702 A LOW DIMENSIONAL EXAMPLES

In this section we provide a detailed comparison of the toy example discussed in Section 2.2 In addition to the results of 10 steps, we also provide the outcomes of 2 steps and 5 steps for each method. As shown in Figure 8 both RF and CFM perform poorly with only 2 steps and 5 steps, whereas our Bi-DPM successfully learns the transformation between the two sets and preserves the relationships of the paired data in the meanwhile.

Figure 8: The performance of RF, CFM and Bi-DPM on the partially paired 8-Gaussian to 8-Gaussian toy example. For each methods, from left to right, the figure represents the results with ODE steps set to 2, 5, and 10.

742Due to computation and memory constraints, here we test different number of steps on the toy
examples using the datasets in Figure 8, and the L2 distance between the generated and true data is
as follows:

Table 6: The L_2 error of different step sizes on the totally paired 8-Gaussian to 8-Gaussian toy example.

	1-step	2-step	5-step	10-step
L_2 error (forward/backward)	0.015/0.015	0.009/0.008	0.011/0.012	0.013/0.019

749 750 751

738

739

740 741

745 746

747

748

As shown, 2-step achieves the best performance, while 1-step also performs comparably well compared to 5-step and 10-step. This partially justifies our choice of using only 1-step and 2-step in the image experiments. One intuition to use less steps is that the introduction of many intermediate steps may lead to unstable approximation, which may degrade the performance. A thorough stability analysis will be conduct in an ongoing work.

B BI-MODALITY MEDICAL IMAGE SYNTHESIS

B.1 RESULTS WITH TOTALLY PAIRED DATA

We present more visualized comparisons on CT/MRI Brain and CT/MRI Pelvis datasets, which are presented in Figure 9 and Figure 10. Moreover, the quantitative results of the comparison to other baselines on CT/MRI Pelvis with totally paired data are displayed in Table 8.

Table 7: Quantitative comparison on FID, SSIM and PSNR with 100% paired data. The **bold** data represent the best results and the <u>underlined</u> ones indicates the second best.

			RF	I-CFM	OT-CFM	VP-CFM	CycleGAN	SynDiff	Reg-GAN	Bi-DPM	Bi-DPM
			14	1.01.01	01 01	vi erm	e)theorem	b)iibiii	nug ornit	(1-step)	(2-step)
		CCIM A	0.841	0.837	0.729	0.710	0.652	0.832	0.809	0.869	0.862
		551WI	± 0.038	± 0.040	± 0.070	± 0.042	± 0.025	± 0.041	± 0.038	\pm 0.038	± 0.038
	T1	$FID \downarrow$	49.004	85.069	168.269	63.826	80.771	97.494	85.767	40.611	57.800
		DOND A	22.175	21.843	19.131	18.648	17.588	20.377	20.676	23.117	22.886
MRI		PSINK	± 2.385	± 2.392	± 2.294	± 2.124	± 1.716	± 2.491	± 1.926	\pm 2.471	± 2.449
T1/T2		CCIM +	0.833	0.822	0.666	0.660	0.633	0.823	0.805	0.866	0.857
		331WI	± 0.040	± 0.040	± 0.063	± 0.044	± 0.033	± 0.043	± 0.039	\pm 0.041	± 0.039
	T2	$FID \downarrow$	37.825	41.780	163.686	50.477	68.749	49.568	88.087	32.366	38.960
		DOND A	23.307	22.743	19.182	18.843	19.121	21.965	21.589	24.845	24.302
		PSINK	± 1.839	± 1.829	± 1.857	± 1.686	± 1.257	± 1.945	± 1.451	\pm 1.994	$\pm \underline{1.944}$
		CCIM &	0.828	0.828	0.672	0.694	0.650	0.796	0.817	0.831	0.832
		551W	± 0.046	± 0.046	± 0.081	± 0.058	± 0.057	± 0.056	± 0.045	± 0.046	\pm 0.046
	CT	$FID \downarrow$	62.425	70.691	136.472	81.583	108.584	70.172	38.606	33.426	34.557
		DOND +	23.817	24.122	19.252	21.366	18.832	22.344	23.148	23.656	23.853
CT/MRI		FONK	± 1.856	\pm 1.951	± 1.956	± 1.351	± 0.985	± 1.966	± 1.790	± 2.124	± 2.080
Brain		SSIM +	0.678	0.685	0.467	0.597	0.445	0.503	0.683	0.723	0.726
		331WI	± 0.044	± 0.046	± 0.071	± 0.047	± 0.037	± 0.052	± 0.050	± 0.047	\pm 0.044
	MRI	FID ↓	56.972	85.528	147.784	72.462	116.487	71.952	31.856	29.991	31.452
		DOND +	21.121	21.131	18.451	19.650	16.744	17.172	20.436	<u>21.140</u>	21.158
		I SINK	± 1.174	± 1.159	± 1.521	± 1.175	± 0.927	± 0.713	± 1.339	± 1.364	\pm 1.340

