
Volume Rendering of Neural Implicit Surfaces
Supplementary material

A Additional results

A.1 Sampling ablation study

Figure A1 depicts an ablation study that we performed for evaluating the sampling algorithm, by
replacing it with other sampling strategies. We compared with the following alternatives: Uniform
stands for an uniform sampling of 256 samples along each ray ; 2-networks denotes a hierarchical
sampling using coarse and fine networks as suggested in [6]; our sampling algorithm as suggested in
section 3.4 where the maximal number of iterations is set to 1 or 5 (the choice in the paper). We note
that using 1 iteration resembles one level of sampling as in the hierarchical sampling of [6].

As can be seen in Figure A1 (see also reported Chamfer and PSNR scores) alternative sampling
procedures lead to lower accuracy and some artifacts in the geometry (see e.g., head top, and nose
areas) and rendering (see e.g., salt and pepper noise and over-smoothed areas).

Figure A1: Sampling ablation study: the left side depicts the geometry reconstruction results with
the corresponding Chamfer distances, whereas the right side presents rendering results with their
corresponding PSNRs.

A.2 Positional encoding ablation

We perform an ablation study on the level of positional encoding used in the geometry network. We
note that VolSDF use level 6 positional encoding, while NeRF use level 10. In Figure A2 we show the
DTU Bunny scene with positional encoding levels 6 and 10 for both NeRF and VolSDF; we report
both PSNR for the rendered images and Chamfer distance to the learned surfaces. Note that higher
positional encoding improves specular highlights and details of VolSDF but adds some undesired
noise to the reconstructed surface.

NeRF - PE 6 NeRF - PE 10 VolSDF - PE 6 VolSDF - PE 10 NeRF - PE 6 NeRF - PE 10 VolSDF - PE 6 VolSDF - PE 10
3.02 2.88 1.08 2.37 31.38 31.68 31.49 31.8

Figure A2: Positional Encoding (PE) ablation. We note the tradeoff between smoother geometry with
PE level 6 versus detailed rendering and slightly higher noise with PE level 10. Note that in both
cases NeRF fails to decompose correctly density and radiance field.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

A.3 Multi-view 3D reconstruction

Figures A3 and A4 show additional qualitative results for DTU and BlendedMVS datasets, respec-
tively. We further provide a video with qualitative rendering results of the learned geometries and
radiance fields from simulated camera paths (including novel views); note that VolSDF rendering
alleviates NeRF’s salt and pepper artifacts, while producing higher fidelity geometry approximation.

Figure A3: Qualitative results for the reconstructed geometries of objects from the DTU dataset.

A.4 Limitations

Figure A5: Failure cases, see details in the text.

Figure A5 shows the main failure
cases of our method: First, we
observe that the geometry for un-
seen regions is not well defined
and can be completed arbitrarily
by the algorithm, see e.g., the an-
gle statue head top in (a), and
the reverse side of the snow man
statue in (b). Second, homoge-
neous texture-less areas are hard
to reconstruct faithfully, see e.g.,
the white background desk in (c).
These limitations can potentially
be alleviated with the addition of
extra assumptions such as minimal surface reconstruction [3] and/or defining background color or
predefined geometry (e.g., a plane).

A.5 Rendering comparison

Figure 2 in the main paper shows a comparison of NeRF and VolSDF rendering for the same scene
using the same random sampling strategy of the inverse opacity function. For NeRF, replacing
random sampling with regularly-spaced sampling introduces different artifacts as shown in Figure
A6. In contrast, VolSDF produces consistent rendering results regardless of the sampling strategy.

2

Figure A4: Qualitative results sampled from the BlendedMVS dataset. For each scan we present a
visualization of a rendered image and the 3D geometry.

NeRF random sampling NeRF regularly-spaced sampling VolSDF

Figure A6: Comparison of random versus regularly-spaced sampling in NeRF. VolSDF produces
consistent results in both cases.

A.6 Normal dependency in radiance field

As presented in [8], incorporating the zero level set normal in surface rendering improves both
reconstruction quality and disentanglement of geometry and radiance. Incorporating the level set’s
normal has similar effect in the radiance field representation of VolSDF; see Figure A7 where we
compare using radiance field with and without normal dependency.

Figure A7: Geometry and radiance field disentanglement is successful with normal information
incorporated in the radiance field, and partially fails without it.

