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A IMPLEMENTATION DETAILS

A.1 CIFAR-10

ResNet-18 For visualization in Fig.eft, Middle, we use a CIFAR-10 classifier of ResNet-18 back-
bone trained with cross-entropy loss. The classifier is trained for 100 epochs, with the initial learning
rate 0.1 decaying to 0.01, 0.001, and 0.0001 at epochs 50, 75, and 90 respectively. For experiments
in Table[_l_al we use the pre-trained model provided by the OpenOOD benchmark. And we refer
readers to|Zhang et al.|(2023) for their training recipe.

DenseNet-101 For experiments on CIFAR-10 Benchmark presented in Table |8 we evaluate a
CIFAR-10 classifier of DenseNet-101 backbone. The classifier is trained following the setups in
Huang et al.|(2017) with depth L = 100 and growth rate k = 12.

A.2 CIFAR-100

DenseNet-101 For experiments on the CIFAR-100 Benchmark presented in Table |8 we evaluate a
CIFAR-100 classifier of the DenseNet-101 backbone. The classifier is trained following the setups
in/Huang et al.|(2017) with depth L = 100 and growth rate k = 12.

A.3 IMAGENET

ResNet-50 For evaluation on ImageNet Benchmark in Table we use the
default ResNet-50 model trained with cross-entropy loss provided by Py-
torch. Training recipe can be found at |https://pytorch.org/blog/
how-to-train-state-of-the—-art-models—using-torchvision-latest-primitives/

ViT B/16 In Table [2] we use the PyTorch implementation and pre-trained checkpoint of
ViT B/16, available https://github.com/lukemelas/PyTorch-Pretrained-ViT/
tree/master!

Swin v2 In Table we use the timm|Wightman|(2019) implementation of Swin v2 as well as their
pre-trained checkpoint ’swinv2_base_window8_256’.

B ALTERNATIVES PROXIMITY METRICS

In this section, we validate that under alternative similarity metrics, ID features also reside closer to
weight vectors and empirically compare the metrics. In addition to our proposed pScore, we con-
sider two standard similarity metrics, cosine similarity and Euclidean distance. For cosine similarity,
we evaluate (h — pg) - we o

cosScore = .
[h — pcll2llwell2 5 HN _NGH2
As for Euclidean distance, we first estimate the scaling factor in Theorem|3.1{by A, = T|7||
Wel|2

Based on the estimation, we measure the distance between the centered feature h— p and the scaled
weight vector corresponding to the predicted class c as

distScore = —||(h — pg) — Acwe]|2. (8)
Same as pScore, the larger cosScore or distScore is, the closer the feature is to the weight vector.

We evaluate in Table OOD detection performance using standalone pScore, cosScore, and
distScore as scoring function respectively. The experiments are evaluated with AUROC under
the same ImageNet setup as in Section We observe in Table 7] that across OOD datasets, all
three scores achieve an AUROC score > 50, indicating that ID features reside closer to weight
vectors compared to OOD under either metric.

Furthermore, we observe that pScore outperforms both cosScore and distScore. Comparing the
performance of pScore and cosScore, the superior performance of pScore implies that ID features
corresponding to the classes with larger w, are less compact. This is in line with the decision rule
of the classifier that classes with larger w, have larger decision regions. As for comparison against
Euclidean distance based distScore, pScore eliminates the need to estimate the scaling factor,
which can be error-prone before convergence, potentially leading to performance degradation.
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Table 7: Ablation on proximity scores. AUROC score is reported (higher is better). ID features are
closer to weight vectors than OOD features (AUROC > 50) under all metrics. Across OOD datasets,
our proposed pScore can better separate ID an OOD features than distScore and cosScore.

