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1. Introduction
Despite remarkable advancements in artificial in-

telligence, both classical and quantum neural net-
works (QNNs) [1, 2] remain vulnerable to adversar-
ial attacks [3, 4, 5, 6], where imperceptible pertur-
bations can significantly alter model predictions. In
classical machine learning, extensive efforts have
been made to interpret adversarial examples and
their underlying mechanisms [7, 8, 9]. However,
their quantum counterparts remain largely unex-
plored, highlighting a critical gap in understand-
ing adversarial vulnerabilities and interpretability
in quantum machine learning. To bridge this gap,
we propose a quantum-informed interpretability
framework that systematically extends classical ad-
versarial analysis to quantum settings, establishing
cross-domain theoretical connections. By leverag-
ing insights from the classical domain, this work
provides an initial step toward understanding the ex-
plainability of adversarial examples in quantumma-
chine learning. Our exploration offers a preliminary
perspective on this topic andmay help inspire future
research on the interpretability of adversarial phe-
nomena and even enhance robustness across both
classical and quantummachine learning.

2. Related work
Previous research has established that adversarial

examples are not merely noise but reflect features
learned by models in high-dimensional spaces, re-
vealing inherent characteristics of the model [5, 7].
Research has further explored low-rank feature rep-
resentations induced by cross-entropy loss, which
make the model sensitive to perturbations [8]. The
"dimpled manifold model" [9] explains the distribu-
tion of adversarial examples near decision bound-
aries in high-dimensional spaces. By usingmanifold
approximation methods, this model projects adver-
sarial examples into lower-dimensional spaces, re-
vealing their geometric characteristics and provid-
ing new insights into their behavior.
In quantum adversarial learning, recent studies

have focused on the vulnerabilities of QNNs and
quantum adversarial attack and defense methods
[10, 11, 12]. However, while quantummachine learn-
ing has received increasing attention, the explain-
ability of quantum adversarial examples remains
largely unexplored, necessitating further research.

3. Interpretation of quantum adversarial exam-
ples
In this work, we present a detailed methodology

and analysis aimed at interpreting quantum adver-
sarial examples.

3.1 Low-dimensional data manifold
It is widely accepted that natural data reside on

or near a low-dimensional manifold [13, 14]. To un-
cover this manifold, dimensionality reduction tech-
niques are essential. Both linear methods learning
approaches, such as principal component analysis
(PCA) [15], linear discriminant analysis (LDA) [16],
autoencoders (AE) [17] andVariational Autoencoders
(VAE) [18], have been used to approximate the intrin-
sic low-dimensional structure of data. In our study,
we focus on PCA and AE.

3.2 Quantum adversarial examples
To generate quantum adversarial examples, we

first construct QNNs and subsequently apply adver-
sarial attackmethods to obtain adversarial examples
for a specificmodel. For QNNs, we adopt two encod-
ing schemes: amplitude encoding and interleaved
block encoding [2]. In amplitude encoding QNNs,
the input samples are embedded into quantum state
amplitudes and processed by variational quantum
circuits composed of parameterized single-qubit ro-
tation gates and two-qubit entangling gates. In con-
trast, interleaved block encoding QNNs embed both
input samples and parameters into single-qubit rota-
tion gates arranged alternately, with additional two-
qubit gates to entangle qubits and facilitate informa-
tion scrambling.
Training QNNs is challenging since a direct ana-

log of classical backpropagation [19, 20, 21] is re-
source intensive [22, 23], and computing gradients
in parallel is difficult. However, one can employ
the parameter shift rule [24, 25] to compute gradi-
ents through classical computers. This quantum-
classical hybrid approach enables us to perform gra-
dient descent effectively, yielding QNNs that per-
form well on both training and testing datasets.
Once the QNNs are trained, we apply adversar-

ial attacks to generate quantum adversarial exam-
ples. In the classical domain, numerous attack algo-
rithms exist, such as the fast gradient sign method
(FGSM) [5], basic iterative method (BIM) [6], pro-
jected gradient descent (PGD) [26], and momentum
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iterative method (MIM) [27]. For simplicity, we con-
sider binary classification tasks and untargeted at-
tacks, which aim tomisclassify the input into the op-
posite category.
The fundamental idea behind adversarial attacks