Figure 10: The synthetic images of CT/MRI Pelvis dataset for different methods.

Table 8: Quantitative comparison on FID, SSIM and PSNR with 100% paired data. Th	ne bold data
represent the best results and the <u>underlined</u> ones indicates the second best.	

			DE	LCEM	OT CEM	VD CEM	CualaCAN	Bi-DPM	Bi-DPM
			КГ	І-СГМ	OI-CFM	VP-CFIM	CycleGAN	(1-step)	(2-step)
		ccm +	0.815	0.810	0.788	0.710	0.642	0.806	0.812
		2211A	\pm 0.046	± 0.042	± 0.048	± 0.058	± 0.054	± 0.052	± 0.049
	CT	$FID\downarrow$	71.626	72.556	107.349	68.122	99.398	46.600	48.363
		DOND +	23.591	23.779	22.104	22.010	19.672	23.796	24.033
CT/MRI		FORK	± 2.598	± 2.279	± 2.538	± 1.932	± 2.128	± 2.313	\pm 2.596
Pelvis		SSIM +	0.535	0.532	0.471	0.415	0.231	0.571	0.577
		331WI	± 0.052	± 0.054	± 0.081	± 0.038	± 0.042	± 0.051	\pm 0.052
	MRI	$FID \downarrow$	73.998	71.110	108.017	83.008	138.037	<u>68.381</u>	68.209
		DOND 1	17.892	17.641	16.090	16.364	14.428	<u>18.675</u>	18.930
		ISINK	± 1.568	\pm 1.497	± 2.460	± 1.512	± 1.338	± 1.687	\pm 1.668

B.2 RESULTS WITH PARTIALLY PAIRED DATA

The quantitative results of the comparison to other baselines on CT/MRI Pelvis with 0.1 ratio of paired data are displayed in Table 9. Besides, more results about the tendency of the quality evaluation indices with regard to paired ratio are shown in Figure 11 and Figure 12.

Tał	ole 9:	Quantita	tive comparison o	on FID, SSIM and	PSNR with 10%	paired data.
			RF	I-CFM	Bi-DPM (1-step)	Bi-DPM (2-step)
		$\mathbf{SSIM} \uparrow$	${ \begin{array}{c} 0.705 \\ \pm \ 0.038 \end{array}} \left({ \begin{array}{c} 0.815 \\ \pm 0.046 \end{array} } \right)$	${}^{0.684}_{\pm\ 0.057} \left({}^{0.810}_{\pm\ 0.042}\right)$	${ \begin{array}{c} 0.783 \\ \pm \ 0.053 \end{array}} \begin{pmatrix} 0.806 \\ \pm 0.052 \end{pmatrix}$	$\begin{array}{c} 0.785 \\ \pm \ 0.057 \begin{pmatrix} 0.812 \\ \pm 0.049 \end{pmatrix} \end{array}$
	CT	$FID\downarrow$	147.101 (71.626)	102.730 (72.556)	52.517 (46.600)	54.528 (48.363)
CT/MRI		$\mathbf{PSNR}\uparrow$	$\begin{array}{c} 18.518 \\ \pm 1.692 \begin{pmatrix} 23.591 \\ \pm 2.598 \end{pmatrix}$	${}^{19.381}_{\pm\ 2.085} \left({}^{23.779}_{\pm\ 2.279}\right)$	$\begin{array}{c} 22.531 \\ \pm 2.306 \begin{pmatrix} 23.796 \\ \pm 2.313 \end{pmatrix}$	$\begin{array}{c} 22.847 \\ \pm 2.373 \begin{pmatrix} 24.033 \\ \pm 2.596 \end{pmatrix}$
Pelvis		$\mathbf{SSIM}\uparrow$	${ \begin{array}{c} 0.339 \\ \pm \ 0.078 \end{array}} \left({ \begin{array}{c} 0.535 \\ \pm 0.052 \end{array}} \right)$	${\begin{array}{c} 0.255 \\ \pm 0.063 \\ \left({\begin{array}{c} 0.532 \\ \pm 0.054 \\ \end{array} \right)}$	${\begin{array}{c} 0.523 \\ \pm \ 0.048 \\ \left({\begin{array}{c} 0.571 \\ \pm 0.051 \\ \end{array} \right)}$	$\begin{array}{c} 0.532 \\ \pm \ 0.056 \begin{pmatrix} 0.577 \\ \pm 0.052 \end{pmatrix} \end{array}$
	MRI	$FID\downarrow$	138.121 (73.998)	166.533 (71.110)	76.436 (68.381)	77.927 (68.209)
		PSNR ↑	$\begin{array}{c} 13.696 \\ \pm 2.662 \\ \left(\begin{array}{c} 17.892 \\ \pm 1.568 \end{array} \right) \end{array}$	$\begin{array}{c} 12.062 \\ \pm 2.566 \\ \left(\begin{array}{c} 17.641 \\ \pm 1.497 \end{array} \right) \end{array}$	$\begin{array}{c} 17.718 \\ \pm 1.559 \\ \left(\begin{array}{c} 18.675 \\ \pm 1.687 \end{array} \right) \end{array}$	$\begin{array}{c} \textbf{17.917} \\ \pm \textbf{1.760} \begin{pmatrix} 18.930 \\ \pm 1.668 \end{pmatrix} \end{array}$

