
A ETF on Hidden Layers

Before giving the details of applying ETF to hidden layers, we revisit the key identity:

φ(x;
{
w1 + w1A

}
∪
{
w\w1}) = g((w1+w1A)x;w\w1) = g(w1(x+Ax);w\w1) = φ(x+Ax;w), (7)

where w1 stands for the first layer (convolution layer) parameters of model φ, A is a transformation
matrix used for perturbing w1,

{
w1 + w1A

}
∪
{
w\w1

}
means that the first layer’s parameters are

perturbed and the other layers’ parameters keep the same, and g is the function parameterized with
w\w1 used for processing the first layer’s outputs. Built upon Eq. 7, we have φ(x;

{
w1 + w1A

}
∪{

w\w1
}
) = φ(x+Ax;w).

The model φ can be decomposed: φ = gl ◦ φl, where φl(x) denotes the hidden feature at layer
l. Then the output feature at layer L is expressed as φL(x;w) = gl(wlφl(x)), where wl is the
parameter used for processing the feature φl(x). Then, we can apply the identity at layer l:

φL
(
x;

{
wl + wlAl

}
∪
{
w\wl

})
= gl

(
(wl + wlAl)φl(x)

)
= gl

(
wl(Alφl(x) + φl(x))

)
, (8)

where Al is the transformation matrix at layer l. According to Eq. 8, we can transform a perturbation
in the parameter space (Awl) as the perturbation in the feature space (Aφl(x)). Thus, lightweight
black-box attacks with ETF generate adversarial examples as follows:

xadv = arg min
∥x′−x∥p≤ϵ

max
∥∆l

s∥p≤τ, ∥∆l
g∥p

≤τ,l∈{0,1,...,L−1}
d(φ(xg,∪l∆

l
g;w), φ(x

′,∪l∆
l
s;w)), (9)

where ∆l
s (∆l

g) denotes the feature space perturbation (l = 0 means the data space), ∪l∆
l
s (∪l∆

l
g)

stands for all perturbations in the feature space, and φ(xg,∪l∆
l
g;w) (φ(xg,∪l∆

l
g;w)) stands for

the output feature with perturbed features, where the feature of source (guide) image at layer l is
perturbed by ∆l

s (∆l
g). Although we can perform the error transformation in the feature space, the

features obtained using weights with approximation errors make it challenging. Specifically, we
merely know that the input distribution (can be seen as the feature map) is not biased, but the feature
map obtained using any weights will cause bias. Thus, we merely apply ETF to the input layer and
leave further exploitation of applying it to hidden layers as future work.

B Additional Detail Description

B.1 Simplified Architecture

The architecture of surrogate models is modified to avoid overfitting. Considering the limited amount
of data, we employ a network with a small model capacity to instantiate the feature extractor. In
particular, ResNet-18 is simplified by reducing the number of blocks in each layer, i.e., only one
block is used in each layer of ResNet-18.

B.2 Classification Ability of the Surrogate Model.

Table 5: The classification performance of the lightweight surro-
gate model and the general surrogate model.

Lightweight
surrogate model

General
surrogate model

Number of
samples for training 1000 1 200 000

Training
accuracy 96.38 72.71

Test
accuracy 2.36 63.24

To demonstrate that the
lightweight black-box at-
tack performance does not
rely on the generalization of
classification, we show the
classification accuracy of the
lightweight surrogate model used
for ETF attacks in Table 5. To
make the conclusion clearer,
we also report the performance
of a general surrogate model,
which is trained on the training
set of target models. We can
see that the test accuracy of the
lightweight surrogate model
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(about 2) is drastically lower than that of the general model, bringing fresh air for black-box attacks.
Specifically, the common sense in black-box attacks is that mounting attacks requires a surrogate
model, which generalizes well on the test set. However, the experimental results in Table 5 show
that the lightweight surrogate model has poor classification performance, suggesting that the
generalizability of surrogate models is not a necessary condition for performing black-box attacks.

B.3 Approximation to more layers.

Besides applying ETF in the first layer, we also conduct experiments that apply ETF to all layers
except layer L. The results are reported in Table 6. It can be seen that applying ETF to other layers
can marginally promote the attack success rate. The phenomenon may result from the fact that the
approximation error can accumulate with depth. Moreover, considering that applying ETF will cause
more computational overhead, we merely give the results of applying ETF to the first layer in the
main paper.

