A Proof of Proposition 2|
GivenY = (y1,...,yn) € (RY)N \ Dy, one has forany i € {1,..., N},

/ Iz - will? do(z) = / 2 = Bi(Y) + Bi(Y) — il dp(a)
Pi(Y) Pi(Y)

1
:/ ||~"U*bz'(Y)||2dP(CU)+N||bi(Y)*yz‘||2~
Pi(Y)

Summing these equalities over ¢ and remarking that the map Ty defined by Ty | Piy) = Yi is an
optimal transport map between p and Jdy, we get

1 2 2 2
B0 =Y = W) = 5 [ e =6 dote)

< W3(p, 0y) = W3(p, 6, (v))-
Thus, with Y*+1 = Bn(Y'F), we have

1 .
NIVE (V)P = IV = VP < 2(F(VF) = By (V).

This implies that the values of Fy(Y*) are decreasing in k and, since they are bounded from below,
that [|[VEN (Y*®)|| — 0since 3, [[VEN(YF)|? < +00. The sequence (Y*), can be easily seen to
be bounded, since Fy (Yk) is bounded, which implies a bound on the second moment of Jy«.

For fixed N, since all atoms of §y« have mass 1/N, this implies that all points y* belong to a
same fixed compact ball. If p itself is compactly supported, we can also prove that all points
Y#+1 = BN (Y*) are contained in a compact subset of (R?)" \ D, which means obtaining a lower
bound on the distances |b;(Y") — b;(Y)| for arbitrary Y. This lower bound can be obtained in the
following way: since p is absolutely continuous it is uniformly integrable which means that for
every € > 0 there is 6 = d(g) > 0 such that for any set A with Lebesgue measure |A| < § we have
p(A) < e. We claim that we have |b;(Y) — b;(Y)| > r := (2R)'~?(5% ), where R is such that
p is supported in a ball Bp, of radius R. Indeed, it is enough to prove that every barycenter b;(Y")
is at distance at least r/2 from each face of the convex polytope P;(Y"). Consider a face of such a
polytope and suppose, by simplicity, that it lies on the hyperplane {4 = 0} with the cell contained in
{z4 > 0}. Let s be such that p(P;(Y) N {zq > s}) = p(P;(Y) N {zq < s}) = 5% Then since the
diameter of P;(Y) N Bp is smaller than 2R, the Lebesgue measure of P;(Y) N {z4 < s} is bounded
by (2R)d_1s, which provides s > r because of the definition of r. Since at least half of the mass
(according to p) of the cell P;(Y") is above the level x4 = s the x4-coordinate of the barycenter is at
least /2. This shows that the barycenter lies at distance at least /2 from each of its faces.

As a consequence, the iterations Y'* of the Lloyd algorithm lie in a compact subset of (R?)™ \ Dy,
on which Fiy is C. This implies that any limit point must be a critical point.

We do not discuss here whether the whole sequence converges or not, which seems to be a delicate
matter even for fixed N. It is anyway possible to prove (but we do not develop the details here) that
the set of limit points is a closed connected subet of (R?)™ with empty interior, composed of critical
points of Fiy all lying on a same level set of Fiy.

B Proof of Corollary
GivenY = (y1,...,yn) € (R)N, we denote

LY)={ie{l,....,N}|Vj#i,llyi —yill > e}, re(Y)= %Card(]E(Y)).

We call points y; such that i € I.(Y") e-isolated, and points y; such that i ¢ I.(Y") e-connected. Thus,
ke gives the proportion of e-isolated points in a cloud.

Lemma 1. Let X,..., Xy be independent, R%-valued, random variables. Then, there is a constant
Cy > 0 such that

P({Jhe(X, ., Xr) = Blsc)| 2 n}) < e/,
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Proof. This lemma is a consequence of McDiarmid’s inequality. To apply this inequality, we need
evaluate the amplitude of variation of the function «. along changes of one of the points x;. Denote
¢q the maximum cardinal of a subset S of the ball B(0, €) such that the distance between any distinct
points in S is at least €. By a scaling argument, one can check that ¢4 does not, in fact, depend on €.
To evaluate

[ke(@1,y .oy @iy oy N) — Re(T1, - ooy Tty - 2N,

we first note that at most ¢4 points may become e-isolated when removing x;. To prove this, we
remark that if a point ; becomes e-isolated when z; is removed, this means that ||z; — z;|| < ¢ and
lxj — zx|| > e forall k & {i,j}. The number of such j is bounded by c;. Symmetrically, there
may be at most ¢y points becoming e-connected under addition of &;. Finally, the point z; itself may
change status from e-isolated to e-connected. To summarize, we obtain that with Cy = 2¢4 + 1,

. 1
|ke(X1, oy @iy yZN) — Re(T1, .oy &gy ooy zn)| < NC’d.

