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ABSTRACT

The challenge of balancing fairness and predictive accuracy in machine learning
models, especially when sensitive attributes such as race, gender, or age are con-
sidered, has motivated substantial research in recent years. Counterfactual fair-
ness ensures that predictions remain consistent across counterfactual variations
of sensitive attributes, which is a crucial concept in addressing societal biases.
However, existing counterfactual fairness approaches usually overlook intrinsic
information about sensitive features, limiting their ability to achieve fairness while
simultaneously maintaining performance. To tackle this challenge, we introduce
EXOgenous Causal reasoning (EXOC), a novel causal reasoning framework mo-
tivated by exogenous variables. It leverages auxiliary variables to uncover in-
trinsic properties that give rise to sensitive attributes. Our framework explicitly
defines an auxiliary node and a control node that contribute to counterfactual fair-
ness and control the information flow within the model. Our evaluation, con-
ducted on synthetic and real-world datasets, validates EXOC’s superiority, show-
ing that it outperforms state-of-the-art approaches in achieving counterfactual fair-
ness. Our code is available at https://github.com/CASE-Lab-UMD/
counterfactual_fairness_2025.

1 INTRODUCTION

Machine learning has been widely adopted in prediction tasks (Brennan et al., 2009; Corbett-Davies
et al., 2023) such as personalized recommendation (Mehrotra et al., 2018; Wu et al., 2021) and image
classification (Bhojanapalli et al., 2021; Chen et al., 2021). Recent literature shows that predictions
based on traditional machine learning methods often exhibit bias against certain demographic sub-
groups, which are described by sensitive attributes such as race, gender, age, and sexual orientation.
Therefore, developing a fairer predictor has attracted considerable attention (Bellamy et al., 2019;
Bird et al., 2019; Caton & Haas, 2024). Among them, counterfactual fairness applies causal mech-
anisms to model how discrimination occurs and measure societal bias at an individual level, using
Pearl’s causal structural models (Pearl, 2009). The idea behind counterfactual fairness is to ensure
that predictions from the same individual remain consistent even if their sensitive attribute would
have changed. Kusner et al. (2017) introduce the framework for counterfactual fairness at the indi-
vidual level using causal models. After that, several works focus on counterfactual fairness. Russell
et al. (2017) propose a new counterfactual fairness framework by integrating multiple counterfactual
assumptions, aiming to address inconsistencies in fairness across different causal models. The paper
uses a Bayesian approach to unify different counterfactual assumptions into a probabilistic model,
thereby better handling complex fairness issues. Wu et al. (2019) presents a unified definition that
covers most of the previous causality-based fairness notions, namely the path-specific counterfac-
tual fairness (PC fairness), and proposes an estimation approach for unidentified causal quantities.
Ma et al. (2023) propose a method to achieve counterfactual fairness without requiring a predefined
causal graph by learning directly from observational data. The approach involves creating a coun-
terfactually fair dataset through augmentation and using a carefully designed loss function to ensure
fairness during model training.
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We observe that the majority of existing methods for counterfactual fairness focus on analyzing
causal inference and their counterfactual framework (Kusner et al., 2017; Russell et al., 2017) or
creating a counterfactual-fair augmentation dataset that is agnostic to a casual graph (Ma et al.,
2023), which can be inferred directly using the augmentation dataset and crafted loss design. How-
ever, to the best of our knowledge, most existing works assume sensitive attributes should not be
causally influenced by any other variables (Kusner et al., 2017; Berk et al., 2021; Ma et al., 2023).
This assumption overlooks the essentials of sensitive features, i.e., which part of the sensitive fea-
ture is intrinsic or essential for the inference and which part should be neglected. Also, existing
methods usually fit into a specific scenario where the causal relationship from the sensitive attribute
to the target attribute is fixed. For example, race should generally not influence decision-making at
all, making it hard to extend and distribute in real-world scenarios. For example, in a demography
experiment, race distribution can be deduced from the geographic distribution of the population,
which can not be causally neglected.