Table 6: Apply ETF to all layers (except layer L) to further approximate the target model. This
experiment is called ”All” below. Similarly, ”First” means only applying ETF to the first layer. (The
lower, the better)

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

No-box[34] 18.74 33.68 34.72 26.06 42.36 33.16 16.34 29.29

First 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37
All 13.33 20.21 22.66 25.49 5.40 21.74 9.88 16.95

B.4 Hardware Configuration and Computation Costs.

We conduct experiments using GEFORCE RTX 2080 Ti, CPU AMD Ryzen 7 3700X @3.6 GHz.
As merely 1,000 samples are required for the training of the lightweight surrogate model, the
computational overhead is much less than the training of general surrogate models.

C Further Experiments on ImageNet

Strict Constraint. We conduct experiments under smaller ϵ, i.e., ϵ = 0.05. The results are given in
Table 7, demonstrating that ETF can generate powerful adversarial examples even with meeting more
strict constraints, i.e., smaller ϵ.

Table 7: The accuracy of 7 normally trained target models evaluated on 1,000 adversarial examples
generated by lightweight black-box attacks or existing black-box attacks, under ϵ ≤ 0.05. The
Shallow-(PGD, MI, DI, TI) mean applying PGD, MI, DI and TI to the shallow layers of the model.
Deep-(PGD, MI, DI and TI) mean applying PGD, MI, DI and TI to the model’s output. EFT-(PGD,
MI, DI and TI) mean applying ETF combined with PGD, MI, DI or TI to the shallow layers.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99
Autoattack 0.00 0.20 0.00 0.00 0.00 0.10 0.00 0.04

Deep-PGD 61.14 63.05 65.78 62.31 34.50 68.17 56.65 58.8
Shallow-PGD 46.55 49.13 56.78 58.34 28.50 55.82 37.94 47.58
ETF-PGD 41.76 46.74 48.55 50.79 24.68 53.11 32.65 42.61
Deep*-PGD 16.23 36.71 25.36 24.62 18.16 31.42 13.34 23.69
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More Validation Images. Besides the widely used setting on the number of samples, i.e., 1,000
images, we also evaluate different methods using more samples, i.e., 5,000 images, and report the
results in Table 8. The conclusion drawn from Table 8 is consistent with that drawn from Table 1,
e.g., EFT outperforms “shallow” attack methods, demonstrating that ETF can generate powerful
adversarial examples under various scenarios.

Table 8: The accuracy of 7 normally trained target models evaluated on 5,000 adversarial examples
generated by lightweight black-box attacks or existing black-box attacks, under ϵ ≤ 0.1. The Shallow-
(PGD, MI, DI, TI) mean applying PGD, MI, DI and TI to the shallow layers of the model. Deep-(PGD,
MI, DI and TI) mean applying PGD, MI, DI and TI to the model’s output. EFT-(PGD, MI, DI and TI)
mean applying ETF combined with PGD, MI, DI or TI to the shallow layers. Auto-attack[23] is used
for testing the robustness of the target models, so it adopts the white-box setting to mount the target
models.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99
Autoattack[9] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deep-PGD 55.86 56.08 64.48 65.44 35.92 63.54 51.10 56.06
Deep-MI 38.02 44.70 52.56 52.98 13.22 49.74 28.92 40.02
Deep-DI 51.32 51.10 61.44 61.60 33.34 60.36 47.70 52.41
Deep-TI 55.00 54.94 64.60 64.48 36.80 63.86 51.50 55.88
Shallow-PGD 19.42 25.12 31.04 31.70 9.28 29.16 16.64 23.19
Shallow-MI 22.47 28.14 34.69 35.76 11.42 31.65 17.13 25.89
Shallow-DI 19.68 24.62 30.26 32.17 10.02 28.24 16.08 23.01
Shallow-TI 20.40 23.96 29.00 31.04 9.82 28.26 17.08 22.79
ETF-PGD 13.56 17.66 23.68 24.60 4.54 20.68 9.42 16.31
ETF-MI 15.94 20.32 26.28 26.74 5.52 22.72 9.70 18.17
ETF-DI 13.16 25.72 22.32 22.76 4.68 19.84 8.58 15.29
ETF-TI 13.30 14.60 20.48 22.38 5.22 19.06 9.50 14.93
Deep*-PGD 12.43 28.15 16.54 12.61 7.09 13.33 9.64 14.25
Deep*-MI 11.77 25.14 18.10 13.72 4.26 14.61 8.30 13.70
Deep*-DI 7.61 18.17 8.23 9.90 6.66 9.72 7.91 9.74
Deep*-TI 9.55 23.48 13.51 10.63 6.46 10.92 9.55 12.01

ℓ2-norm Perturbation. We mainly conduct experiments with ℓ∞ perturbation since it is widely
adopted in many previous works [56, 25, 12]. To further demonstrate the power of our ETF, we
further evaluate different methods using ℓ2-norm perturbation. The results are reported in Table 9,
which further demonstrate the effectiveness of our proposal. Considering that ℓ1 and ℓ0 perturbations
require careful design [52, 4], it is beyond the scope of this work, so we leave it as our future work.