The conclusion then directly follows from McDiarmid’s inequality. O

Lemma 2. Let o € L>™°(R?) be a probability density and let X1, ..., Xy be i.i.d. random variables
with distribution o. Then,

E(ke (X1, ..., XN)) > (1 — [Jo||lpewaeh)V L.
Proof. The probability that a point X; belongs to the ball B(X, ) for some j # ¢ can be bounded

from above by o(B(X;,¢)) < ||o||Lowac?, where w, is the volume of the d-dimensional unit ball.
Thus, the probability that X is e-isolated is larger than

(1= ||lo||lpewae®) N 1.
We conclude by noting that

1
E(ke(X1,...,XN)) = = Y P(Xiis e-isolated). O

1<i<N

Proof of Corollary[5] We apply the previous Lemma 2| with ey = N ~% and B =d-— % The
expectation of k., (X1, ..., Xy) is lower bounded by:

E(key (X1, Xn)) 2 (1= N7 F [l ewa)
>1—CN'" %

for large N, since 3 < d. By Lemmal[I] for any n > 0,

P(key (X1,..., Xn) 21— CN'"5 —p) > 1— ¢ KNP,
for constants C, K > 0 depending only on ||o||1,~ and d. We choose 1 = N~771, 5o that 7 is of
the same order as NV 1-% since 1 — % = —ﬁ.Thus, for a slightly different C,

P(rey (X1,...,XN)>1—Cn) >1—e KN,
Now, for wq, ...,wp such that
Ken (X1(w1),..., Xn(wn)) >1—Chn,

Theorem 3] yields:

W3 (6 (x ()2 P) S

and such a disposition happens with probability at least

2d—3
_ 2 _ 2d—1
1—e BN —1 _ ¢ KN . O
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C Proof of Corollary [6]

We first note that by Proposition (1} we have |[VEy(Y)|? = 1 |BN(Y) — Y||>. We then use
W3(0py(r),0v) < 5 [IBy(Y) = Y]|* and

Thus, using Theorem to bound W3(p, 0 ~(v)) from above, we get the desired result.

D Proof of Theorem [7|

Lemma 3. Let Y° € (RY)N \ Dy, for some e > 0. Then, the iterates (Y*)i>0 of (13) satisfy
for every k > 0, and for every i # j

lwf =] = (1= 7w)Fen (23)

Proof. We consider the distance between two trajectories after k iterations: e; = Hyf — ny .
Assuming that e, > 0, the convexity of the norm immediately gives us:

e el > yf—yf .(k+17 k+17((€7 k))
k+1 kZ 5 kH Yi Yj Yi —Yj

k k
vt~y
- (H) =) — o — o]

where we denoted b¥ := b;(Y}) the barycenter of the ith Power cell P;(YX) in the tesselation
associated with the point cloud Y. Since each barycenter b¥ lies in its corresponding Power cell, the
scalar product (yf — y¥) - (b}’ — b%) is non-negative: Indeed, for any i # j,

k_ pk|)? kE_ pk||? k k
[y = bF (| = llyg — o[ < o7 — 5
Summing this inequality with the same inequality with the roles of 7 and j reversed, we obtain:

(i —u5) - (b = 05) >0
thus giving us the geometric inequality ex1 > (1 — 7x)ey. Since Y3y was chosen in QN \ Dy ey
this yields e > (1 — 7)*eq and inequality [23] 0O
Lemmad. Foranyk >0
en ¢ AR —nk
N Ay —nn’
1-d

Fn(YR) < Fn(Yy)ny +2Caa(l —nn) (24)

where we denote ny =1 — (2 — 1) and Ay = (1 — 7n)
Proof. This is obtained in a very similar fashion as Lemma[3] For any k& > 0, the semi-concavity of
F'y yields the inequality:
el Y& B
FY’““—HN — | En(Yh) - X < (== ). (vE vk

with BY, := By(Y£) in accordance with the previous proof.
Rearranging the terms,

2
12 Vi

2 N
TN

=—7n(1- 7)W§(5Bg,5y§)

Fx(YEFY — Fn(YE) < —7v(1 —

T 1
<1 = 3 (<5 WaGvon) + Wh(p.d) )
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by applying first the triangle inequality to W (d B> 6Y];Vc) and then Cauchy-Schwartz’s inequality.
Using Theorem 3] this yields:

T CL:lfd
FN(Y]€+1) S(]. - ?N(Q - TN))FN(Y]’\?) + QC(LQTN(Q — TN) JZVV

(1 . 7_N)Ic(lfd)

1-d

€
<nFn(Yn) +2Ca0(1 =) ]J\{, AR
and we simply iterate on k to end up with the bound claimed in Lemma 4] [

Proof of Theorem[]] To conclude, we simply make (order 1) expansions of the terms in The
definition of ky in Theorem|7] although convoluted, was made so that both terms in the right-hand

lfd
side of this inequality, FN(YJ(\);)U and (1 — nn) 2% W have the same asymptotic decay to

0 (as N — +00): With the notations of the previous proposition, we have for fixed V:
(1—nv) AR —nx
Ay —nn  Neg!

