is in fact interacting with a model user, the identity of the model
user, and whether said model user is complying with the protocol. Since unique fingerprints are injected into each distributed
model, inputting a fingerprint key to the model will result in an output containing the secret response that corresponds to that
key. If a prover provides a valid key-response pair, the protocol can determine which model user the M .oml model in use
was distributed to. Moreover, by checking if a permission request for said query was filed with the protocol, the compliance
of the user can be determined. To make the protocol more efficient, it is possible to allow for permission requests to be
batched and filed within some timeframe. This would mitigate any potential inference latency caused by the protocol.

If the model user appropriately requested permission, no further action is required as the protocol is functioning as it is
intended to. If the model user is demonstrated to have used the model without requesting permission, however, the model
user can be penalized via the collateral that they were required to post when they received the model in the first place. Note
that if the model user shares the model with a third party who then illegally uses the model, the original model user is
penalized for any misuse by the third party (see Figure 24).
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Figure 24. Provers verify that a model user is complying with the protocol by posing as a benign end user and querying the model user
(via a web application or API for example) with one of the secret fingerprint keys they hold. The prover can submit the key and the user’s
response to the protocol, which can then in turn determine if the model user appropriately requested permission for the request.

As noted in Section B.4, the above paradigm can be extended beyond monetization to enforce some degree of loyalty
of AI models as well. Now the provers also check if model users are modifying the model to mitigate safety measures
implemented in training. OMLization would now involve modifying the fine-tuning dataset to add some prompts with safe
responses. Provers could use the more robust (key, response) pairs to identify the provenance of the model while testing
known safe key response pairs to see if model users have tampered with model safeguards.

C.5. Concluding Remarks
In the era of community-built AI, individual contributors of AI models (and other artifacts) will be owners of the artifacts
they help build. There are two technical challenges that need to be addressed in enabling AI ownership:

1. Ownership rights assignment: builders are rewarded ownership fairly;

2. Ownership rights enforcement: owners determine the conditions of use.

While we address both these parts in the paper, with the evaluator and the ownership modules of the distribution layer
addressing ownership rights assignment, our main focus in this work is the second part. Specifically, we showed how the
OML primitive along with appropriate smart contracts can be used to enforce ownership rights for AI artifacts, allowing the
model builders to control the monetization and the loyalty of the model.

A complete implementation of evaluator and ownership modules requires us to choose different methods for evaluating
contributions to AI models and datasets, executing these evaluations under different trust models, and using different
governance contracts for assigning ownership based on evaluated contribution, and finalize details on how the queries will
be shared with the watchers, and the nuances of proving as a bounty hunter watcher.
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