To tackle these challenges, we propose a novel framework, EXOC, which introduces intuitive mod-
ifications to the causal model. This framework utilizes the auxiliary variables in causal inference,
extracting essential information from sensitive attributes and effectively controlling the flow of in-
formation from the sensitive attribute to the target attribute. We summarize our contributions as
follows:

• We develop a framework that utilizes the auxiliary variables in causal inference, extracting
essential information from sensitive attributes and enhancing fairness without sacrificing
much accuracy.

• We formalize a method to regulate the flow of information from the sensitive attribute to
the target attribute, effectively controlling the balance between accuracy and fairness.

• We provide theoretical analysis and conduct extensive baseline and ablation experiments
to validate the effectiveness of our approach.

2 PRELIMINARIES

2.1 COUNTERFACTUAL FAIRNESS

Counterfactual fairness (Kusner et al., 2017) is an individual-level fairness notion based on the causal
model. It is constructed on the Pearl’s causal framework (Pearl, 2009), which is defined as a triple
(U,V,F) so that:

• U is a set of latent background variables, which are exogenous and not caused by any
variable in the set V ;

• V is a set of observed variables, which are endogenous and determined by U ∪V ;
• F is a set of functions { f1, ..., fn}, on for each Vi ∈ V , so that Vi = fi(pai,Upai), where

pai ⊆V \{Vi} and Upai ⊆U are variables that directly determine Vi.

A causal model is associated with a causal graph, which is a directed acyclic graph (DAG). Each
node in the causal graph represents a variable in the causal model, and each directed edge corre-
sponds to a causal relationship. In the causal model, the counterfactual estimands are facilitated
by interventions through do-calculus, which simulates the physical interventions that force some
variables to take certain values. For example, for observed variables A and B, the value of the
counterfactual “what would A have been if B had been b ” is denoted by AB←b.

Counterfactual fairness (Kusner et al., 2017; Wu et al., 2019): Given a factual condition O = o,
the predictor Y = f (O) is counterfactually fair if under any context o,

P(YS←s = y | o) = P(YS←s′ = y | o) , ∀s′ ̸= s, (1)
where O = {S,X}, S is the sensitive attribute and X is observed non-sensitive attributes.

Approximate counterfactual fairness (Russell et al., 2017): A predictor Y = f (O) satisfies (δ ,0)-
approximate counterfactual fairness if, given the factual condition O = o, we have:

|[(YS←s−YS←s′) | o]| ≤ δ , ∀s′ ̸= s. (2)
This approximate metric measures counterfactual fairness in practical manners. Unless otherwise
specified, we refer to this approximate metric as counterfactual fairness in our theoretical analysis.
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(a) Fair-K (b) EXOC

Figure 1: The causal models of Fair-K and EXOC. S is the sensitive attribute, X is observed non-
sensitive attributes, Y is the target attribute, K is the latent domain knowledge, and S′ and S′′ are latent
auxiliary nodes, U is the exogenous variable. The solid lines represent designed causal relationships,
and dashed lines mean our focused existing relationships in implementation, illustrated in 3.2.2 (note
that U have existing causal relationships with every node (Pearl, 2009)).

2.2 COUNTERFACTUALLY FAIR LEARNING APPROACHES

In the counterfactually fair machine learning literature, Fair-K (Kusner et al., 2017; Ma et al., 2023)
is a widely adopted framework. As illustrated in Fig. 1a, it is designed on the Law school dataset
(Krueger et al., 2021) and assumes a node K representing domain knowledge that can act as non-
deterministic causes of X. Then, it trains a predictor using K to predict Ŷ , e.g., using logistic
regression and achieves a counterfactual fairness improvement. However, the causal effect trans-
mitting from exogenous variables U is not fully utilized in the deployments of counterfactually fair
predictors, potentially leading to significant performance decreases.

