Under review as a conference paper at ICLR 2024

A RELATED WORK

OOD Detection Methods. OOD detection has received considerable attention in recent years with
the need for trustworthy predictions from models (Fang et al., 2022} |Galil et al., |2022). Existing
methods in OOD detection can be mainly classified into post-hoc methods and fine-tuning methods
according to whether need to adjust the model parameters. Further, fine-tuned methods can be
classified as the representation-based methods, OOD data generation methods and outlier exposure
methods (Yang et al.| 2021). For the post-hoc methods, they believe a well-trained ID classifier
can already lead to effective OOD detection (Hendrycks & Gimpel, 2016), constructing appropriate
OOD score function to distinguish ID and OOD data. Some methods build OOD score function
based on the logit of the classifier output (Hendrycks & Gimpel, 2016; [Liang et al., 2018a; [Liu
et al.| 2020; [Sun et al., [2021; Wang et al., [2021)), gradient (Liang et al.| 2018bj |Huang et al., 2021}
Igoe et al.|[2022), and embedding feature (Sun et al., 2022} [Lee et al.| 2018bj Sastry & Oore, [2020).

Fine-tuning based methods consider that the training process can further adjust the latent space,
which is beneficial for the model to better separate ID and OOD in different scenarios. For the
representation-based methods, recent works has found that good feature representations are benefi-
cial for separating ID and OOD. Some approaches attempt to utilize data augmentation (Tack et al.,
2020; |Sun et al.| |2022)), constative learning (Sehwag et al.| [2020; Wang et al.| [2022) and constraints
on embedding features (Ming et al.,2023; Wei et al.,|[2022)) to achieve enhanced representation. The
adopted scoring functions in representation-based methods, however, can be complex. This com-
plexity may lead to an overestimation of the true effects of representation learning, necessitating
further studies. For OOD data generation methods, they try to use the existing ID data to obtain
the data near the boundary of the ID and the data far away from the ID by sampling in low-density
regions or distance metrics, and thus regularize the model to better separate the ID and OOD (Lee
et al.,[2018a} Vernekar et al., 2019; Du et al., 2022} [Tao et al.,|2023). For outlier exposure methods,
they help the model training by introducing additional surrogate OOD data for detection in unseen
OOD scenarios. Some methods directly make the model learn from OOD data with low OOD score
predictions (Hendrycks et al., |2018}; [Liu et al., 2020). Some methods studies different sampling
strategies and regularization strategies (Van Amersfoort et al., [2020; |L1 & Vasconcelos, |[2020; |Chen
et al.| 2021; Ming et al.,[2022b). Compared with other fine-tuning methods, outlier detection shows
superior performance, but the quality and difficulty of obtaining surrogate OOD data largely hinders
its detection ability in the real world, which is a challenge addressed by our approach in this paper.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., |2015; |Ho et al.| [2020) have emerged
as the new state-of-the-art family of deep generative models, which not only ensure high-fidelity
results but also exhibit improved training stability compared to GAN (Goodfellow et al., |2014;
Yang et al.| 2022)). Current research on diffusion models is mostly based on three predominant
formulations, denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., [2015; Ho
et al., 2020; Nichol & Dhariwall [2021)), score-based generative models (SGM) (Song & Ermon,
2019; 2020) and stochastic differential equations (SDE) (Song et al., 2021} |Song & Ermon, [2020).
While ensuring high-fidelity generation results, some recent approaches begin to explore high-speed
sampling (Song et al.|[2020; |Lu et al.| [2022ab).

Diffusion models have been widely used in various fields. Specifically, in the field of computer
vision, it is used for super-resolution, repainting, image editing, (Meng et al.,[2021; Rombach et al.,
2022; |Saharia et al.,[2022; Lugmayr et al., 2022) etc. In the multi-modal domain, diffusion models
are applied to text-to-image generation, text-to-audio generation, and text-to-3D generation (Avra-
hami et al., 2022} |Gu et al.,|[2022; Nichol et al., [2022; [ Xu et al., 2023} [Popov et al., [2021)) etc. as a
technical support. Moreover, recent works exploit the powerful representational and generative ca-
pabilities of diffusion models as data augmentation, e.g. for image classification tasks (Azizi et al.,
2023;Burg et al.,[2023; (Gowal et al.,2021), for medical image analysis (Rahman et al.,[2023}|Ozbey
et al., 2023 Wu et al.| 2023). In this paper, we utilize the dm method to generate surrogate OOD
data for training the model effectively to accurately distinguish between ID and OOD instances in
unseen OOD scenarios.