A.7 Disentanglement of geometry and appearance

Figure A8 shows additional results for unsupervised disentanglement of geometry and radiance field
(switching the radiance fields of three independently trained scenes). Note how the material and
light from one scene is gracefully transferred to the two other scenes. We further provide in the
supplementary video the 360 degrees camera path for one of the swaps.

3

Figure A8: Additional results of geometry and radiance field disentanglement in BlendedMVS. The
diagonal depicts the trained geometry and radiance, while the off-diagonal demonstrates post-training
mix and match of geometries and radiance fields.

B Experiments setup

B.1 Camera Normalization

We used the known camera poses to shift the coordinate system, locating the object at the origin. This
is done using a least squares solution for the intersection point of all camera principal axes. Let Rmax
be the maximal camera center norm, we further apply a global scale of 3

Rmax∗1.1 to place all camera
centers inside a sphere of radius 3, centered at the origin.

B.2 Datasets

DTU We used the formal evaluation script to measure the Chamfer l1 distance between each
reconstructed object to its corresponding ground truth point cloud. For fare comparison with [8],
we used their masks (with a dilation of 50 pixels) to remove non visual hull parts from each output
of both ours and [6]. Specifically, from an output mesh, we remove a 3D point (and its adjacent
triangles) if it is projected to a zero pixel label in any image. Finally, we used the largest connected
component mesh for evaluation. The results for COLMAP and IDR are taken from [8].

BlendedMVS We used the ground truth meshes supplied by the authors to evaluate the Chamfer
l1 distances from the output surfaces. For each mesh we evaluated the largest connected surface
component above the ground plane. To measure the Chamfer l1 distance we used 100K random
point samples from each surface.

B.3 Additional implementation details

Architecture and hyper-parameters As described in section 3.5, our model architecture consists
of two MLP networks, where the geometry network fϕ has 8 layers with hidden layers of width 256,
and a single skip connection from the input to the 4th layer. The geometry MLP gets a 3D position,
x, and outputs the SDF value and an extra feature vector z of size 256, i.e., fϕ(x) = (d(x), z(x)) ∈
R1+256. We initialized fϕ using the geometric initialization presented in [1], so that d produces an
approximated SDF to the unit sphere. The radiance field network Lψ receives a 3D position x, the
normal to its level set, n, and the (geometry) feature vector z, as well as the view direction v, and
outputs a RGB value. It consists of 4 layers of width 256, and ends with a Sigmoid activation for

4

providing valid color values. In addition to these two networks we have an additional scalar parameter
β that is initialized to 0.1.

To capture the high frequencies of the geometry and radiance field, we exploit Positional Encoding
(PE) [6] for the position x and view direction v in the geometry and radiance field. For the position
x we use 6 PE levels, and for the the view direction v we use 4 PE levels, as in [8]. The influence of
different levels of frequencies applied to the position is presented in the Section A.2.

Training details We trained our networks using the ADAM optimizer [2] with a learning rate
initialized with 5e−4 and decayed exponentially during training to 5e−5. Each model was trained
for 100K iterations on scenes from the DTU dataset, and for 200K on scenes from the BlendedMVS
dataset. Training one model from the DTU dataset takes approximately 12 hours. Training was done
on a single Nvidia V-100 GPU, using PYTORCH deep learning framework [7].

Mesh extraction We use the Marching Cubes algorithm [4] for extracting each surface mesh from
the zero level set of the signed distance function defined by d(x).

Modeling the background To satisfy the assumption that all rays, including rays that do not
intersect any surface, are eventually occluded (i.e., O(∞) = 1), we model our SDF as:

dΩ(x) = min{d(x), r − ‖x‖2}, (A1)

where r denotes a predefined scene bounding sphere (in out experiments r = 3, see Section B.1 for
more details about camera normalization). During the rendering process, the maximal depth for ray
samples, denoted by M in Sec. 3.2, is set to 2r. Intuitively, this modification can be considered as
modeling the background using a 360 degrees panorama on the scene boundaries.
For modeling more complex backgrounds as in the blendedMVS dataset, we follow the parametriza-
tion presented in NeRF++ [10]: the volume outside a radius 3 sphere (the background) is modeled
using an additional NeRF network, predicting the background point density and radiance field.
Each 3D background point (xb, yb, zb) is modeled using a 4D representation (x′, y′, z′, 1

r) where
‖(x′, y′, z′)‖ = 1 and (xb, yb, zb) = r · (x′, y′, z′). For rendering the background component of a
pixel, we use 32 points calculated by sampling 1

r uniformly in the range (0, 1
3]. More details regarding

this parametrization (referred as the "inverted sphere parametrization") can be found in [10].

