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ABSTRACT

Given a K-vertex simplex in a d-dimensional space, suppose we measure n points
on the simplex with noise (hence, some of the observed points fall outside the sim-
plex). Vertex hunting is the problem of estimating the K vertices of the simplex. A
popular vertex hunting algorithm is successive projection algorithm (SPA). How-
ever, SPA is observed to perform unsatisfactorily under strong noise or outliers.
We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise
step to generate pseudo-points and feed them into SPA for vertex hunting. We
derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly)
high-dimensional random vectors. The results suggest that pp-SPA has faster rates
and better numerical performances than SPA. Our analysis includes an improved
non-asymptotic bound for the original SPA, which is of independent interest.

1 INTRODUCTION

Fix d ≥ 1 and suppose we observe n vectors X1, X2, . . . , Xn in Rd, where

Xi = ri + ϵi, ϵi
iid∼ N(0, σ2Id). (1)

The Gaussian assumption is for technical simplicity and can be relaxed. For an integer 1 ≤ K ≤
d+ 1, we assume that there is a simplex with K vertices S0 on the hyperplane H0 such that each ri
falls within the simplex (note that a simplex with K vertices always falls on a (K − 1)-dimensional
hyperplane of Rd). In other words, let v1, v2, . . . , vK ∈ Rd be the vertices of the simplex and let
V = [v1, v2, . . . , vK ]. We assume that for each 1 ≤ i ≤ n, there is a K-dimensional weight vector
πi (a weight vector is vector where all entries are non-negative with a unit sum) such that

ri =
K∑

k=1

πi(k)vk = V πi. (2)

Here, πi’s are unknown but are of major interest, and to estimate πi, the key is vertex hunting (i.e.,
estimating the K vertices of the simplex S0). In fact, once the vertices are estimated, we can estimate
π1, π2, . . . , πn by the relationship of Xi ≈ ri = V πi. Motivated by these, the primary interest of
this paper is vertex hunting (VH). The problem may arise in many application areas. (1) Hyper-
spectral unmixing: Hyperspectral unmixing (Bioucas-Dias et al., 2012) is the problem of separating
the pixel spectra from a hyperspectral image into a collection of constituent spectra. Xi contains
the spectral measurements of pixel i at d different channels, v1, . . . , vK are the constituent spectra
(called endmembers), and πi contains the fractional abundances of endmembers at pixel i. It is
of great interest to identify the endmembers and estimate the abundances. (2) Archetypal analysis.
Archytypal analysis (Cutler & Breiman, 1994) is a useful tool for representation learning. Take its
application in genetics for example (Satija et al., 2015). Each Xi is the gene expression of cell i, and
each vk is an archetypal expression pattern. Identifying these archetypal expression patterns is useful
for inferring a transcriptome-wide map of spatial patterning. (3) Network membership estimation.
Let A ∈ Rn,n be the adjacency matrix of an undirected network with n nodes and K communities.
Let (λ̂k, ξ̂k) be the k-th eigenpair of A, and write Ξ̂ = [ξ̂1, ξ̂2, . . . , ξ̂K ]. Under certain network
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models (e.g., Huang et al. (2023); Airoldi et al. (2008); Zhang et al. (2020); Ke & Jin (2023); Rubin-
Delanchy et al. (2022)), there is a K-vertex simplex in RK such that for each 1 ≤ i ≤ n, the i-th
row of Ξ̂ falls (up to noise corruption) inside the simplex, and vertex hunting is an important step in
community analysis. (4) Topic modeling. Let D ∈ Rn,p be the frequency of word counts of n text
documents, where p is the dictionary size. If D follows the Hoffman’s model with K topics, then
there is also simplex in the spectral domain (Ke & Wang, 2022)), so vertex hunting is useful.

Existing vertex hunting approaches can be roughly divided into two lines: constrained optimizations
and stepwise algorithms. In the first line, one proposes an objective function and estimates the ver-
tices by solving an optimization problem. The minimum volume transform (MVT) (Craig, 1994),
archetypal analysis (AA) (Cutler & Breiman, 1994; Javadi & Montanari, 2020), and N-FINDER
(Winter, 1999) are approaches of this line. In the second line, one uses a stepwise algorithm which
iteratively identifies one vertex of the simplex at a time. This includes the popular successive projec-
tion algorithm (SPA) (Araújo et al., 2001). SPA is a stepwise greedy algorithm. It does not require an
objective function (how to select the objective function may be a bit subjective), is computationally
efficient, and has a theoretical guarantee. This makes SPA especially interesting.

Our contributions. Our primary interest is to improve SPA. Despite many good properties afore-
mentioned, SPA is a greedy algorithm, which is vulnerable to noise and outliers, and may be signif-
icantly inaccurate. Below, we list two reasons why SPA may underperform. First, typically in the
literature (e.g., Araújo et al. (2001)), one apply the SPA directly to the d-dimensional data points
X1, X2, . . . , Xn, regardless of what (K, d) are. However, since the true vertices v1, . . . , vK lie on a
(K − 1)-dimensional hyperplane, if we directly apply SPA to X1, X2, . . . , Xn, the resultant hyper-
plane formed by the estimated simplex vertices is likely to deviate from the true hyperplane, due to
noise corruption. This will cause inefficiency of SPA. Second, since the SPA is a greedy algorithm,
it tends to be biased outward bound. When we apply SPA, it is frequently found that most of the
estimated vertices fall outside of true simplex (and some of them are faraway from the true simplex).