B VISUALIZATION

We contrast a number of different strategies for exploiting synthetic outliers based on diffusion
model. And we perform visual analysis of their synthesized outlier results separately.
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Figure 4: Visual reconstruction experiment visualization, which presents the generated outliers for
CIFAR benchmarks.

B.1 VISUALIZATION OF VISUAL RECONSTRUCTION

By adding Gaussian noise N to the visual embeddings, and generating denoised data from perturbed
visual latents instead of using Gaussian noise as zy, we can obtain outliers. The results are shown in
Figure[d Specifically, we perform a t-step (t = 400) diffusion process and obtain outliers through
image reconstruction while reducing the weight of the text guidance.

According to the visualization results, several intriguing phenomena are observable. The outliers
generated by visual reconstruction resemble different image styles within the same category as the
ID data, rather than the newly categorized ones that indicate semantic shift.

B.2 VISUALIZATION OF ADDING NOISE TO TEXT CLASSES

By introducing Gaussian noise A/ to the embedded text categories 7 (prompt(y)) and generating
outliers through the process of text conditional generation, we perturb the text embeddings by adding
Gaussian noise AV. The results are presented in Figure 5] It can be observed from the generated
outliers that the method of adding Gaussian noise to the text embeddings lacks stability. The addition
of a small noise disturbance to the partial text embedding leads to the generation of outliers with large
semantic deviation during the text-to-image generation process. However, some text embeddings are
not sensitive to noise perturbation, and therefore, they are unable to synthesize OOD data through
noise perturbation, e.g. frog and horse. Choosing the appropriate level of noise perturbation for all
ID text embeddings is challenging.

B.3 VISUALIZATION OF VISUAL INTERPOLATION

Interpolation using diffusion models has been widely employed in various tasks (Wang & Golland,
2023), e.g. video frame interpolation and customization. In this section, we utilize image interpo-
lation to synthesize outliers. Specifically, we implement linear interpolation (lerp) within the visual
latent space z = £(x). The results are presented in Figure@ It can be observed that the quality of the
generated outliers decreases when there is a large visual semantic gap between the two interpolated
targets.

B.4 VISUALIZATION OF TEXTUAL INTERPOLATION

Different from visual interpolation experiments, text interpolation does not require the addi-
tion of noise and can be performed directly between text embeddings. Specifically, we utilize
BT (prompt(y;)) + (1 — B)T (prompt(y;)) to interpolate between embeddings of different text
categories. The results are presented in Figure[/] It can be observed that reliable outliers only occur
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Figure 5: Experiments on adding Gaussian noise to text embeddings, which presents the generated
outliers for CIFAR benchmarks. The corresponding ID classes from top left to bottom right are dog,
deer, ship, automobile, bird, airplane, truck, horse, frog, and cat, respectively.

Figure 6: Experiments with visual space interpolation to generate outliers. From top to bottom
are, the interpolation results of cat and deer, frog and bird, as well as airplane and automobile,
respectively.

around intermediate values of the interpolated weights 5. However, this strategy is not effective as
a reliable outlier synthesis strategy.
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Table 3: OOD detection results for ImageNet benchmark. The baseline with * added represents the
representative outlier exposure methods. And the baseline with T added represents the representative
outlier generation methods. Bold numbers are superior performances.

Method \ Textures Places365 iNaturalist SUN Average
| FPRO5 ] AUROCT FPR95] AUROCT FPR95] AUROCT FPR95S|] AUROCT FPR95| AUROC T
Using ID data only
MSP 66.58 80.03 74.15 78.97 72.72 77.19 78.70 75.15 73.04 77.84
Free Energy 52.84 86.36 70.64 81.67 73.98 75.97 76.92 78.08 68.60 80.52
ASH 15.93 96.00 63.08 82.43 52.05 83.67 71.68 77.71 50.68 85.35
Mahalanobis 40.52 91.41 97.10 53.11 96.15 53.62 96.95 52.74 82.68 62.72
KNN 26.54 93.49 78.64 76.82 75.78 69.51 74.30 78.85 63.82 79.66
Using ID data and auxiliary OOD data