B.4 Baselines

NeRF For running NeRF [6] we used a slightly modified version of the PYTORCH implementation
suggested by [9]. Following the official implementation code1 of NeRF we extracted the 50 level set
of the learned density as NeRF geometry reconstruction.

NeRF++ We used the official code2 of NeRF++ [10]. All the cameras are normalized inside a unit
sphere, and we train two networks (one foreground network in normal coordinates, one background
network in inverse sphere coordinates). For foreground, we used 64 uniform samples and 128
hierarchical samples; for background, we used 32 uniform and 64 hierarchical samples. Similar to
NeRF experiments, we extracted the 50 level set of the foreground density as reconstruction.

C Proofs and additional lemmas

As dΩ is not everywhere differentiable we need to bound the Lipschitz constant of σ, rather than its
derivative. The Lipshcitz constant is defined as a constant Ki > 0 so that |σ(x(s))− σ(x(t))| ≤
Ki|s− t|, for all s, t ∈ [ti, ti+1].
Theorem 1. The Lipshcitz constant of the density σ within a segment [ti, ti+1] satisfies

Ki ≤
α

2β
exp

(
−d

?
i

β

)
, where d?i = min

s∈[ti,ti+1]
y/∈Bi∪Bi+1

‖x(s)− y‖ , (A2)

and Bi = {x | ‖x− x(ti)‖ < |di|}, di = dΩ(x(ti)).
1https://github.com/bmild/nerf
2https://github.com/Kai-46/nerfplusplus

5

https://github.com/bmild/nerf
https://github.com/Kai-46/nerfplusplus

The constant d∗i can be computed explicitly using di, di+1, ti, ti+1 as described in the next proposition.
Proposition 1. The lower distance bound d∗i can be computed using the following formulas:

d?i =

0 |di|+ |di+1| ≤ δi
min {|di|, |di+1|}

∣∣|di|2 − |di+1|2
∣∣ ≥ δ2

i

hi otherwise
, (A3)

di = dΩ(x(ti)), hi = 2
δi

√
s(s− δi)(s− |di|)(s− |di+1|), s = 1

2 (δi+ |di|+ |di+1|), δi = ti+1− ti.

Proof of Theorem 1. We denote by Φβ the Probability Density Function (PDF) of the Laplace distri-
bution (the CDF of which is given in equation 3),

d

dt
Ψβ(s) = Φβ(s) =

1

2β
exp

(
−|s|
β

)
. (A4)

Let s, t ∈ [ti, ti+1],

|σ(x(s))− σ(x(t))| = α |Ψβ(−dΩ(x(s)))−Ψβ(−dΩ(x(t)))|
≤ α |dΩ(x(s))− dΩ(x(t))| max

t∈[ti,ti+1]
|Φβ(−dΩ(x(t)))|

≤ α |s− t|Φβ
(

min
t∈[ti,ti+1]

|dΩ(x(t))|
)

≤ α |s− t|Φβ(d∗i)

where the first equality is by definition of σ (equation 2), the first inequality uses the fact that
the Lipschitz constant of a continuously differential function is the maximum of (absolute value
of) its derivative. The second inequality uses the following Lemma A1 and the fact that Φβ is
symmetric w.r.t. zero, positive, and monotonically decreasing at [0,∞). The last inequality can
be justified by noting that by definition of the distance functionM⊂ (Bi ∪ Bi+1)c and therefore
mint∈[ti,ti+1] |dΩ(x(t))| ≥ d∗i .

Proof of Proposition 1. We wish to find the distance of the two sets: A = [x(ti),x(ti+1)] and
B = ∂((Bi ∪Bi+1)c). That is d∗i = mina∈A,b∈B ‖a− b‖. Since these two sets are compact, their
cartesian product is compact, and the minimum is achieved. Denote this minimum (a∗, b∗), where
a∗ ∈ A and b∗ ∈ B.

First, if Bi ∩Bi+1 = ∅ then d∗i = 0. This case is characterized by |di|+ |di+1| ≤ δi. Henceforth we
assume |di|+ |di+1| > δi.