Figure 1: A numerical example (d=2, K=3).

For illustration, Figure 1 presents an example, where
X1, X2, . . . , Xn are generated from Model (1) with
(n,K, d, σ) = (1000, 3, 2, 1), and ri are uniform
samples over T (T is the triangle with vertices (1, 1),
(2, 4), and (5, 2)). In this example, the true vertices
(large black points) form a triangle (dashed black
lines) on a 2-dimensional hyperplane. The green and
cyan-colored triangles are estimated by SPA and pp-
SPA (our main algorithm to be introduced; since d is
equal to K−1, the hyperplane projection is skipped),
respectively. In this example, the estimated simplex
by SPA is significantly biased outward bound, sug-
gesting a large room for improvement. Such outward
bound bias of SPA is related to the design of the al-
gorithm and is frequently observed (Gillis, 2019).

To fix the issues, we propose pseudo-point SPA (pp-SPA) as a new approach to vertex hunting. It
contains two novel ideas as follows. First, since the simplex S0 is on the hyperplane H0, we first use
all data X1, . . . , Xn to estimate the hyperplane, and then project all these points to the hyperplane.
Second, since SPA is vulnerable to noise and outliers, a reasonable idea is to add a denoise step
before we apply SPA. We propose a pseudo-point (pp) approach for denoising, where for each data
point, we replace it by a pseudo point, computed as the average of all of its neighbors within a radius
of ∆. Utilizing information in the nearest neighborhood is a known idea in classification (Hastie
et al., 2009), and the well-known k-nearest neighborhood (KNN) algorithm is such an approach.
However, KNN or similar ideas were never used as a denoise step for vertex hunting. Compared
with KNN, the idea of pseudo-point approach is motivated by the underlying geometry and is for a
different purpose. For these reasons, the idea is new at least to some extent.

We have two theoretical contributions. First, Gillis & Vavasis (2013) derived a non-asymptotic error
bound for SPA, but the bound is not always tight. Using a very different proof, we derive a sharper
non-asymptotic bound for SPA. The improvement is substantial in the following case. Recall that
V = [v1, v2, . . . , vK ] and let sk(V ) be the k-th largest singular value of V . The bound in Gillis
& Vavasis (2013) is proportional to 1/s2K(V ), while our our bound is proportional to 1/s2K−1(V ).
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Since all vertices lie on a (K − 1)-dimensional hyperplane, sK−1(V ) is bounded away from 0, as
long as the volume of true simplex is lower bounded. However, sK(V ) may be 0 or nearly 0; in this
case, the bound in Gillis & Vavasis (2013) is too conservative, but our bound is still valid. Second,
we use our new non-asymptotic bound to derive the rate for pp-SPA, and show that the rate is much
faster than the rate of SPA, especially when d ≫ K. Even when d = O(K), the bound we get for
pp-SPA is still sharper than the bound of the original SPA. The main reason is that, for those points
far away outside the true simplex, the corresponding pseudo-points we generate are much closer to
the true simplex. This greatly reduces the outward bound biases of SPA (see Figure 1).

Related literature. It was observed that SPA is susceptible to outliers, motivating several variants of
SPA (Gillis & Vavasis, 2015; Mizutani & Tanaka, 2018; Gillis, 2019). For example, Bhattacharyya
& Kannan (2020); Bakshi et al. (2021); Nadisic et al. (2023) modified SPA by incorporating smooth-
ing at each iteration. In contrast, our approach involves generating all pseudo points through neigh-
borhood averaging before executing all successive projection steps. Additionally, we exploit the fact
that the simplex resides in a low-dimensional hyperplane and apply a hyperplane projection step
prior to the denoising and successive projection steps. Our theoretical results surpass those existing
works for several reasons: (a) we propose a new variant of SPA; (b) our analyses build upon a better
version of the non-asymptotic bound than the commonly-used one in Gillis & Vavasis (2013); and
(c) we incorporate delicate random matrix and extreme value theory in our analysis.

2 A NEW VERTEX HUNTING ALGORITHM

The successive projection algorithm (SPA) (Araújo et al., 2001) is a popular vertex hunting method.
This is an iterative algorithm that estimates one vertex at a time. At each iteration, it first projects all
points to the orthogonal complement of those previously found vertices and then takes the point with
the largest Euclidean norm as the next estimated vertex. See Algorithm 1 for a detailed description.

Algorithm 1 The (orthodox) Successive Projection Algorithm (SPA)
Input: X1, X2, . . . , Xn, and K.
Initialize u = 0p and yi = Xi, for 1 ≤ i ≤ n. For k = 1, 2, . . . ,K,

• Update yi to (Id − uu′)yi. Obtain ik = argmax1≤i≤n ∥yi∥. Update u = ∥yik∥−1yik .
Output: v̂k = Xik , for 1 ≤ k ≤ K.

We propose pp-SPA as an improved version of the (orthodox) SPA, containing two main ideas: a hy-
perplane projection step and a pseudo-point denoise step. We now discuss the two steps separately.