3 DESIGN

3.1 CAUSAL MODEL OVERVIEW

To address the above limitations, we propose EXOC, a novel framework that introduces the auxil-
iary node and the control node, which instantiates the exogenous variable U . Specifically, the model
leverages controllable auxiliary nodes S′ to simultaneously capture intrinsic, latent information from
X, Y , and S. The model enhances the overall performance and fairness balance by incorporating this
additional auxiliary compared to Fair-K in Fig. 1a. Motivated by the controllable nature of S′, we
further introduce S′′, with the aim that S′′ can support S′ in controlling the balance between fair-
ness and accuracy. Strengthening the relationship between S′ and S′′ indicates a stronger alignment
with fairness, whereas weakening allows S′ to tap into more intrinsic information from S and em-
phasize performance. Through this flexible mechanism, we can prioritize fairness or accuracy in
various real-world scenarios. We explain the components of the EXOC framework in the following
subsections.

3.2 S′: THE AUXILIARY NODE

3.2.1 ILLUSTRATING AUXILIARY NODE S′ IN A SIMPLIFIED CASE

We observe that previous works fail to dive into the essential of sensitive features and consider U
as unknown background variables in a causal model. Rethinking the role of exogenous variable U ,
we devise an idea to instantiate U into an auxiliary node S′ in the model. To demonstrate how the
auxiliary node S′ achieves counterfactual fairness, we first take a simple example: consider the ideal
linear model (the model can ideally fit the determination of the real world, where U is eliminated)
with normal distributions. In Fig. 1a, for each individual, the causal relationship to Y can be written
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as:
Y = αS+βK, (3)

where α and β are path coefficients (Pearl, 2009). Therefore, in causal inference,

YS←s | o = α · (SS←s | o)+β · (K | o) = αs+βk, k ∼N (µK ,σ
2
K), (4)

(YS←s∗ −YS←s | o)a = α(s∗− s)+β (k1− k0), (5)
where the same alphabet with different subscript numbers is sampled from the same corresponding
distribution, α(s∗− s) is fixed, and β (k1− k0)∼N (0,2β 2σ2

K).

Similarly in Fig. 1b, we have:
Y = α̃S′+ β̃K, (6)

where the alphabet with the tilde operator has similar meanings. Since the model structure differs
between Fig. 1a and Fig. 1b, we distinguish their values using tilde. Therefore,

YS←s | o = α̃ · (S′S←s | o)+ β̃ · (K | o) = α̃s′+ β̃ k̃, s′ ∼N (µ̃S′ , σ̃
2
S′), k̃ ∼N (µ̃K , σ̃

2
K), (7)

(YS←s∗ −YS←s | o)b = α̃(s′1− s′0)+ β̃ (k̃1− k̃0), (8)
apply Three Sigma Rule (Pukelsheim, 1994) on these results:

(YS←s∗ −YS←s | o)±3σ
a = (α(s∗− s)+β (k1− k0))

±3σ (9)

= α(s∗− s)±3
√

2 · |β |σK , (10)

(YS←s∗ −YS←s | o)±3σ

b = (α̃(s′1− s′0)+ β̃ (k̃1− k̃0))
±3σ (11)

=±3
√

2
(

α̃2σ̃2
S′ + β̃ 2σ̃2

K

)
, (12)

where these bounds are not exceeded in 99.7% of cases, so the exceptions are negligible. Therefore,
we can estimate the upper bound of |[YS←s∗ −YS←s | o]|, i.e., approximate counterfactual fairness
bound in these equations as:

|[YS←s∗ −YS←s | o]a| ≤
∣∣∣α(s∗− s)±3

√
2 · |β |σK

∣∣∣
= |α(s∗− s)|+3

√
2 · |β |σK = δa, (13)

|[YS←s∗ −YS←s | o]b| ≤ 3
√

2
(

α̃2σ̃2
S′ + β̃ 2σ̃2

K

)
= δb, (14)

where the value corresponds to δ in the approximate counterfactual fairness definition. As α(s∗−s)
is the counterfactual parity that plays a more important role than the standard deviation, we showcase
that δa > δb, so the scenario in EXOC is tighter than Fair-K in the constraint of counterfactual
fairness. Therefore, S′ theoretically helps improve the counterfactual fairness in this case.