Architecture Selection. We further exploit whether the architecture of surrogate models have
significant impact on the performance of ETF. Specifically, we instantiate the shallow layers with
different model architectures containing ResNet [21], VGG [51], and SENet [22]. The results are
reported in Table 10, demonstrating that our EFT is powerful across various model architectures.

Heavy Data Augmentation. We follow the empirical conclusion suggested in [1], where heavy data
augmentation is vital for training appropriate shallow models. Because appropriate shallow models
are necessary for mounting lightweight black-box attacks, data augmentation plays a crucial role and
is heavily used in our experiments. This is supported by results shown in Table 11, where we report
the performance of lightweight black-box attacks with and without data augmentation.

Capacity to Evade Adversarial Detectors. Adversarial Detection [39, 33, 57] aims to distinguish
adversarial examples from natural examples, which is also an effective way to test the robustness of
adversarial attacks. Therefore, we further exploit the capacity of ETF in evading adversarial example
detectors. Specifically, we employ a detection method [39, 33] to detect adversarial examples
generated by different attack methods, e.g., FGSM [19], PGD [40], BIM [11], and ETF. All settings
are the same as that used in the paper, and the results are reported in Table 12. We can see that ETF
performs better than the baselines, i.e., having a high probability of evading detection methods.
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Table 9: The classification accuracy evaluation on ℓ2-norm attacks. The experiment is conducted
on the ImageNet validation. Following the previous work[25] about ℓ2-norm attacks, the maximum
disturbance ε is set to 16 2

√
N where N is the dimension of input to attacks.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99
Autoattack[9] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Deep-PGD 37.73±0.31 42.75±0.34 51.04±0.77 51.96±0.62 17.48±0.34 50.61±0.49 31.07±0.55 40.38±0.54
Deep-MI 40.40±0.44 45.02±0.51 54.53±0.46 54.13±0.53 17.59±0.47 53.22±0.63 32.47±0.41 42.48±0.55
Deep-DI 38.73±0.53 38.63±0.49 50.34±0.35 48.79±0.48 17.66±0.43 47.53±0.57 27.34±0.33 38.43±0.47
Deep-TI 37.89±0.23 37.86±0.38 46.52±0.46 45.62±0.31 18.54±0.44 46.44±0.37 30.75±0.52 37.66±0.46
Shallow-PGD 25.74±0.64 31.51±0.56 44.96±0.54 43.72±0.55 8.58±0.51 40.62±0.24 18.73±0.48 30.55±0.55
Shallow-MI 37.46±0.94 42.28±0.87 51.56±0.79 50.77±0.63 16.58±0.67 52.06±0.86 28.02±0.74 39.82±0.67
Shallow-DI 28.75±0.55 28.36±0.64 38.11±0.49 40.23±0.41 15.54±0.56 34.42±0.75 24.08±0.77 29.93±0.66
Shallow-TI 30.28±0.36 31.55±0.40 37.69±0.39 38.44±0.48 14.52±0.48 35.26±0.27 23.54±0.19 30.18±0.38
ETF-PGD 22.16±0.54 27.03±0.36 34.87±0.48 37.94±0.59 11.28±0.37 29.63±0.41 16.17±0.46 25.58±0.28
ETF-MI 32.76±0.95 33.05±0.87 45.91±0.91 44.22±0.88 14.38±0.76 41.54±0.78 20.76±0.69 33.23±0.74
ETF-DI 23.71±0.46 23.45±0.55 33.29±0.56 34.25±0.49 12.49±0.34 29.23±0.24 18.54±0.48 24.99±0.53
ETF-TI 25.23±0.37 25.73±0.68 34.15±0.73 37.34±0.43 12.56±0.66 30.07±0.56 21.53±0.45 26.65±0.69

Deep*-PGD 7.65±0.42 22.88±0.34 11.44±0.12 11.23±0.44 4.56±0.71 9.69±0.78 8.03±0.46 10.78±0.45
Deep*-MI 11.26±0.65 26.08±0.92 17.47±0.34 15.73±0.56 4.78±0.48 14.52±0.41 8.58±0.88 14.06±0.57
Deep*-DI 1.04±0.34 11.04±0.54 1.68±0.48 1.39±0.51 0.77±0.32 3.01±0.29 0.56±0.41 2.78±0.42
Deep*-TI 5.56±0.44 18.09±0.36 9.94±0.43 10.42±0.37 3.23±0.74 8.27±0.43 6.54±0.43 8.86±0.49