W3 (9,0, ) < W3 (p,dyg ) 1 +2Ca (25)

We make use here of the notation from Section 3t

1 _
TN = kNTN = {dln( (Y )NE?V 1)J
to clear this expression a bit, and, because of the assumption limy_, o, 74 = 0, we may write:

AfVN — kN _ eld—1)Tn +on Tn
st{fl Ns?{l e (Nsﬁl\fl)%

as well as nkN =e ™ 4 on oo ((N?_Vl)l) and substituting Ty,
En d

d—1

W% (pv 5YD>T T
2 B I ., N

1

-3
§W3(075y13> T N te(i-3) 0

E Case of a low variance Gaussian in Section 4]

Here, we consider p,, the probability measure obtained by truncating and renormalizing a centered
normal distribution with variance o to the segment [—1, 1]. We first show that for any N € N and
6 € (0,1), we can find a small oy 5 such that the Wasserstein distance beween p,, ; and its best

N-points approximation of is at least C.N ~(2=9).

.0 . d =2 .
Proposition 8. For any o > 0, consider p, = mee 202 1[_y,1)dx the truncated centered Gaussian

density, where m, is taken so that p, has unit mass. Then, for every § € (0, 1), there exists a constant
C > 0 and a sequence of variances (o) nen such that

VY € ROV \ Dy, W2 (0pyv): poy) = CN~E79)

From the proof, one can see that the dependence of o on NN is logarithmic.

2|2 . . T
Proof. Wedenoteg:x € R— \/%e’T the density of the centered Gaussian distribution and F,

its cumulative distribution function, so that

1 22 1/o
myt = [ a0V [ gu)dy = VERa(E,(1/0) - Fy(-1/0) @0

-1 l/a
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Note that, whenever ¢ — 0, we have (om,)~! — /27. We denote by F, : [-1,1] — [0,1]
the cumulative distribution function of p,. Given any point cloud Y = (yi,...,yn) such that
y1 < ... < yn, the Power cells P;(Y) is simply the segment

P(Y) = [F; ' (i/N), F; (i + 1) /N)].

Since these segments do not depend on Y, we will denote them (P;)1<;<n. Finally, defining
b;=N | p 2dp, () as the barycenter of the ith power cell and 6p = ﬁ >, 0,, we have

Wabmp0) = 3 | @ brap)
i=17 P

N
> po(—1) Z/P (z —b;)?da (27)
i=1 i
N

> Opo(=1) Y (F, (i +1)/N) = F;(i/N))?,

i=1
where we used that p,, attains its minimum at +1 to get the first inequality. We now wish to provide
an approximation for F; (¢, ¢ € [0, 1]. We first note, using Taylor’s formula, that we have

F(t) = oF, <Fg (0-1) i {Fg <i> —fo <01>D
—oF! (Fg (‘01) + ¢%tam>

=10 (5 (3)) Voo + 505 Oz
for some s € [Fy(—21), Fy(—2) + t(Fy(1) — Fy(—2))]. But,

[re @l

1
=V2me =z

—1y/ _
F 0= T
g F ()
(9o Fy (1)’

_1 2
— 2 F, (el o O

and we see that

t T
71 [ - —_
o) = (‘” m)‘ < Sz
[eg

. . . 1 2
Therefore, if we denote (0, t) the second-order error in the above formula, i.e. £(0,t) = €% 5%

the size of the first Power cell Py(Y") is of order:

FyY(1/N) — F7H0) = Nie* +0 (g (o—, ;f)) .

Mo

2m2
202m?2

We will choose o depending on /V in order for the first term in the left-hand side to dominate the
second one:
1 1 L 28)
_ = 20 .
\VN) T\ Nm,

1 P
(F;H(1/N) = F;710))?po(—1) Zcmezﬁmoe_ﬁ

1 7 N (29)

=C—5——F¢€-2.
3002
N3m2

In this way, we have

We now choose 0 = o such that 37 = N for an exponent « to be chosen. We need o > 0 so
that o,y — 0. This last condition and (26) implies that m,, is of order v/log N. This means that the
condition is satisfied if & < 1 and IV large enough.
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The sum in is lower bounded by its first term, (29), and we get

, 1 % N20¢—3
>c——__@°N > TGy
WZ((SBﬂpU)—CNBmQ € C(ln(N))

ON

for some constant C' > 0, since o depends logarithmically on N. Finally, if we want this last
expression to be larger than N~ (2~%) we can take for instance 2 > 1 + & and N large enough. [J

The following corollary, whose proof can just be obtained by adapting the above proof to a simple
multi-dimensional setting where measures and cells “factorize” according to the components, confirms
the facts observed in the numerical section (Section EII), and the sharpness of our result (Remark E])

Corollary 9. Fix 6 € (0,1). Given any n € N, consider an axis-aligned discrete grid of the form
Zny =Y1 x...x Yy in R, with N = Card(Zy) = n?, where each Y} is a subset of R with cardinal
n. Finally, define oy := oy, 5 as in Proposition[?f] Then we have

(2-9)
)

W%((;BN(ZN)apUN PR ®paN) > CN™ 4

where the constant C' is independent of N.
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