3.2.2 EXTENDING AUXILIARY NODE S′ INTO A GENERAL CASE

To mitigate the strong assumptions that the model is ideal and the distribution of nodes is normal, we
use arbitrary functions for the causal model. We have Y = f (S,K,U) in Fair-K and Y = f (S′,K,U)
in EXOC. When we calculate the counterfactual fairness, we will similarly operate a counterfactual
parity between different sensitive attributes as in Eq. 5 and 8, i.e., ( f (S,K,U)S←s− f (S,K,U)S←s∗) |
o in Fair-K and ( f (S′,K,U)S←s− f (S′,K,U)S←s∗) | o in EXOC. As S′ is a non-descendant of S, there
should also be an elimination of S parity when calculating the counterfactual fairness in EXOC.
Therefore, we expect a promotion of counterfactual fairness.

Since the analysis based on counterfactuals from Pearl’s SCM framework (Pearl, 2009) conflates
the predictor Ŷ with the outcome Y (Kusner et al., 2017), and it does not explicitly incorporate
probabilistic deployment of causal models. So, when we reconsider causality from the information
perspective, we discover that S′ not only achieves counterfactual fairness but also has the nature of
controlling information flows from S to Y and from K to Y .
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Specifically, in the deployment of EXOC, we first perform inference on the model using an observed
training set to estimate the posterior distribution of P(K |O). Subsequently, we train the logistic re-
gression predictor Ŷ = ς(K) to model the relationship between O and Y . This predictor ς(·) focuses
on the correlation without the craft of causality and this ignorance of causality can be depicted as the
impact from the exogenous variable U , focusing on two causal relations of U→K and U→ S. They
yield a backdoor path πϑ = {K←U → S}. Without loss of generality, we conduct a path analysis
of πϑ :

K | πϑ = φ1(U), S | πϑ = φ2(U), (15)
where φ1 and φ2 are arbitrary causal functions, acting as an extension to the path coefficient in (Pearl,
2009). These functions measure the intensity of the causal relationship from input to output. Then
we have the impact from K to S:

S | πϑ = (φ2 ◦φ
−1
1 )(K), (16)

where φ
−1
1 is the inverse function of φ1, whose intensity has a negative correlation with the intensity

of φ1, due to the unidirectional deduction in causal inference. (φ2 ◦φ
−1
1 ) shows the non-negligible

correlation between K and S. Consequently, in Fig. 1a, there is the frontdoor path πa = {S→Y}, so
even if we exclude S as a factor in logistic regression, the correlation (φ2 ◦φ

−1
1 ) will cause impact

from S to Y :
Y | πa = φ3(S). (17)

where (φ2 ◦φ
−1
1 ) is included in S, so this equation expressed when inferring from K is:

Y | πϑ ×πa = (φ3 ◦φ2 ◦φ
−1
1 )(K), (18)

where φ3 merely depends on the distribution of S, which is fixed. However, the causal graph in Fig.
1b bypasses this frontdoor path by creating πb = {S← S′→ Y}. Similar as πa, we have in πb:

S | πb = φ4(S′), Y | πb = φ5(S′), (19)

Y | πb = (φ5 ◦φ
−1
4 )(S), (20)

Y | πϑ ×πb = (φ5 ◦ φ
−1
4 ◦φ2 ◦φ

−1
1 )(K), (21)

where (φ5 ◦φ
−1
4 ) shows the correlation between S and Y . Notably, (φ5 ◦φ

−1
4 ) can be controlled by

the auxiliary node S′, because φ4 and φ5 both take S′ rather than S as inputs. This framework provides
flexibility for users to balance fairness and accuracy by controlling whether S′ should more likely
result in S or Y . Specifically, if we strengthen the intensity of φ4, S′ then have a stronger causal effect
to S. According to Eq. 20 and 21, both the correlation from S to Y and from K to Y are minimized,
where the former contributes to counterfactual fairness, with a tradeoff of accuracy. Intuitively,
we can consider minimizing correlations as controlling two information flows: one flowing from
S to Y and the other flowing from K to Y . Minimizing the correlations weakens the information
flows, thus promoting counterfactual fairness and decreasing performance. So, we can conclude
that introducing S′ improves counterfactual fairness and is naturally made to control information
flows. Since we face the challenge of realizing this control process, we develop a control node S′′ to
tackle it.