Table 10: Model accuracy under ETF attack with different architectures, containing SENet, VGG11,
and ResNet18.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

SENet [22] 23.44 28.42 35.07 31.64 6.73 28.19 11.80 23.61
VGG11 [51] 18.20 22.65 27.24 26.33 6.47 23.16 12.69 19.53
Resnet [21] 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37

Table 11: The impact of augmentation to ETF attacks. ”No-Aug” means the effect of the attack on
the ETF using the surrogate model without augmentation for training. This experiment is conducted
on the ImageNet validation. The best results are in bold.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

No-Aug 34.58 39.17 46.25 50.06 10.42 45.10 22.92 35.50
Aug 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37
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Table 12: Performance of adversarial detection against four attacks, metric to evaluate the detection
performance can be found in [33, 39].

Mahalanobis [33]

Method TNR AUROC DTACC AUIN AUOUT

BIM [32] 99.99 99.99 99.86 99.86 99.71
FGSM [19] 98.89 99.88 98.89 99.66 99.24
Deep*-PGD [40] 97.22 99.58 97.92 99.64 99.05
ETF 96.67 98.73 96.94 98.75 97.98

LID[39]
Method TNR AUROC DTACC AUIN AUOUT

Deep*-BIM [32] 99.99 98.81 98.33 99.77 99.33
Deep*-FGSM [19] 99.99 99.99 99.99 99.72 99.44
Deep*-PGD [40] 99.99 99.99 99.99 99.86 99.72
ETF 97.78 99.58 97.22 99.51 98.68

D Results on CIFAR10

We conduct the experiments on the CIFAR10 dataset, see Table 13, and evaluate the robustness of
models downloaded from RobustBench [8], see Table 14. The conclusion drawn from Table 13 and
Table 14 is consistent with that drawn from Table 1 evaluating on ImageNet dataset.

Table 13: Evaluate the performances of different attacks on CIFAR10. Here, experiments of ”Deep-,
Shallow-, ETF-” are conducted in the no-box threat model. ”Deep*” means the black-box setting
where the surrogate models are trained on the training data the same as the seven target models.
”PGD [40], MI [11], DI [56], TI [12]” is applied to the different settings and methods. Auto-attack[23]
is used for testing the robustness of the target models, so it adopts the white-box setting to mount the
seven target model. ε ≤ 0.1 in ℓ∞-norm.

Model VGG19[51] RN56[21] MobileNet[49] ShuffleNet[22] Avg
clean 93.91 94.37 93.72 92.98 93.74
Auto-attack [9] 0.00 0.00 0.00 0.00 0.00

Deep-PGD 59.45 ±0.34 57.58 ±0.46 45.21 ±0.27 52.32 ±0.37 53.64 ±0.78
Deep-MI 53.44 ±0.75 52.17 ±0.65 44.25 ±0.34 49.80 ±0.35 49.91 ±0.58
Deep-DI 60.24 ±0.19 58.63 ±0.34 47.67 ±0.31 54.34 ±0.62 55.22 ±0.52
Deep-TI 64.51 ±0.38 59.85 ±0.60 48.80 ±0.59 56.88 ±0.44 57.51 ±0.42
Shallow-PGD 27.17 ±0.74 31.06 ±0.55 22.83 ±0.66 28.14 ±0.76 27.30 ±0.81
Shallow-MI 32.43 ±0.98 36.42 ±1.01 31.84 ±0.79 30.76 ±0.94 32.86 ±0.94
Shallow-DI 25.65 ±0.56 30.27 ±0.51 22.61 ±0.38 27.22 ±0.55 26.43 ±0.45
Shallow-TI 28.66 ±0.45 31.35 ±0.33 27.20 ±0.44 29.48 ±0.63 29.17 ±0.56
ETF-PGD 21.27 ±0.27 25.85 ±0.84 20.03 ±0.65 22.37 ±0.44 22.38 ±0.53
ETF-MI 20.75 ±0.55 24.36 ±0.35 20.51 ±0.34 19.68 ±0.23 21.32 ±0.42
ETF-DI 21.37 ±0.37 26.46 ±0.27 21.11 ±0.69 23.14 ±0.36 23.02 ±0.55
ETF-TI 25.48 ±0.41 30.26 ±0.23 23.37 ±0.51 26.34 ±0.25 26.36 ±0.39

