
Appendix

A Object Query Generation

The text-guided object detection network, as described in Section 3.1.1, first takes K object queries as
input for detecting objects in the 3D scene. Here, we present the details of the process for generating
object queries.

Detecting objects in a 3D scene using a fixed set of 3D anchor boxes or parameterized representations
poses a challenge due to the large search space. Thus, we initially select a subset of features from
the point cloud features Fv ∈ RM×C to serve as initial object queries for the subsequent detection
process. Since the network focuses only on detecting objects that are semantically related to the text,
we filter the point cloud features based on their semantic correlation with textual features. Specifically,
based on a multi-head attention module [1], we take the point cloud features Fv ∈ RM×C as queries
and the textual features Fl ∈ RL×C as keys and values. In this way, each point cloud feature
captures the most relevant semantic information from the text, yielding the corresponding textual
semantic features Fs = MHA(Fv, Fl, Fl) ∈ RM×C . Subsequently, the point cloud features Fv and
the extracted semantic features Fs are separately transformed using a two-layer MLP, resulting in
F ′
v and F ′

s. We compute the inner product between each point cloud feature and its corresponding
semantic feature vector, followed by normalization using the sigmoid function to derive the relevance
score scorr(i) (1 ≤ i ≤ M ):

scorr(i) =
1

1 + exp (−⟨F ′
v(i), F

′
s(i)⟩)

(1)

Finally, we directly select the top K point cloud features with the highest correlation scores as the
initial object queries [o1, o2, · · · , oK ]T ∈ RK×C for subsequent object detection.

B Spatial Relation Features

As mentioned in Section 3.1.2, for each pair of detected objects (b̄i, b̄j), we devise multiple spatial
relation features that consider different aspects, including distance & orientation, volume & dimension,
and perspective. The computation of these spatial relation features is explained in detail below.

B.1 Distance & Orientation

For each pair of objects (b̄i, b̄j), we compute the differences in the coordinates of their bounding box
centers on each axis, represented as (dxi,j ,dyi,j ,dzi,j). We also calculate the Euclidean distance
Di,j and Dxy

i,j to measure the spatial separation between their centers in both 3D space and the X-Y
plane. Moreover, we consider the generalized IoU (GIoU) [2] between the two object bounding
boxes, denoted as GIoU(b̄i, b̄j), as a measure of their spatial distance relation.

The orientation between two objects is represented by encoding the angle values of the line that
connects their centers in the spherical coordinate system. Specifically, for the line connecting the
centers of objects b̄jand b̄i, we denote its angle with the Z axis as θi,j and the angle of its projection
line in the X-Y plane with the X axis as ϕi,j . The sine and cosine of these angles are computed to
depict the relative orientation between the two objects:

sin
(
θi,j

)
= Dxy

i,j

/
Di,j , cos

(
θi,j

)
= dzi,j

/
Di,j ,

sin
(
ϕi,j

)
= dyi,j

/
Dxy

i,j , cos
(
ϕi,j

)
= dxi,j

/
Dxy

i,j ,
(2)

The above calculation results are combined as the spatial relation features of “Distance & Orientation”.

B.2 Volume & Dimension

Additionally, we encode the size relationship between object pairs. We denote the dimensions (length,
width, height) and volume of the object bounding box b̄i as (li,wi,hi) and vi, respectively. The
dimensions and volume differences between object b̄i and object b̄j are calculated and then normalized
by the sum of their respective dimensions and volume. The derived features representing the relations
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Figure 1: Perspective-related relation features.

in dimensions and volume between the objects are denoted as fs
i,j = [dli,j ,dwi,j ,dhi,j ,dvi,j ]

T:

dli,j =
(
li − lj

)/(
li + lj

)
, dwi,j =

(
wi − wj

)/(
wi +wj

)
,

dhi,j =
(
hi − hj

)/(
hi + hj

)
, dvi,j =

(
vi − vj

)/(
vi + vj

)
,

(3)

B.3 Perspective-Related Relations

Many referring descriptions often specify a viewpoint relative to a reference object before describing
the target’s relative location. For this situation, we further construct perspective-related relation
features to more accurately model the contextual relations of the target object. Perspective-related
descriptions are usually influenced by the observation angle relative to the horizontal plane. For
instance, two objects viewed from the front and back have opposite left-right positional relationships,
so we construct perspective-related features on the X-Y plane.