3.3 S′′: THE CONTROL NODE

Now, we introduce S′′, where we design a custom loss that connects S′ and S′′, acting as the key
factor supporting information flow control. It minimizes the distance between S′ and S′′:

Lc(S′,S′′) =
1
D

D∑
i=1

∥S′i−S′′i ∥2
2, (22)

where D is the training dataset length, and ∥ · ∥2 is the Euclidean norm (L2 norm). Here, we aim
to deduce S′′ as the descendant of Y for calculating Lc(S′,S′′). In Pearl’s SCM theory, deduced
variables often represent hidden factors that cannot be directly observed. Estimating the posterior
distribution of these latent variables is challenging (Kingma, 2013; Blei et al., 2017). Therefore,
the implementation of the causal graph resorts to the ELBO technique (Jordan et al., 1999), which
defines a guide model equipped with an assumed posterior distribution to fit the rules of the causal
graph. In our case, we realize the Evidence Lower Bound (ELBO) loss as:

LELBO =− log p(O)+KL(q(Z|O) ∥ p(Z|O)), (23)
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(a) High γ . (b) Low γ .

Figure 2: The distribution mapping regarding Lc(S′,S′′), which can be seen as a probability infer-
ence perspective of the partial causal graph in Fig. 1b, where blue arrows mean the distribution
parity are tightened, red arrows mean loosened, the dashed line circle is the true distribution, the full
line circle is the inferred distribution. Blue circles are close to true distributions, and orange circles
are far from true distributions. Note that the γ is positively related to the effect of Lc(S′,S′′), so the
constraint of Lc(S′,S′′) in Fig 2a is tighter, in Fig 2b is looser.

where Z = {K,S′,S′′} are the latent variables, p(O) is prior, q(Z|O) is the approximate posterior
distribution that tends to fit the true posterior distribution p(Z|O), KL[· ∥ ·] is the Kullback-Leibler
(KL) divergence. The formula expresses thatLELBO is the negative marginal log-likelihood log p(O)
and the KL divergence between q(Z|O) and p(Z|O). Minimizing LELBO effectively minimizes the
KL divergence, which in turn provides a better approximation of the true posterior p(Z|O).

Here the overall loss is defined as: L = LELBO + γ ·R(Lc(S′,S′′)), where γ is the hyper-parameter
that balances the two losses,R is a normalization scale ensuring LELBO and Lc(S′,S′′) are initialized
with the same order of magnitude.

To understand why S′′ can control the information flows, we need to rethink the ELBO technique
from the implementation perspective. Specifically, what we do in the training process is to use
ELBO to construct an approximate posterior distribution q(Z|O) that fits the true posterior distri-
bution p(Z|O). After obtaining q(Z|O), during the inference, we can predict Ŷ and Ŝ based on the
approximate distribution. Note that Ŝ is different from observable variable S, where Ŝ is inferred
from q(S′|O).

Next, to distinguish the behavior of probability inference from causal inference, we notate the distri-
butions of the nodes by P(·), and the distributions will simplify (· | o) expression. Fig. 2 shows the
distribution mapping under different γ . Different from causal inference, probability inference is a
method that focuses on correlation rather than causal relations. For example, although S is a descen-
dent of S′ in the causal graph, P(S) will impact the inference result of P(S′) because the correlation
between S and S′ is mutual.

In the scenario of probability inference, to guarantee counterfactual fairness, we should ensure the
causal relationship between S′ and S is S′ → S according to Fig. 1b. Applying it to probability
inference, when we infer from P(S′) to P(Ŝ), P(Ŝ) should approximate P(S). Therefore, KL(P(S) ∥
P(Ŝ)) is a valuable property to estimate counterfactual fairness. For accuracy, we can estimate it as
KL(P(Y ) ∥ P(Ŷ )).