Now we consider several cases. If a∗ = x(ti) the minimal distance is |di|, and similarly the distance
is |di+1| if a∗ = x(ti+1). Otherwise, if a∗ ∈ (x(ti),x(ti+1)) Lagrange Multipliers imply that
a∗ − b∗ ⊥ v, namely is orthogonal to the ray. In this case we have two options to consider: First,
b∗ ∈ B̄i ∩ B̄i+1, where B̄i is the closure of the ball Bi. In this case Heron’s formula provides the
minimal distance hi, as the height of the triangle ∆(x(ti), b

∗,x(ti+1)).

Otherwise b∗ ∈ B̄i or b∗ ∈ B̄i+1. Lets assume the former (the latter is treated similarly). Lagrange
multipliers imply that b∗ − a∗‖b∗ − x(ti). This necessarily means that a∗ = x(ti), leading to a
contradiction with the assumption that a∗ ∈ (x(ti),x(ti+1)).

To check if a∗ ∈ (x(ti),x(ti+1)) and b∗ ∈ B̄i ∩ B̄i+1 it is enough to check that the angles at x(ti)
and x(ti+1) in the triangle ∆(x(ti), b

∗,x(ti+1)) are acute, or equivalently that
∣∣|di|2 − |di+1|2

∣∣ <
δ2
i (the latter can be shown with the Law of Cosines).

Lemma A1. The distance function d = dΩ to a compact surfaceM is Lipschitz with constant 1, i.e.,
|d(x)− d(y)| ≤ ‖x− y‖, for all x,y.

Proof of Lemma A1. Let x∗ ∈ M be the closest point to x, and y∗ ∈ M the closets point to y. If
d(x)d(y) < 0, then |d(x)− d(y)| = ‖x− x∗‖+ ‖y − y∗‖ ≤ ‖y − z‖+ ‖z − x‖, for all z ∈M.
However, from mean value theorem we know there exists z ∈ M on the straight line [x,y], and

6

therefore |d(x)− d(y)| ≤ ‖x− y‖. If d(x)d(y) ≥ 0, then |d(y)− d(x)| = ||d(y)| − |d(x)||.
Now,

|d(y)| = ‖y − y∗‖ ≤ ‖y − x∗‖
≤ ‖y − x‖+ ‖x− x∗‖
= ‖x− y‖+ |d(x)|.

Therefore |d(y)| − |d(x)| ≤ ‖x− y‖. The other direction follows by switching the roles of x,y.
We proved |d(x)− d(y)| ≤ ‖x− y‖.

Derivation of equation 12. For a single interval [tk, tk+1],∣∣∣∣∫ ti+1

ti

σ(x(s))ds− δiσi
∣∣∣∣ ≤ ∫ ti+1

ti

|σ(x(s))− σ(x(ti))| ds ≤ Ki
δ2
i

2

Plugging the Lipschitz bound from Theorem 1 (equation A3) provides that the error in equation 9 for
t ∈ [tk, tk+1] can be bounded by

|E(t)| ≤ Ê(t) =
α

4β

(
k−1∑
i=1

δ2
i e
− d

?
i
β + (t− tk)2e−

d?k
β

)
. (A5)

Theorem 2. For t ∈ [0,M], the error of the approximated opacity Ô can be bounded as follows:∣∣∣O(t)− Ô(t)
∣∣∣ ≤ exp

(
−R̂(t)

)(
exp

(
Ê(t)

)
− 1
)

(A6)

Proof of Theorem 2. This bound is derived as follows:∣∣∣O(t)− Ô(t)
∣∣∣ =

∣∣∣∣exp
(
−R̂(t)

)
− exp

(
−
∫ t

0

σ(x(s))ds

)∣∣∣∣ = exp
(
−R̂(t)

)
|1− exp (−E(t))|

≤ exp
(
−R̂(t)

)(
exp(Ê(t))− 1

)
,

where the last inequality is due to the inequality |1− exp(r)| ≤ exp(|r|) − 1 and the bound
|E(t)| ≤ Ê(t) from equation 12.

Lemma 1. Fix β > 0. For any ε > 0 a sufficient dense sampling T will provide BT ,β < ε.

Proof of Lemma 1. Noting that exp(−R̂(t)) ≤ 1, equation 15 leads to

BT ,β ≤
(

exp
(
Ê(tn)

)
− 1
)

=

(
exp

(
α

4β

n−1∑
i=1

δ2
i e
− d

?
i
β

)
− 1

)

≤

(
exp

(
α

4β

n−1∑
i=1

δ2
i

)
− 1

)
.