Consider the hyperplane projection step first. In our model (2), the noiseless points r1, . . . , rn live in
a (K − 1)-dimensional hyperplane. However, with noise corruption, the observed data X1, . . . , Xn

are not exactly contained in a hyperplane. Our proposal is to first use data to find a ‘best-fit’ hyper-
plane and then project all data points to this hyperplane. Fix d ≥ K ≥ 2. Given a point x0 ∈ Rd

and a projection matrix H ∈ Rd×d with rank K−1, the (K−1)-dimensional hyperplane associated
with (x0, H) is H = {x ∈ Rd : (Id −H)(x − x0) = 0}. For any x ∈ Rd, the Euclidean distance
between x and the hyperplane is equal to ∥(Id −H)(x − x0)∥. Given X1, X2, . . . , Xn, we aim to
find a hyperplane to minimize the sum of square distances:

min
(x0,H)

{S(x0, H)}, where S(x0, H) =

n∑
i=1

∥(Id −H)(Xi − x0)∥2. (3)

Let Z = [Z1, . . . , Zn], where Zi = Xi − X̄ and X̄ = 1
n

∑n
i=1 Xi. For each k, let uk ∈ Rd be the

kth left singular vector of Z. Write U = [u1, . . . , uK−1]. The next lemma is proved in the appendix.

Lemma 1 S(x0, H) is minimized by x0 = X̄ and H = UU ′.

For each 1 ≤ i ≤ n, we first project each Xi to X̃i and then transform X̃i to Yi, where

X̃i := X̄ +H(Xi − X̄), Yi := U ′X̃i; note that H = UU ′ and Yi ∈ RK−1. (4)

These steps reduce noise. To see this, we note that the true simplex lives in a hyperplane with a
projection matrix H0 = U0U

′
0. It can be shown that U ≈ U0 (up to a rotation) and Yi ≈ r∗i + U ′

0ϵi,
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with r∗i = U ′
0X̄ + U ′

0ri. These points r∗i still live in a simplex (in dimension (K − 1)). Comparing
this with the original model Xi = ri + ϵi, we see that U ′

0ϵi are iid samples from N(0, σ2IK−1),
and ϵi are iid samples from N(0, σ2Id). Since K − 1 ≪ d in may applications, the projection may
significantly reduce the dimension of the noise variable. Later in Section 4, we see that this implies
a significant improvement in the convergence rate.

Next, consider the neighborhood denoise step. Fix an ∆ > 0 and an integer N ≥ 1. Define the ∆-
neighborhood of Yi by B∆(Yi) = {x ∈ RK−1 : ∥x− Yi∥ ≤ ∆}. When there fewer than N points
in B∆(Yi) (including Yi itself), remove Yi for the vertex hunting step next. Otherwise, replace Yi by
the average of all points in B∆(Yi) (denoted by Y ∗

i ). The main effect of the denoise effect is on the
points that are far outside the simplex. For these points, we either delete them for the vertex hunting
step (see below), or replace it by a point closer to the simplex. This way, we pull all these points
“towards” the simplex, and thus reduce the estimation error in the subsequent vertex hunting step.

Finally, we apply the (orthodox) successive projection algorithm (SPA) to Y ∗
1 , Y

∗
2 , · · · , Y ∗

n and let
v̂1, v̂2, . . . , v̂K be the estimated vertices. Let V̂ = [v̂1, v̂2, . . . , v̂K ]. See Algorithm 2.

Algorithm 2 Pseudo-Point Successive Projection Algorithm (pp-SPA)
Input: X1, X2, . . . , Xn ∈ Rd, the number of vertices K, and tuning parameters (N,∆).

Step 1 (Projection). Obtain X̄ = 1
n

∑n
i=1 Xi and Z = X−X̄1′

n. Let U = [u1, . . . , uK−1] contain
the first (K − 1) singular vectors of Z. For 1 ≤ i ≤ n, let Yi = U ′Xi ∈ RK−1.

Step 2 (Denoise). Let B∆(Yi) = {x ∈ RK−1 : ∥x− Yi∥ ≤ ∆} denote the ∆-neighborhood of Yi.
• If there are fewer than N points (including Yi itself) in B∆(Yi), delete this point.
• Otherwise, replace Yi by Y ∗

i , which is the average of all points in B∆(Yi).
Step 3 (VH). Let J ⊂ {1, . . . , n} be the set of retained points in Step 2. Apply Algorithm 1 to

{Y ∗
i }i∈J to get v̂∗1 , v̂

∗
2 , . . . , v̂

∗
K ∈ RK−1. Let v̂k = (Id −H)X̄ + Uv̂∗k ∈ Rd, 1 ≤ k ≤ K.

Output: The estimated vertices v̂1, . . . , v̂K .

Remark 1: The complexity of the orthodox SPA is O(ndK). Regarding the complexity of pp-SPA,
it applies SPA on (K−1)-dimensional pseudo-points, so the complexity is O(nK2). To obtain these
pseudo points, we need a projection step and a denoise step. The projection step extracts the first
(K − 1) singular vectors of a matrix Z(n × d). Performing the whole SVD decomposition would
result in O(min(n2d, nd2)) time complexity. However, faster approach exists such as the truncated
SVD which would decrease this complexity to O(ndK). In the denoise step, we need to find the
∆-neighborhoods for all n points Y1, Y2, . . . , Yn. This can be made computationally efficient using
the KD-Tree. The construction of KD-Tree takes O(n log n), and the search of neighbors typically
takes O

(
n(2− 1

K−1 ) + nm
)
, where m is the maximum number of points in a neighborhood.