SSB-hard NINCO iNaturalist Texture Openlmage-O
distScore 54.69 70.20 85.78 87.07 78.46
cosScore 65.82 79.92 90.43 91.36 89.00
pScore 66.81 80.20 92.67 91.87 90.51

C BASELINE METHODS

We provide an overview of our baseline methods in this session. We follow our notation in Section
In the following, a lower detection score indicates OOD-ness.

MSP Hendrycks & Gimpel|(2016) proposes to detect OOD based on the maximum softmax proba-
bility. Given the penultimate feature h for a given test sample x, the detection score of MSP can be
represented as:

exp (wlh +b,.)
Ywecexp(wih +be)’

©))

where c is the predicted class for x.

ODIN |Liang et al.| (2018) proposes to amplify ID the OOD separation on top of MSP through
temperature scaling and adversarial perturbation. Given a sample &, ODIN constructs a noisy sample
@’ from @. Denote the penultimate feature of the noisy sample &’ as h’, ODIN assigns OOD score
following:

exp (wIh’ +b.)/T)
Yeecexp (W' +b)/T)’

where c is the predicted class for the perturbed sample and 7" is the temperature. In our implemen-
tation, we set the noise magnitude as 0.0014 and the temperature as 1000.

(10)

Energy Liu et al.|(2020) designs an energy-based score function over the logit output. Given a
test sample x as well as its penultimate layer feature h, the energy based detection score can be
represented as:

flogZexp (ijthbc/). 11
c’'eC

ReAct|Sun et al.|(2021) builds upon the energy score proposed in|Liu et al.|(2020) and regularizes
the score by truncating the penultimate layer estimation. We set the truncation threshold at 90
percentile in our experiments.

Dice|Sun & Li|(2022) builds upon the energy score proposed in |Liu et al.|(2020). Leveraging the
observation that units and weights are used sparsely in ID inference, |[Sun & Li|(2022) proposes to
select and compute the energy score over a selected subset of weights based on their importance. We
set a threshold at 90 percentile for CIFAR experiments and 70 percentile for ImageNet experiments
following|Sun & Li((2022).

ASH Djurisic et al.|(2022) builds upon the energy score proposed in |Liu et al.|(2020). Prior to the
Energy score, ASH sorts each feature to find the top-k elements, scales up the top-k elements, and
sets the rest to zero. We note that in addition to the cost of Energy, ASH introduces a sorting cost of
O(Plog k), where P is the penultimate layer dimension.

Scale |Xu et al.| (2023) builds upon the energy score proposed in|Liu et al.|(2020). Prior to the
Energy score, Scale sorts each feature to find the top-k elements and based on the statistics, scales
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all elements in the feature. We note that in addition to the cost of Energy, Scale also introduces a
sorting cost of O(P log k), where P is the penultimate layer dimension.

Mahalanobis On the feature space, |Lee et al.|(2018) models the ID feature distribution as multi-
variate Gaussian and designs a Mahalanobis distance-based score:

max —(ex — fic) S (€a — fic), (12)

where e is the feature embedding of @ in a specific layer, /i is the feature mean for class c estimated
on the training set, and X is the covariance matrix estimated over all classes on the training set.

On top of the basic score, |Lee et al.|(2018)) also proposes two techniques to enhance the OOD detec-
tion performance. The first is to inject noise into samples. The second is to learn a logistic regressor
to combine scores across layers. We tune the noise magnitude and learn the logistic regressor on an
adversarial constructed OOD dataset. The selected noise magnitude is 0.005 in both our ResNet and
DenseNet experiments.

KNN/Chen et al.|(2020) proposes to detect OOD based on the k-th nearest neighbor distance between
the normalized embedding of the test sample z,/|z,| and the normalized training embeddings on
the penultimate space. (Chen et al.|(2020) also observes that contrastive learning helps in improving
OOD detection effectiveness.

GradNorm|Huang et al.|(2021) extracts information from the gradient space to detect OOD samples.
Specifically,|Huang et al.|(2021) defines the OOD score function as the L1 norm of the gradient of
the weight matrix with respect to the KL divergence between the softmax prediction for « and the
uniform distribution.