Lastly we note that the inner sum satisfies
∑
i δ

2
i ≤M maxi δi, and in turn this implies that dense

sampling can achieve arbitrary low error bound.

Lemma 2. Fix n > 0. For any ε > 0 a sufficiently large β that satisfies

β ≥ αM2

4(n− 1) log(1 + ε)
(A7)

will provide BT ,β ≤ ε.

Proof of Lemma 2. Assuming sufficiently large β that satisfies equation A7, then following the
derivation of Lemma 1 and assuming equidistance sampling, i.e. δi = M

n−1 , leads to

BT ,β ≤

(
exp

(
α

4β

n−1∑
i=1

δ2
i

)
− 1

)
=

(
exp

(
αM2

4(n− 1)β

)
− 1

)
≤
(

exp
(

log(1 + ε)
)
− 1
)

= ε

7

D Numerical integration

Standard numerical quadrature in volume rendering is based on the rectangle rule [5], which we
repeat here for completeness. Quantities withˆdenote approximated quantities. For a set of discrete
samples S = {si}mi=1, 0 = s1 < s2 < . . . < sm = M we let δi = si+1 − si, σi = σ(x(si)), and
Li = L(x(si),n(si),v). Applying the rectangle rule (left Riemann sum) to approximate the integral
in equation 7 we have

I(c,v) =

∫ ∞
0

L(x(t),n(t),v)τ(t)dt

=

∫ M

0

L(x(t),n(t),v)τ(t)dt+

∫ ∞
M

L(x(t),n(t),v)τ(t)dt

≈
m−1∑
i=1

δiτ(si)Li,

(A8)

where we assumed that M is sufficiently large so that the integral over the segement [M,∞) is
negligible, and the integral over [0,M] is approximated with the rectangle rule, and τ(si) = σiT (si)
as given in equation 6. The rectangle rule is applied yet again to approximate the transparency T :

T (si) ≈ T̂ (si) = exp

− i−1∑
j=1

σjδj

 .

To provide a discrete probability distribution τ̂ that parallels the continuous one τ , [5] defines
pi = exp(−σiδi) that can be interpreted as the probability that light passes through the segment
[si, si+1]. Then, using T̂ (si) =

∏i−1
j=1 pi, and the approximation δiσi ≈ (1− exp(−δiσi)) = 1− pi,

the approximation in equation A8 takes the form

I(c,v) ≈ Î(c,v) =

m−1∑
i=1

(1− pi)
i−1∏
j=1

pj

Li =

m−1∑
i=1

τ̂iLi

where the discrete probability is given by

τ̂i = (1− pi)
i−1∏
j=1

pj for 1 ≤ i ≤ m− 1, and τ̂m =

m−1∏
j=1

pj

establishing that τ̂i, i = 1, . . . ,m is indeed a discrete probability. Note that although τ̂m is not used
in Î above, we added it for implementation ease. Since we use a bounding sphere (see equation A1)
and M is chosen so that sm is always outside this sphere, τ̂m ≈ 0.

References
[1] M. Atzmon and Y. Lipman. Sal: Sign agnostic learning of shapes from raw data. arXiv preprint

arXiv:1911.10414, 2019.

[2] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[3] Y. Lipman. Phase transitions, distance functions, and implicit neural representations. arXiv preprint
arXiv:2106.07689, 2021.

[4] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm.
ACM siggraph computer graphics, 21(4):163–169, 1987.

[5] N. Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 1(2):99–108, 1995.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In ECCV, 2020.

8

[7] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

[8] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman. Multiview neural surface
reconstruction by disentangling geometry and appearance. Advances in Neural Information Processing
Systems, 33, 2020.

[9] L. Yen-Chen. Nerf-pytorch. https://github.com/yenchenlin/nerf-pytorch/, 2020.

[10] K. Zhang, G. Riegler, N. Snavely, and V. Koltun. Nerf++: Analyzing and improving neural radiance fields.
arXiv:2010.07492, 2020.

9

https://github.com/yenchenlin/nerf-pytorch/

	Additional results
	Sampling ablation study
	Positional encoding ablation
	Multi-view 3D reconstruction
	Limitations
	Rendering comparison
	Normal dependency in radiance field
	Disentanglement of geometry and appearance

	Experiments setup
	Camera Normalization
	Datasets
	Additional implementation details
	Baselines

	Proofs and additional lemmas
	Numerical integration