ConfGANT 68.74 78.74 77.40 77.24 72.67 78.29 80.73 73.88 74.88 77.03
vosf 94.83 57.69 98.72 38.50 87.75 65.65 70.20 83.62 87.87 61.36
NPOS' 56.10 84.37 78.23 76.91 74.74 77.43 83.09 73.73 73.04 78.11
OE* 57.34 82.97 7.92 98.04 73.87 76.94 52.60 77.31 52.60 83.81
Energy-OE* 42.46 88.27 1.88 99.49 73.81 78.34 69.45 79.54 46.90 86.41
ATOM* 60.20 90.60 7.07 98.25 74.30 77.00 55.87 75.80 49.36 85.41
DOE* 35.11 92.15 0.72 99.79 72.55 78.00 59.06 85.67 41.86 88.90
POEM* 40.80 89.78 0.26 99.70 73.23 68.83 65.45 82.08 44.93 85.10
DOG 21.29 95.53 42.73 91.15 37.30 89.68 39.11 89.67 35.11 91.51

B.5 VISUALIZATION OF NEAR-OOD GENERATION OF TEXT

In this section, we conduct an experiment to translate the task of locating near-OOD data into text
space. We generate the near-OOD data by selecting near-synonyms of the current category text as
anchors on the text side. The results are presented in Figure [B.5. Specifically, we choose the top-k
(k = 1000) synonyms based on the current classes for text-conditional generation. This strategy
generates outliers by searching for similar embeddings in the text space in order to find appropriate
anchors. However, since visual images contain rich background information, the near-OOD anchors
searched by class words in the text space may be offset from the visual space.

C MORE EVALUATIONS

C.1 IMAGENET EVALUATIONS

We also conduct experiments on the ImageNet benchmarks, demonstrating the effectiveness of our
DOG when facing this very challenging OOD detection task. Due to the large semantic space and
complex image patterns, OOD detection on the ImageNet dataset is a challenging task (Huang &
Li,[2021). However, similar to the CIFAR benchmarks, our DOG method also demonstrates the best
detection performance among all the baseline methods considered.

C.2 MORE ABLATION EVALUATIONS

Ablation on k in process of selecting topk candidate set. We conducted experiments to explore
the effect of the value of the candidate word set £ on OOD detection performance. The result is
presented in Figure[9]

A new pipeline as a kind of OE provides surrogate OOD data. We regard DOG as a new pipeline
for outlier exposure providing the generation of surrogate OOD data and combining with existing
outlier exposure methods. We selected the conventional and widely concerned outlier exposure
method OE (Hendrycks et al.,[2018)) and Energy-OE (Liu et al.,[2020), as well as the method POEM
(Ming et al., [2022b) which implements SOTA on both CIFAR10 and CIFAR100 benchmarks for
experiments.

D EXPERIMENTAL ENVIRONMENT

All experiments were conducted using four 3090Ti GPUs.
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Table 4: Results of the combination of our DOG and existing OE methods on CIFAR benchmarks.

Method SVHN LSUN iSUN Textures Places365 Average
FPRO5 ] AUROCT FPR95] AUROCT FPR95] AUROCT FPR95] AUROCT FPR95] AUROCT FPR95] AUROCT
CIFAR-100

OE 46.73 90.54 16.30 96.98 47.97 88.43 50.39 88.27 54.30 87.11 43.14 90.27
OE +DOG 44.50 85.46 34.66 92.29 539 98.58 43.81 91.20 48.59 89.23 35.39 91.35
Energy-OE 3534 94.74 16.27 97.25 3321 93.25 46.13 90.62 50.45 90.04 36.28 93.18
Energy-OE + DOG 24.50 95.07 41.39 91.09 50.16 88.65 18.07 94.93 16.60 96.34 30.14 93.22
POEM 2227 96.28 13.66 97.52 42.46 91.97 45.94 90.42 49.50 90.21 3477 93.28
POEM + DOG 41.85 91.79 35.75 92.75 26.85 92.96 19.80 95.63 23.90 93.52 29.62 93.33
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Figure 7: Experiments with text embedding interpolation to generate outliers. From left to right the
parameter of interpolation 3 is {0.1,0.3, ..., 0.9}.21
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(c) Outliers for class frog (d) Outliers for class truck

Figure 8: Visualization results for partial outliers of the CIFAR benchmarks.
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Figure 9: FPROS5 values corresponding to different values of parameter k& for CIFAR benchmarks.
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