Specifically, we first calculate the scene center coordinates pc = [xc, yc]
T from the point cloud data

of the 3D scene, which serve as the starting position for observing different objects. As shown in
Figure 1, for the target object b̄i and reference object b̄j , their centers’ coordinates on the X-Y plane
are pi = [xi, yi]

T and pj = [xj , yj ]
T respectively. Using pj as the coordinate origin, we establish

a new coordinate reference system using the direction from this point to the observation center
pc = [xc, yc]

T as the Y′ axis. The unit vector in the Y′ axis direction is uY′ = (pc−pj)/∥pc−pj∥2,
and a 90-degree rotation yields the unit vector uX′ on the X′ axis, perpendicular to the Y′ axis. We
compute the position vector of the center of object b̄i relative to the center of object b̄j and project it
onto the X′ and Y′ axes by calculating its inner product with the two unit vectors. This yields the
coordinates of the center of object b̄i in the reference system of new perspective:{

xi∼j = ⟨pi − pj ,uX′⟩ ,
yi∼j = ⟨pi − pj ,uY′⟩ , (4)

Moreover, we calculate the sine and cosine of the angle ϕi∼j between the line from the center of
object b̄j to the center of object b̄i and the X′ axis:

sin(ϕi∼j) = yi∼j/
√

(xi∼j)2 + (yi∼j)2,

cos(ϕi∼j) = xi∼j/
√
(xi∼j)2 + (yi∼j)2.

(5)

Thus, utilizing this coordinate system based on the viewpoint direction from the scene center to
the reference object b̄j , we derive new position and angle information for the object b̄i, denoted as
fv
i,j = [xi∼j , yi∼j , sin(ϕi∼j), cos(ϕi∼j)]

T. This feature represents the spatial relation associated
with the aforementioned viewpoint direction.
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Finally, we combine the above features related to distance & orientation, volume & dimension, and
perspective-related relations. These combined features serve as the initial spatial relation features for
contextual relation learning.

C More Visualization Results

Figure 2 illustrates our visual grounding results on some test samples with complex contextual
descriptions. These descriptions contain information about multiple contextual objects and relations
to specify the target objects. Despite not being specifically designed for modeling multiple contextual
relations, our method can still detect all mentioned contextual objects and their relations. For example,
in Figure 2(a), given the description "Choose the monitor on the desk that is close to the coats hanging
up," the model not only detects the target monitor but also identifies the desk it is on and the coats
hanging nearby. This enables finer information alignment during target inference, thus improving the
reliability of the visual grounding results. The model also exhibits a good understanding of negative
relation descriptions. For instance, in Figure 2, for the description "The only pillow that isn’t on the
bed," our model successfully detects not only the bed but also the other pillows on the bed, leveraging
them as contextual information to determine the pillow that is not on the bed. Additionally, Figure 3
demonstrates our visual grounding results for small target objects. Our method effectively exploits
contextual information to locate small targets.
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(a) Choose the monitor on the desk that is 
close to the coats hanging up.

(c) The black chair next to the table , 
closest to the door.

(f) Facing the whiteboard , the 
second desk from the right.

(d) The table to the right of the copier printer 
with the green cutting board on it.

(b) Choose the single monitor on 
the desk by the door.

(g) The rear, left hand side pillow on the bed 
that is closest to the cabinets. (h) The only pillow that isn't on the bed.

(e) The lamp between the beds. The 
lamp on the nightstand.

Figure 2: 3D visual grounding results for more complex contextual descriptions.
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(d) Blue empty kid chair by green table right 
underneath the animals curtains

(c) Black backpack beneath 
the couch.

(b )The trash can is under the desk to the left of the chair.

(a) Shoes are between couch and bed.

Figure 3: 3D visual grounding results for small target objects.
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