Remark 2: Algorithm 2 has tuning parameters (N,∆), where ∆ is the radius of the neighborhood,
and N is used to prune out points far away from the simplex. For N , we typically take N = log(n)
in theory and N = 3 in practice. Concerning ∆, we use a heuristic choice ∆ = maxi ∥Yi − Ȳ ∥/5,
where Ȳ = 1

n

∑n
i=1 Yi. It works satisfactorily in simulations.

Remark 3 (P-SPA and D-SPA): We can view pp-SPA as a generic algorithm, where we may either
replace the projection step by a different dimension reduction step, or replace the denoise step by a
different denoise idea, or both. In particular, it is interesting to consider two special cases: (i) P-SPA,
which skips the denoise step and only uses the projection and VH steps; (ii) D-SPA, which skips the
projection step and only uses the denoise and VH steps. We analyze these algorithms, together with
pp-SPA (see Table 1 and Section C of the appendix). In this way, we can better understand the
respective improvements of the projection step and the denoise step.

3 AN IMPROVED BOUND FOR SPA

Recall that V = [v1, v2, . . . , vK ], whose columns are the K vertices of the true simplex S0. Let

γ(V ) = max
1≤k≤K

{∥vk∥}, g(V ) = 1 + 80
γ2(V )

s2K(V )
, β(X) = max

1≤i≤n
{∥ϵi∥}. (5)
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Lemma 2 (Gillis & Vavasis (2013), orthodox SPA) Consider d-dimensional vectors X1, . . . , Xn,
where Xi = ri + ϵi, 1 ≤ i ≤ n and ri satisfy model (2). For each 1 ≤ k ≤ K there is an i such that
πi = ek. Suppose max1≤i≤n ∥ϵi∥ ≤ sK(V )

1+80γ2(V )/s2K(V )
min{ 1

2
√
K−1

, 1
4}. Apply the orthodox SPA

to X1, . . . , Xn and let v̂1, v̂2, . . . , v̂K be the output. Up to a permutation of these K vectors,

max
1≤k≤K

{∥v̂k − vk∥} ≤
[
1 + 80

γ2(V )

s2K(V )

]
max
1≤i≤n

∥ϵi∥ := g(V ) · β.

Lemma 2 is among the best known results for SPA, but this bound is still not satisfying. One issue
is that sK(V ) depends on the location (i.e., center) of S0, but how well we can do vertex hunting
should not depend on its location. We expect that vertex hunting is difficult only if S0 has a small
volume (so the simplex is nearly flat). To see how these insights connect to singular values of V , let
v̄ = K−1

∑K
k=1 vk be the center of S0, define Ṽ = [v1 − v̄, . . . , vK − v̄], and let sk(Ṽ ) be the k-th

singular value of Ṽ . The next lemma is proved in the appendix:

Lemma 3 Volume(S0) =
√
K

(K−1)!

∏K−1
k=1 sk(Ṽ ), sK−1(V ) ≥ sK−1(Ṽ ), and sK(V ) ≤

√
K∥v̄∥.

Lemma 3 yields several observations. First, as we shift the location of S0 so that its center gets close
to the origin, ∥v̄∥ ≈ 0, and sK(V ) ≈ 0. In this case, the bound in Lemma 2 becomes almost useless.
Second, the volume of S0 is determined by the first (K − 1) singular values of Ṽ , irrelevant to the
Kth singular value. Finally, if the volume of S0 is lower bounded, then we immediately get a lower
bound for sK−1(V ). These observations motivate us to modify g(V ) in (5) to a new quantity that
depends on sK−1(V ) instead of sK(V ); see (6) below.

1
2

3

4

5

6

7

Figure 2: A toy example to show the dif-
ference between β(X) and βnew(X,V ),
where β(X) = maxi ∥ϵi∥, and
βnew(X,V ) ≤ maxi/∈{2,5} ∥ϵi∥.

Another issue of the bound in Lemma 2 is that β(X) de-
pends on the maximum of ∥ϵi∥, which is too conserva-
tive. Consider a toy example in Figure 2, where S0 is
the dashed triangle, the red stars represent ri’s and the
black points are Xi’s. We observe that X2 and X5 are
deeply in the interior of S0, and they should not affect the
performance of SPA. We hope to modify β(X) to a new
quantity that does not depend on ∥ϵ2∥ and ∥ϵ5∥. One idea
is to modify β(X) to β∗(X,V ) = maxi Dist(Xi,S0),
where Dist(·,S0) is the Euclidean distance from a point
to the simplex. For any point inside the simplex, this Eu-
clidean distance is exactly zero. Hence, for this toy exam-
ple, β∗(X,V ) ≤ maxi/∈{1,2,5} ∥ϵi∥. However, we cannot
simply replace β(X) by β∗(X,V ), because ∥ϵ1∥ also af-
fects the performance of SPA and should not be left out.
Note that r1 is the only point located at the top vertex.
When X1 is far away from r1, no matter whether X1 is
inside or outside S0, SPA still makes a large error in estimating this vertex. This inspires us to define
β†(X,V ) = maxk min{i:ri=vk} ∥ϵi∥. When β†(X,V ) is small, it means for each vk, there exists at
least one Xi that is close enough to vk. To this end, let βnew(X,V ) = max{β∗(X,V ), β†(X,V )}.
Under this definition, βnew(X) ≤ maxi/∈{2,5} ∥ϵi∥, which is exactly as hoped.