The effect of Lc(S′,S′′) in distribution manner is minimizing KL(P(S′′) ∥ P(S′)). Now we can view
the loss from two distinct perspectives:

• Fairness: Since both S and Y are descendants of S′, it is challenging for S′ to simultaneously
infer both Ŝ and Ŷ that closely match their true distributions. The decreased accuracy in
fitting P(Y ) with P(Ŷ ) creates an opportunity for S′ to better infer P(Ŝ), thereby minimizing
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KL(P(Ŝ) ∥ P(S)). Consequently, this reduction in KL divergence enhances counterfactual
fairness.

• Accuracy: since we formulate a deduction from Y to S′′ in causal graph (Pearl, 1995), the
posterior distribution of S′′ are constrained by Ŷ , i.e., KL(P(Ŷ ) ∥ P(S′′)) < l, where l is
positive. Because of the triangle inequality for KL divergence, we have:

KL(P(Ŷ ) ∥ P(S′))≤ l +KL(P(S′′) ∥ P(S′)), (24)

which demonstrates the upper bound of KL(P(Ŷ ) ∥ P(S′)) is constrained by KL(P(S′′) ∥
P(S′)), therefore minimizing KL(P(S′′) ∥P(S′)) also expect to minimize KL(P(Ŷ ) ∥P(S′)).
This minimization will lead to P(Ŷ ) aligning more closely with P(S′), which may compro-
mise its alignment with P(Y ), resulting in a trade-off in accuracy.

Connection between KL divergence and causal functions: We observe that the greater the inten-
sity of causal functions, the fewer distribution parities between inferred and true variables. For ex-
ample, more intense φ4 with less KL(P(Ŝ) ∥ P(S)), and more intense φ5 with less KL(P(Ŷ ) ∥ P(Y )).
Therefore, minimizing Lc(S′,S′′) can be viewed as a maximized causal intensity in φ4 and mini-
mized causal intensity in φ5. According to Eq. 20 and 21, within path πϑ ×πb, the causal intensity
of (φ5 ◦ φ

−1
4 ) is minimized. This minimization indicates less correspondence between S and Y ,

contributing to counterfactual fairness, and less correspondence between K and Y , compromising
predicted accuracy.

The benefit of S′′ compared to Ŷ : The purpose of using S′′ in the custom loss rather than Ŷ is to
provide additional flexibility in controlling the influence of S′ on both Y and S. By minimizing the
distance between S′ and S′′, the model can dynamically adjust the extent to which S′ influences both
Y and S during the optimization process. Compared to directly minimizing the distance between S′
and Ŷ , this approach allows S′ to influence the prediction more subtly through the intermediate node
S′′. This gives the model greater freedom to prioritize fairness while maintaining performance.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Baselines: To investigate the effectiveness of our framework in learning counterfactually fair predic-
tors, we compare the proposed framework with multiple state-of-the-art methods. First, we briefly
introduce all the compared baseline methods and their settings:

• Constant Predictor: It produces constant output. We obtain it by finding a constant mini-
mizing the mean squared error (MSE) loss on the training data.

• Full Predictor: It takes X and S as input for prediction.
• Unaware Predictor: It takes X as input for prediction to achieve fairness through unaware-

ness (Dwork et al., 2012).
• Counterfactual Fairness Predictors: Fair-K (Kusner et al., 2017) reaches counterfactual

fairness using the latent variables and non-descendants of the sensitive attribute in the pre-
diction model. CLAIRE (Ma et al., 2023) involves creating a counterfactually fair dataset
through augmentation and using a carefully designed loss function to ensure fairness during
model training.

For baselines Full, Unaware, and Counterfactual Fairness Predictors, we use linear regression for re-
gression and logistic regression for classification. Details about implementations, including datasets,
environments, and hyper-parameters, are in Appendix B.