Deep*-PGD 4.63 ±0.54 0.81 ±0.74 3.79 ±0.28 3.21 ±0.32 3.11 ±0.47
Deep*-MI 4.72 ±0.20 0.96 ±0.36 4.36 ±0.12 3.78 ±0.25 3.45 ±0.33
Deep*-DI 4.63 ±0.17 0.81 ±0.67 2.38 ±0.53 3.34 ±0.43 2.79 ±0.47
Deep*-TI 4.66 ±0.18 0.84 ±0.25 3.78 ±0.46 3.67 ±0.31 3.23 ±0.32
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Table 14: The attacks on the most robust models from CIFAR10 RobustBench. The robustness model
is trained by the different adversarial defense method,ε ≤ 0.1 in ℓ∞-norm.

Model Gowal2021 [20] Kang2021 [29] Pang2022 [42] Sehwag2021 [50] Avg

clean 89.00 92.00 87.50 86.50 88.75
Auto-attack [9] 0.00 0.00 0.00 0.00 0.00

ETF-PGD 72.01 72.86 72.50 67.44 71.20
Deep*-PGD 83.53 88.06 83.17 79.44 83.55

E Target Model Approximation Assumption

Taking the first layer as an example, let w1
t and w1 stand for the parameters of the target and surrogate

models, respectively. In many practical scenarios, w1
t and w1 usually have different dimensions,

leading to intractable parameters’ discrepancy alleviation. Fortunately, we can find an appropriate
low-rank approximation for parameters of deep neural networks [10, 62, 30]. Specifically, we can
approximate either w1

t or w1 to make these two matrices have the same dimensions, so we can consider
that the dimensions of the two models are the same. Consequently, we can find a transformation
matrix A such that the approximation error is minimized, i.e., A = argminÃ |w1

t − w1 − w1Ã|F ,
where | · |F is the Frobenius norm. In this paper, we assume the approximation error is infinitesimal,
i.e., |w1

t − w1 − w1A|F = 0. Then, we leverage w1 and A to represent the target model, i.e.,
w1

t = w1 + w1A.

F Perturbation in Different Space

In the no-box setting, performing the min-max strategy in the feature space is more appropriate than
the weight space optimization [55] for the no-box threat model. This is because we know which
perturbations are preferred in the feature space, e.g., towards features of guide images, but we have
no idea about which perturbations are preferred in the weight space, i.e., no “guide models”, which is
supported by our experiments, see Table 15.

Table 15: The model accuracy under ETF attacks, where “Feature space” means the feature space
perturbation and “Weight space” represents the min-max strategy in the weight space [55]. This
experiment is conducted on the ImageNet validation. The best results are in bold.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

Weight-space 29.43 32.44 40.11 41.88 10.12 35.41 19.27 29.81
Feature-space 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37

G Different Self-supervised Learning Approach

It is straightforward that exploring different strategies to train the shallow model is exciting for
further improvement of the performance of lightweight black-box attacks, as shallow layers play an
important role in lightweight black-box attacks. Thus, we generate adversarial examples using EFT
with shallow layers trained with a rotation prediction task [17] and report the results in Table 16. We
can see that shallow layers trained with the rotation prediction task is slightly worse than using the
contrastive strategy, but the performance can also reduce the model accuracy significantly.

H Social Impact

The motivation of this work is to provide an approach to evaluate the adversarial robustness in
a more practical scenario, the no-box setting. Defenses can be assessed with fewer constraints
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Table 16: The model accuracy under ETF attacks, where “rotation” means that the shallow layers
are trained using the rotation task and “classification” represents that shallow layers are trained with
the classification task. This experiment is conducted on the ImageNet validation. The best results are
in bold.

Model VGG19 Inception RN152 DenseNet SENet WRN MobileNet Average
[51] v3[53] [21] [23] [22] [59] v3[49]

Clean 67.43 64.36 74.21 73.34 51.28 73.22 65.06 66.99

Rotation [17] 19.07 21.79 27.30 28.85 7.66 23.94 12.51 20.16
Classification 14.11 20.22 24.20 24.74 6.96 20.73 10.66 17.37

through lightweight black-box attacks, i.e., without accessing training samples and any queries. We
can develop defensive models robust against lightweight black-box attacks and attack algorithms
to mislead deployed models. We believe the development of lightweight black-box attacks can
help better access the robustness of deployed models and hope the proposed ETF can promote the
development of corresponding defense methods.
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