Inspired by the above discussions, we introduce (for a point x ∈ Rd, Dist(x,S0) is the Euclidean
distance from x to S0; this distance is zero if x ∈ S0)

gnew(V ) = 1 +
30γ(V )

sK−1(V )
max

{
1,

γ(V )

sK−1(V )

}
,

βnew(X) = max
{
max
1≤i≤n

Dist(Xi,S0), max
1≤k≤K

min
{i:ri=vk}

∥Xi − vk∥
}
. (6)

Theorem 1 Consider d-dimensional vectors X1, . . . , Xn, where Xi = ri + ϵi, 1 ≤ i ≤ n and ri
satisfy model (2). For each 1 ≤ k ≤ K there is an i such that πi = ek. Suppose for a properly small

universal constant c∗ > 0, max{1, γ(V )
σK−1(V )}βnew(X,V ) ≤ c∗

s2K−1(V )

γ(V ) . Apply the orthodox SPA to
X1, . . . , Xn and let v̂1, v̂2, . . . , v̂K be the output. Up to a permutation of these K vectors,

max
1≤k≤K

{∥v̂k − vk∥} ≤ gnew(V )βnew(X,V ).
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Note that gnew(V ) ≤ g(V ) and βnew(X,V ) ≤ β(X). The non-asymptotic bound in Theorem 1
is always better than the bound in Lemma 2. We use an example to illustrate that the improvement
can be substantial. Let K = d = 3, v1 = (20, 20, 10), v2 = (20, 30, 10), and v3 = (30, 22, 10).
We put r1, r2, r3 at each of the three vertices, r4, r5, r6 at the mid-point of each edge, and r7 at the
center of the simplex (which is v̄). We sample ϵ∗1, ϵ

∗
2, . . . , ϵ

∗
7 i.i.d., from the unit sphere in R3. Let

ϵi = 0.01ϵ∗i , for 1 ≤ i ≤ 6, and ϵ7 = 0.05ϵ∗i . By straightforward calculations, g(V ) = 4.3025×104,
gnew(V ) = 6.577×102, β(X) = 0.05, βnew(X,V ) = 0.03. Therefore, the bound in Lemma 2 gives
maxk ∥v̂k−vk∥ ≤ 2151.3, while the improved bound in Theorem 1 gives maxk ∥v̂k−vk∥ ≤ 18.7. A
more complicated version of this example can be found in Section D of the supplementary material.

The main reason we can achieve such a significant improvement is that our proof idea is completely
different from the one in Gillis & Vavasis (2013). The proof in Gillis & Vavasis (2013) is driven by
matrix norm inequalities and does not use any geometry. This is why they need to rely on quantities
such as sK(V ) and maxi ∥ϵi∥ to control the norms of various matrices in their analysis. It is very
difficult to modify their proof to obtain Theorem 1, as the quantities in (6) are insufficient to provide
strong matrix norm inequalities. In contrast, our proof is guided by geometric insights. We construct
a simplicial neighborhood near each true vertex and show that the estimate v̂k in each step of SPA
must fall into one of these simplicial neighborhoods.

4 THE BOUND FOR PP-SPA AND ITS IMPROVEMENT OVER SPA

We focus on the orthodox SPA in Section 3. In this section, we show that we can further improve
the bound significantly if we use pp-SPA for vertex hunting. Recall that we have also introduced
P-SPA and D-SPA in Section 2 as simplified versions of pp-SPA. We establish error bounds for
P-SPA, D-SPA, and pp-SPA, under the Gaussian noise assumption in (1). A high-level summary
is in Table 1. Recall that P-SPA, D-SPA, and pp-SPA all create pseudo-points and then feed them
into SPA. Different ways of creating pseudo-points only affect the term βnew(X,V ) in the bound in
Theorem 1. Assuming that gnew(V ) ≥ C, the order of βnew(X,V ) fully captures the error bound.
Table 1 lists the sharp orders of βnew(X,V ) (including the constant).

Table 1: The sharp orders of βnew(X,V ) (settings: K ≥ 3, d satisfies (7), sK−1(V ) > C, and m
satisfies the condition in Theorem 3). P-SPA and D-SPA use the projection only and the denoise only,
respectively. The constant c0 ∈ (0, 1) comes from m, and the constant a1 > 2 is as in Lemma 5.

d ≪ log(n) d = a0 log(n) log(n) ≪ d ≪ n1− 2(1−c0)
K−1 d ≫ n1− 2(1−c0)

K−1

SPA
√

2 log(n)
√

a1 log(n)
√
d

√
d

P-SPA
√

2 log(n)
√
2 log(n)

√
2 log(n)

√
2 log(n)

D-SPA
√

2c0 log(n) NA NA NA
pp-SPA

√
2c0 log(n)

√
2c0 log(n)

√
2c0 log(n)

√
2 log(n)

The results suggest that pp-SPA always has a strictly better error bound than SPA. When d ≫ log(n),
the improvement is a factor of o(1); the larger d, the more improvement. When d = O(log(n)), the
improvement is a constant factor that is strictly smaller than 1. In addition, by comparing P-SPA
and D-SPA with SPA, we have some interesting observations:

• The projection effect. From the first two rows of Table 1, the error bound of P-SPA is never
worse than that of SPA. In many cases, P-SPA leads to a significant improvement. When
d ≫ log(n), the rate is faster by a factor of

√
log(n)/d (which is a huge improvement for

high-dimensional data). When d ≍ log(n), there is still a constant factor of improvement.