Evaluation Metrics: Generally speaking, the evaluation metrics consider two different aspects:
prediction performance and counterfactual fairness. To measure the model prediction performance,
we employ the widely used metrics - Root Mean Square Error (RMSE) (Chai et al., 2014) and Mean
Absolute Error (MAE) (Yuan, 2022) for regression tasks and accuracy for classification tasks. To
evaluate different methods concerning counterfactual fairness, we compare the distribution diver-
gence of the predictions made on different counterfactuals in synthetic or real-world datasets. De-
tailed information about how to generate these counterfactuals is in the Appendix C. If a predictor is
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counterfactually fair, the distributions of the predictions under different groundtruth counterfactuals
are expected to be the same. Here, we use two distribution distance metrics (including Wasserstein-1
distance (Wass) (Chen et al., 2017) and Maximum Mean Discrepancy (MMD) (Long et al., 2015;
Shalit et al., 2017)) to measure the distribution divergence. We compute the divergence of prediction
distributions in every pair of counterfactuals (S← s and S← s∗, ∀s′ ̸= s), then take the average
value as the final result. The smaller the average values of MMD and Wass are, the better a predictor
performs in counterfactual fairness.

4.2 BASELINE STUDY

Baselines on synthetic datasets: For a better measurement of counterfactual fairness, we generate
a synthetic dataset for each real-world dataset, where we will italicize the synthetic datasets. Details
about generating these synthetic datasets are in Appendix C. The results are shown in Table 1, where
RMSE and MAE are performance metrics, and MMD and Wass are fairness metrics. Compared
with Constant, Full, and Unaware baselines that omit the definition of counterfactual fairness, we
showcase considerably better fairness. Compared with Fair-K and CLAIRE, we demonstrate not
only better performance but also surpassing fairness.

Table 1: The comparison on synthetic datasets among Constant, Full, Unaware, Fair-K (Kusner
et al., 2017), CLAIRE (Ma et al., 2023) and EXOC (Ours) on Law school (Krueger et al., 2021) and
Adult (Becker & Kohavi, 1996) dataset.

Method Law school Adult
RMSE (↓) MAE (↓) MMD (↓) Wass (↓) Accuracy (↑) MMD (↓) Wass (↓)

Constant 0.938±0.004 0.759±0.006 0.000±0.000 0.000±0.000 0.737±0.006 0.000±0.000 0.000±0.000
Full 0.862±0.005 0.689±0.005 278.918±25.814 69.248±6.136 0.807±0.005 52.515±3.757 6.116±0.637

Unaware 0.900±0.008 0.726±0.007 40.256±3.187 10.256±1.187 0.804±0.008 19.732±2.480 2.004±0.478
Fair-K 0.894±0.006 0.718±0.006 4.313±0.393 3.733±0.267 0.745±0.002 3.597±0.256 1.553±0.173

CLAIRE 0.897±0.002 0.719±0.002 6.717±0.492 4.073±0.139 0.748±0.005 4.760±0.275 1.584±0.203
EXOC 0.874±0.003 0.702±0.003 3.824±0.553 3.590±0.259 0.760±0.005 2.958±0.124 1.428±0.095

Baselines on real-world datasets: the result is shown in Table 2. Although compared with synthetic
dataset results, we observe that the majority of the baselines demonstrate degradation in fairness
and accuracy, we are still able to surpass the counterfactual-aware models in both performance
and fairness and are fairer than counterfactual-unaware models. This observation demonstrates the
robustness of our method in real-world scenarios.

Table 2: The comparison on real-world datasets among Constant, Full, Unaware, Fair-K (Krueger
et al., 2021), CLAIRE (Ma et al., 2023) and EXOC (Ours) on Law school (Krueger et al., 2021) and
Adult (Becker & Kohavi, 1996) dataset.

Method Law school Adult
RMSE (↓) MAE (↓) MMD (↓) Wass (↓) Accuracy (↑) MMD (↓) Wass (↓)

Constant 0.940±0.005 0.762±0.004 0.000±0.000 0.000±0.000 0.724±0.007 0.000±0.000 0.000±0.000
Full 0.883±0.004 0.701±0.005 574.013±104.789 82.746±8.298 0.791±0.007 78.392±5.723 6.989±0.738

Unaware 0.917±0.005 0.731±0.007 48.738±3.891 12.384±1.542 0.800±0.009 21.729±2.573 2.425±0.492
Fair-K 0.904±0.005 0.723±0.005 5.341±0.412 3.980±0.275 0.727±0.004 4.381±0.214 1.619±0.175