is to introduce an imperceptible small perturbation
thatmaximizes the likelihood ofmisclassification by
following the gradient direction of the loss function.
In amplitude encoding QNNs, the input data are en-
coded into quantum states, which makes the direct
computation of gradientswith respect to these states
ambiguous. However, Ref. [10] suggested that the
perturbation could be formulated as a variational
quantum circuit approximating the identity. This al-
lows us to transfer the gradient calculation from the
quantum state to the variational parameters of the
quantum circuit, enabling a straightforward gradi-
ent ascent attack. By comparison, interleaved block
encoding QNNs allow direct computation of gradi-
ents with respect to the variational input data ele-
ments, so standard adversarial attack algorithms can
be applied. Here, we utilize the PGD algorithm and
analyze the quantum adversarial examples from in-
terleaved block encoding QNNs (Appendix A).

3.3 Manifold-decomposed perturbation analysis
We further analyze the perturbations by leverag-

ing the low-dimensional manifold information ob-
tained via dimensionality reduction. Specifically, we
project the perturbation (i.e., the differencebetween
an adversarial example and the original data sample)
onto the low-dimensional manifold, defining the re-
sulting vector as the parallel component, while the
residual constitutes the orthogonal component. Un-
like the approach inRef. [9], we apply the adversarial
attack algorithm first and perform the projection as
a post-processing step, rather than during each iter-
ation. This strategy is computationally efficient and
more reflective of practical adversarial attack sce-
narios, thereby yielding more insightful analysis.
Due to space limitations, we present visualiza-

tion results only for amplitude encoding QNNs, with
interleaved block encoding results provided in Ap-
pendix A. In Fig. 1, each column represents a data
sample; the seven rows sequentially illustrate: the
original sample, the adversarial example, parallel
and orthogonal manifold adversarial examples (ob-
tained by adding the respective perturbation compo-
nents to the original sample), the perturbation dif-
ference between the adversarial and original sam-
ples, and the separate parallel and orthogonal com-
ponents of the perturbation. The figure also reports
classification probabilities and perturbation norms.
Notably, the parallel manifold perturbation tends

to transform the image from one category to an-
other. For example, in the last column of Fig. 1, the
digit "1" gains a left-half circle to resemble "9," sim-
ilar to other samples. This aligns with classical at-
tacks, where the parallel component reflects seman-
tic changes, while the orthogonal component ap-

pears as random noise [9], whose underlying mech-
anism warrants further study.
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Fig. 1: Visualization of adversarial examples of am-
plitude encoding QNNs. (a), (b) utilize AE and PCA
to approximate the data manifold respectively.

4. Conclusion
In summary, we introduce a quantum-informed

framework for analyzing adversarial examples in
quantum machine learning. By combining low-
dimensional manifold representations with adver-
sarial attack techniques on QNNs, our study de-
composes quantum adversarial perturbations into
semantically meaningful parallel components and
seemingly randomorthogonal components. This de-
composition not only provides critical insights into
the vulnerabilities of QNNs but also offers new per-
spectives for future research aimed at developing
robust and interpretable quantum machine learn-
ing models. Further exploration into the differences
between quantum and classical adversarial tech-
niques, especially a deeper investigation of the or-
thogonal perturbation component, will be essential
for enhancing the security and reliability of quan-
tum artificial intelligence systems.
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Appendix A. Adversarial examples of interleaved
block encoding QNNs

Here, we present visualizations of adversarial ex-
amples generated from interleaved block encoding
QNNs. The results closely resemble those of ampli-
tude encoding QNNs, where the parallel component
appears to correspond to semantically meaningful
transformations, while the orthogonal component
manifests as seemingly unstructured noise.
Moreover, the less pronounced results from the

AEmethod compared to PCAmay imply intrinsic dif-
ferences between these two approaches. A more in-
depth exploration of these differences could provide
valuable insights into data manifolds and enhance
our understanding of both quantumand classical ad-
versarial examples.
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Fig. A1: Visualization of adversarial examples with
respect to normL2 of interleaved block encoding
QNNs. (a), (b) utilize AE and PCA to approximate
the data manifold respectively.


	Introduction
	Related work
	Interpretation of quantum adversarial examples
	Low-dimensional data manifold
	Quantum adversarial examples
	Manifold-decomposed perturbation analysis

	Conclusion
	Appendices
	Appendix Adversarial examples of interleaved block encoding QNNs