• The denoise effect. We compare the error bounds for P-SPA and pp-SPA, where the differ-
ence is caused by the denoise step. In three out of the four cases of d in Table 1, pp-SPA
strictly improves P-SPA by a constant factor c0 < 1.
We note that pp-SPA applies denoise to the projected data in RK−1. We may also apply
denoise to the original data in Rd, which gives D-SPA. By Table 1, when d ≪

√
log(n), D-

SPA improves SPA by a constant factor. However, for d ≫ log(n), we always recommend
applying denoise to the projected data. In such cases, the leading term in the extreme value
of chi-square (see Lemma 5) is d, so the denoise is not effective if applied to original data.
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Table 1 and the above discussions are for general settings. In a slightly more restrictive setting (see
Theorem 2 below), both projection and denoise can improve the error bounds by a factor of o(1).

We now present the rigorous statements. Owing to space constraint, we only state the error bounds
of pp-SPA in the main text. The error bounds of P-SPA and D-SPA can be found in the appendix.

4.1 SOME USEFUL PRELIMINARY RESULTS

Recall that V = [v1, . . . , vK ] and ri = V πi, 1 ≤ i ≤ n. Let v̄, r̄, and π̄ be the empirical means of
vk’s, ri’s, and πi’s, respectively. Introduce Ṽ = [v1−v̄, . . . , vK−v̄], R = n−1/2[r1−r̄, . . . , rn−r̄],
and G = (1/n)

∑n
i=1(πi − π̄)(πi − π̄)′. Lemma 4 relates singular values of R to those of G and

V and is proved in the appendix (A ⪯ B: B − A is positive semi-definite. Also, λk(G) is the k-th
largest (absolute value) eigenvalue of G, sk(V ) is the k-th largest singular value of V ; same below).

Lemma 4 The following statements are true: (a) RR′ = V GV ′, (b) λK−1(G) · Ṽ Ṽ ′ ⪯ V GV ′ ⪯
λ1(G) · Ṽ Ṽ ′, and (c) λK−1(G) · s2K−1(Ṽ ) ⪯ σ2

K−1(R) ⪯ λ1(G) · s2K−1(Ṽ ).

To analyze SPA and pp-SPA, we need precise results on the extreme values of chi-square variables.
Lemma 5 is proved in the appendix.

Lemma 5 Let Mn be the maximum of n iid samples from χ2
d(0). As n → ∞, (a) if d ≪ log(n),

then Mn/(2 log(n)) → 1, (b) if d ≫ log(n), then Mn/d → 1, and (c) if d = a0 log(n) for a
constant a0 > 0, then Mn/(a1 log(n)) → 1 where a1 > 2 is unique solution of the equation
a1 − a0 log(a1) = 2+ a0 − a0 log(a0) (convergence in three cases are convergence in probability).

4.2 REGULARITY CONDITIONS AND MAIN THEOREMS

We assume
K = o(log(n)/ log log(n)), d = o(

√
n). (7)

These are mild conditions. In fact, in practice, the dimension of the true simplex is usually relatively
low, so the first condition is mild. Also, when the (low-dimensional) true simplex is embedded in a
high dimensional space, it is not preferable to directly apply vertex hunting. Instead, one would use
tools such as PCA to significantly reduce the dimension first and then perform vertex hunting. For
this reason, the second condition is also mild. Moreover, recall that G = n−1

∑n
i=1(πi−π̄)(πi−π̄)′

is the empirical covariance matrix of the (weight vector) πi and γ(V ) = max1≤k≤K{∥vk∥}. We
assume for some constant C > 0,

λK−1(G) ≥ C−1, λ1(G) ≤ C, γ(V ) ≤ C. (8)

The first two items are a mild balance condition on πi and the last one is a natural condition on V .
Finally, in order for the (orthodox) SPA to perform well, we need

σ
√

log(n)/sK−1(Ṽ ) → 0. (9)

In many applications, vertex hunting is used as a module in the main algorithm, and the data points
fed into VH are from previous steps of some algorithm and satisfy σ = o(1) (for example, see Jin
et al. (2023); Ke & Wang (2022)). Hence, this condition is reasonable.

We present the main theorems (which are used to obtain Table 1). In what follows, Theorem 3 is for
a general setting, and Theorem 2 concerns a slightly more restrictive setting. For each setting, we
will specify explicitly the theoretically optimal choices of thresholds (tn, ϵn) in pp-SPA.