CLAIRE 0.910±0.003 0.735±0.003 7.891±0.502 4.095±0.146 0.737±0.004 5.140±0.309 1.671±0.224
EXOC 0.902±0.005 0.720±0.004 4.739±0.553 3.879±0.236 0.748±0.004 3.891±0.095 1.575±0.098

4.3 ABLATION STUDY

4.3.1 ABLATION ON γ

We perform an ablation study on γ , shown in Tab. 3. This experiment evaluates the effect of
controlling fairness-accuracy balance, running on synthetic datasets. The results show that as γ

increases from 1 to 2, we can observe the performance gradually decreases, but the counterfactual
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(a) Law school (b) Adult

Figure 3: The ablation study on S′′ and Ŷ

fairness gradually increases. Also, we observe a better fairness-accuracy tradeoff, i.e., an increased
fairness without sacrificing much accuracy. We attribute this to the introduction of the auxiliary
node S′, which serves as intrinsic information capable of deducing S. The result aligns with our
theoretical analysis in Section 3.3, where S′′ node and the custom loss Lc(S′,S′′) can control the
fairness-accuracy tradeoff. We observe that when γ = 1.2, there is generally an excellent balance
between accuracy and fairness. Therefore, we set γ = 1.2 in our experiments.

Table 3: The ablation study on γ .

γ
Law school Adult

RMSE (↓) MAE (↓) MMD (↓) Wass (↓) Accuracy (↑) MMD(↓) Wass (↓)
1 0.875±0.006 0.698±0.006 4.489±0.571 3.905±0.305 0.765±0.006 3.532±0.283 1.539±0.245

1.2 0.867±0.003 0.706±0.003 3.832±0.623 3.580±0.256 0.760±0.005 2.961±0.124 1.426±0.095
1.4 0.886±0.003 0.724±0.005 3.377±0.452 3.352±0.253 0.755±0.006 2.628±0.107 1.352±0.089
1.6 0.900±0.002 0.728±0.005 3.089±0.421 3.203±0.251 0.757±0.005 2.458±0.109 1.297±0.098
1.8 0.903±0.003 0.731±0.005 2.034±0.322 2.890±0.241 0.751±0.006 2.068±0.085 1.204±0.089
2 0.909±0.003 0.735±0.004 1.342±0.121 2.824±0.204 0.746±0.006 1.792±0.074 1.184±0.069

4.3.2 ABLATION ON S′′ AND Ŷ

We perform an ablation study on whether S′′ or Ŷ should be used in the custom loss, i.e., Lc(S′,S′′)
or Lc(S′,Ŷ ), where the experiment runs on synthetic datasets and the results are shown in Fig. 3.
The results show that when we apply S′′ in the custom loss, we can observe an around 0.02 RMSE
decrease on the Law school dataset and an around 0.02 Accuracy increase on the Adult dataset,
indicating a better performance. This observation aligns with our analysis in Section 3.3. Moreover,
the fairness metrics are slightly better when we apply S′′. Therefore, we find it necessary to use S′′
in the custom loss Lc(S′,S′′).

5 CONCLUSION

This paper introduces EXOC, a novel framework aimed at achieving counterfactual fairness while
addressing the limitations of existing approaches. The key innovation lies in the revelation of in-
trinsic properties that are overlooked in previous works, through the introduction of auxiliary node
S′ and control node S′′. We demonstrate that they increase counterfactual fairness and also provide
more refined control over the flow of intrinsic information beneath the concept of fairness and ac-
curacy. Moreover, detailed analysis and extensive experimental evaluations on both synthetic and
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real-world datasets demonstrate the framework’s effectiveness, showing that EXOC outperforms
state-of-the-art models in improving counterfactual fairness without sacrificing much accuracy.

Future work could explore scaling the framework to more complex datasets and simplifying its
implementation for broader use. Theoretically, the connections between causal inference and its
probability implementations are also of great interest. Developing more efficient optimization tech-
niques for balancing the trade-off between fairness and accuracy, especially in high-dimensional
data, could improve scalability and performance.
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