Figure 11: The quantitative comparison results on **MRI T1/T2** dataset between different methods with various discrete ODE steps. From the top to the bottom, the figures show the results of synthetic CT and synthetic MRI. The indices are SSIM, and PSNR from left to the right.

Figure 13: The quantitative comparison results on **MRI T1/T2** dataset between different methods with various discrete ODE steps.

Figure 14: The quantitative comparison results on **CT/MRI Pelvis** dataset between different methods with various discrete ODE steps.

C TIME AND MEMORY COST

We also compare the memory cost in training process and the synthesis time cost for different methods. In training process, the batch size is set to 10. In testing, based on the MRI T1/T2 dataset, which contains 251×2 test images totally, we calculate the synthesis time cost of the whole dataset. For each method, we synthesize one image at a time and here are the results:

	RF (RK45)	CFM (RK45)	CycleGAN	Reg-GAN	SynDiff	DPM (1-step)	DPM (2-step)
Time Cost	834s	834s	31s	10s	394s	20s	38s
		Table 11: T	raining me	mory cost o	comparis	on	
	RF (RK45)	Table 11: 7 CFM (RK45)	Training men	mory cost o	comparis SynDiff	on DPM (1-step)	DPM (2-ste

D SEGMENTATION RESULTS

To assess the quality of the synthetic images, we evaluate their performance in a downstream segmentation task, representing a practical application of image synthesis. Using the MRI T1/T2 dataset from BraTS2021, we first train an nnUNet on real T1 and T2 training dataset. Subsequently, we test various combinations of synthetic and real data: baseline (T1 real and T2 real), T1 fake + T2 real and T1 real + T2 fake. The corresponding dice scores predicted by nnUNet are as follows:

972							
973	Tab	le 12: Th	ne segme	ntation results	on MRI T1/7	T2 datasets.	
974		RF	CFM	CycleGAN	Reg-GAN	SynDiff	DPM
975	T1 Fake	0.814	0.812	0.758	0 774	0 781	0.816
976	T2 Real	0.011	0.012	0.750	0.771	0.701	
977	T2 Fake	0.690	0.662	0.519	0.642	0.619	0.716
978	<u>II Real</u>						
979	Baseline Both Pool			0.	818		
980	Dour Kear						
981							
982							
983							
984							
985							
986							
987							
988							
989							
990							
991							
992							
993							
994							
995							
996							
997							
998							
999							
1000							
1001							
1002							
1003							
1004							
1005							
1006							
1007							
1008							
1009							
1010							
1011							
1012							
1013							
1014							
1015							
1016							
1017							
1018							
1019							
1020							
1021							
1022							
1023							
1024							
1025							