For 1 ≤ k ≤ K, let Jk = {i : ri = vk} be the set of ri located at vertex vk, and let nk = |Jk|, for
1 ≤ k ≤ K. Let Γ(·) denote the standard Gamma function. Define

m = min{n1, n2, . . . , nK}, c2 = 0.5(2e2)−
1

K−1

√
2/(K − 1)

[
Γ(

K + 1

2
)
] 1

K−1 . (10)

Note that as K → ∞, c2 → 0.5/
√
e. We also introduce

αn =

√
d

√
ns2K−1(Ṽ )

(
1 + σ

√
max{d, 2 log(n)}

)
, bn =

2σ√
n

√
max{d, 2 log(n)}. (11)

The following theorem is proved in the appendix.
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Theorem 2 Suppose X1, X2, . . . , Xn are generated from model (1)-(2) where m ≥ c1n for a con-
stant c1 > 0 and conditions (7)-(9) hold. Fix δn such that (K − 1)/ log(n) ≪ δn ≪ 1, and let

tn =
√
K − 1

( log(n)
n1−δn

) 1
K−1 . We apply pp-SPA to X1, X2, . . . , Xn with (N,∆) to be determined

below. Let V̂ = [v̂1, v̂2, . . . , v̂K ], where v̂1, v̂2, . . . , v̂K are the estimated vertices.

• In the first case, αn ≪ tn. We take N = log(n) and ∆ = c3tnσ in pp-SPA, for a constant
c3 ≤ c2. Up to a permutation of v̂1, . . . , v̂K , max1≤k≤K{∥v̂k − vk∥} ≤ σgnew(V )[

√
δn ·√

2 log(n) + Cαn] + bn.

• In the second case, tn ≪ αn ≪ 1. We take N = log(n) and ∆ = σαn in pp-SPA. Up to a
permutation of v̂1, . . . , v̂K , max1≤k≤K{∥v̂k − vk∥} ≤ σgnew(V ) · (1+ oP(1))

√
2 log(n).

To interpret Theorem 2, we consider a special case where K = O(1), sK−1(Ṽ ) is lower bounded by
a constant, and we set δn = log log(n)/ log(n). By our assumption (7), d = o(

√
n). It follows that

αn ≍ max
{
d,
√
d log(n)

}
/
√
n, bn ≍ σ

√
max{d, log(n)}/n, and tn ≍ [log(n)]

1
K−1 /n

1−o(1)
K−1 . We

observe that αn always dominates bn/σ. Whether αn dominates tn is determined by d/n. When
d/n is properly small so that αn ≪ tn, using the first case in Theorem 2, we get maxk{∥v̂k−vk∥} ≤
C
(√

log(log(n)) + max
{
d,
√
d log(n)

}
/
√
n
)
= O(

√
log log(n)). When d/n is properly large so

that αn ≫ tn, using the second case in Theorem 2, we get maxk{∥v̂k − vk∥} = O
(√

log(n)
)
. We

then combine these two cases and further plug in the constants in Theorem 2. It yields

max
1≤k≤K

{∥v̂ppspa
k − vk∥} ≤ σgnew(V ) ·

{ √
log log(n) if d/n is properly small;√
[2 + o(1)] log(n) if d/n is properly large.

(12)

It is worth comparing the error bound in Theorem 2 with that of the orthodox SPA (where we directly
apply SPA on the original data points X1, X2, . . . , Xn). Recall that β(X) is as defined in (6). Note
that β(X) ≤ max1≤i≤n ∥ϵi∥, where ∥ϵi∥2 are i.i.d. variables from χ2

d(0). Combining Lemma 5
and Theorem 1, we immediately obtain that for the (orthodox) SPA estimates v̂spa1 , v̂spa2 , . . . , v̂spaK ,
up to a permutation of these vectors (the constant a1 is as in Lemma 5 and satisfies a1 > 2):

max
1≤k≤K

{∥v̂spa
k − vk∥} ≤ σgnew(V ) ·

{ √
max{d, 2 log(n)} if d ≪ log(n) or d ≫ log(n);√
a1 log(n) if d = a0 log(n).

(13)
This bound is tight (e.g., when all ri fall into vertices). We compare (13) with Theorem 2. If d ≫
log(n), the improvement is a factor of

√
log(n)/d, which is huge when d is large. If d = O(log(n)),

the improvement can still be a factor of o(1) sometimes (e.g., in the first case of Theorem 2).

Theorem 2 assumes that there are a constant fraction of ri falling at each vertex. This can be greatly
relaxed. The following theorem is proved in the appendix.

Theorem 3 Fix 0 < c0 < 1 and a sufficiently small constant 0 < δ < c0. Suppose X1, X2, . . . , Xn

are generated from model (1)-(2) where m ≥ n1−c0+δ and conditions (7)-(9) hold. Let t∗n =
√
K − 1

( log(n)
n1−c0

) 1
K−1 . We apply pp-SPA to X1, X2, . . . , Xn with (N,∆) to be determined below.

Let V̂ = [v̂1, v̂2, . . . , v̂K ], where v̂1, v̂2, . . . , v̂K are the estimated vertices.

• In the first case, αn ≪ t∗n. We take N = log(n) and ∆ = c3tnσ in pp-SPA, for a
constant c3 ≤ ec0/(K−1)c2. Up to a permutation of v̂1, . . . , v̂K , max1≤k≤K{∥v̂k−vk∥} ≤
σgnew(V )[

√
c0 ·

√
2 log(n) + Cαn] + bn.

• In the second case, αn ≫ t∗n. Suppose αn = o(1). We take N = log(n) and ∆ = αn in
pp-SPA. Up to a permutation of v̂1, . . . , v̂K , max1≤k≤K{∥v̂k − vk∥} ≤ σgnew(V ) · (1 +
oP(1))

√
2 log(n).

Comparing Theorem 3 with Theorem 2, the difference is in the first case, where the o(1) factor of
δn is replaced by a constant factor of c0 < 1. Similarly as in (12), we obtain

max
1≤k≤K

{∥v̂ppspa
k − vk∥} ≤ σgnew(V ) ·

{ √
2c0 log(n) if d/n is properly small;√
[2 + o(1)] log(n) if d/n is properly large.

(14)
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Figure 3: Performances of SPA, P-SPA, D-SPA, and pp-SPA in Experiment 1-3.

In this relaxed setting, we also compare Theorem 3 with (13): (a) When d ≫ log(n), the improve-
ment is a factor of

√
log(n)/d. (b) When d = O(log(n)), the improvement is at the constant order.

It is interesting to further compare these “constants”. Note that gnew(V ) is the same for all meth-
ods. It suffices to compare the constants in the bound for βnew(V ). In Case (b), the error bound of
pp-SPA is smaller than that of SPA by a factor of c0 ∈ (0, 1). For the practical purpose, even the
improvement of a constant factor can have a huge impact, especially when the data contain strong
noise and potential outliers. Our simulations in Section 5 further confirm this point.

5 NUMERICAL STUDY

We compare SPA, pp-SPA, and two simplified versions P-SPA and D-SPA (for illustration). We also
compared these approaches with robust-SPA (Gillis, 2019) from bit.ly/robustSPA (with de-
fault tuning parameters). For pp-SPA and D-SPA, we need to specify tuning parameters (N,∆). We
use the heuristic choice in Remark 2. Fix K = 3 and three points {y1, y2, y3} in R2. Given (n, d, σ),
we first draw (n−30) points uniformly from the 2-dimensional simplex whose vertices are y1, y2, y3,
and then put 10 points on each vertex of this simplex. Denote these points by w1, w2, . . . , wn ∈ R2.
Next, we fix a matrix A ∈ Rd×2, whose top 2 × 2 block is equal to Id and the remaining en-
tries are zero. Let ri = Awi, for all i. Finally, we generate X1, X2, . . . , Xn from model (1).
We consider three experiments. In Experiment 1, we fix (n, σ) = (1000, 1) and let d range in
{1, 2, . . . , 49, 50}. In Experiment 2, we fix (n, d) = (1000, 4) and let σ range in {0.2, 0.3, . . . , 2}.
In Experiment 3, we fix (d, σ) = (4, 1) and let n range in {500, 600, . . . , 1500}. We evaluate the
vertex hunting error maxk{∥v̂k − vk∥} (subject to a permutation of v̂1, . . . , v̂K). For each set of
parameters, we report the average error over 20 repetitions. The results are in Figure 3. They are
consistent with our theoretical insights: The performances of P-SPA and D-SPA are both better than
that of SPA, and the performance of pp-SPA is better than those of P-SPA and D-SPA. It suggests
that both the projection and denoise steps are effective in reducing noise, and it is beneficial to com-
bine them. When d ≤ 10, pp-SPA, P-SPA and D-SPA all outperform robust-SPA; when d > 10,
both pp-SPA and P-SPA outperform robust-SPA, and D-SPA (the simplified version without hyper-
plain projection) underperforms robust-SPA. The code to reproduce these experiments is available
at https://github.com/Gabriel78110/VertexHunting.

6 DISCUSSION

Vertex hunting is a fundamental problem found in many applications. The Successive Projection al-
gorithm (SPA) is a popular approach, but may behave unsatisfactorily in many settings. We propose
pp-SPA as a new approach to vertex hunting. Compared to SPA, the new algorithm provides much
improved theoretical bounds and encouraging improvements in a wide variety of numerical study.
We also provide a sharper non-asymptotic bound for the orthodox SPA. For technical simplicity, our
model assumes Gaussian noise, but our results are readily extendable to subGaussian noise. Also,
our non-asymptotic bounds do not require any distributional assumption, and are directly applicable
to different settings. For future work, we note that an improved bound on vertex hunting frequently
implies improved bounds for methods that contains vertex hunting as an important step, such as
Mixed-SCORE for network analysis (Jin et al., 2023; Bhattacharya et al., 2023), Topic-SCORE for
text analysis (Ke & Wang, 2022), and state compression of Markov processes (Zhang & Wang,
2019), where vertex hunting plays a key role. Our algorithm and bounds may also be useful for
related problems such as estimation of convex density support (Brunel, 2016).
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M. C. U. Araújo, T. C. B. Saldanha, and R. K. H. Galvao et al. The successive projections algorithm
for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst., 57
(2):65–73, 2001.

Ainesh Bakshi, Chiranjib Bhattacharyya, Ravi Kannan, David P Woodruff, and Samson Zhou.
Learning a latent simplex in input-sparsity time. Proceedings of the International Conference
on Learning Representations (ICLR), pp. 1–11, 2021.

Sohom Bhattacharya, Jianqing Fan, and Jikai Hou. Inferences on mixing probabilities and ranking
in mixed-membership models. arXiv:2308.14988, 2023.

Chiranjib Bhattacharyya and Ravindran Kannan. Finding a latent k–simplex in o*(k· nnz (data))
time via subset smoothing. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 122–140. SIAM, 2020.
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