Dt (uljsoftmaz f (x))

|| g s

13)

ViM |Wang et al.|(2022) proposes to integrate class-specific information into feature space informa-
tion by adding energy score to the feature norm in the residual space of the training feature matrix.

The detection score is designed to be:
avVhTRRh, (14)

where R € RY*(P—D) correspond to the residual after subtracting the D —dimensional principle
space. In the preparation stage, ViM requires evaluating the residual/null space from the training
data, which is computationally expensive given the data volume. During inference, large matrix
multiplication is required, resulting in a computational complexity of O((P — D)?).

NECO is inspired by the ETF structure of Neural Collapse to utilize feature subspace for OOD
detection. The detection score is designed to be

VhTPPh

VhTh '
where P € RP*4 correspond to the d—dimensional principle space. In the preparation stage,
NECO requires evaluating the residual/null space from the training data, which is computationally

expensive given the data volume. During inference, large matrix multiplication is required, resulting
in a computational complexity of O((d)? + P).

MaxLogit x (15)

fDBD |Liu & Qin| (2023) proposes to detect OOD based on estimated feature distance to decision
boundaries of class ¢ € C besides its predicted class f(x):

(W) — we) R+ (b(a) — be)l

Dy(h,c) = : (16)
. o [ ) = wel,
The detection score is designed as
1 Df(h, C)
_ ), (17)
|C| -1 ceC, c£f(w) Hh’ - ﬂ'trazn”Q

fDBD has time complexity O(|C| 4+ P), where |C| is the number of training classes and P is the
penultimate layer dimension.
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Table 8: Our OOD detectors achieves high AUROC and low FPR95 across CIFAR-10 and
CIFAR-100 OOD benchmark on DenseNet. 1 indicates that larger values are better and vice
versa. Bold highlight the best results and underline denotes the 2nd and 3rd best results. We note
that for DenseNet CIFAR-10 and CIFAR-100 classifiers, the discrepancy among existing methods
is not as severe as in the examples presented in the main paper. Nevertheless, our NCI achieves
state-of-the-art performance or improves upon existing methods, enhancing overall performance on
average.

CIFAR-10 OOD Benchmark CIFAR-100 OOD Benchmark
Methods |ciraR-100 TIN MNIST SVHN Texture Place365 AVG |CIFAR-10 TIN  MNIST SVHN Texture Place365 Avg
Evaluation under FPRY5 |
MSP 36.46 31.51 20.79 19.02 39.17 32.69 29.04 | 65.62 59.33 61.30 74.09 78.97 62.53 66.97
ODIN 41.11 32.89 11.19 27.03 4998 30.61 32.13 | 72.72 56.67 60.23 52.44 83.88 57.58 63.92
Energy |38.73 29.17 9.46 17.41 58.06 30.26 30.51 | 7530 54.82 54.33 49.64 93.14 59.59 94.47
MDS 88.91 89.17 70.42 49.48 68.41 90.72 76.27 | 90.04 87.80 54.20 80.69 62.61 88.71 77.34
KNN 40.42 3397 1297 471 1997 37.08 24.84 | 8420 66.64 19.46 22.59 36.88 74.86 50.76
ViM 42.74 35.67 14.16 19.72 2481 36.53 2894 | 76.78 59.07 67.34 54.06 34.74 63.60 59.27
fDBD 38.87 31.29 1032 6.70 1832 31.30 22.80 | 68.17 53.08 43.03 4580 35.66 62.90 5144
GradNorm | 72.67 55.37 8.57 2194 8636 6397 5148 | 94.07 84.61 4199 36.54 9798 81.32 72.75
NECO 38.51 29.12 9.68 1691 56.29 2994 3382 | 75.16 54.63 54.18 49.73 92.07 59.34 63.91
ReAct 3599 2734 10.78 15.63 32.87 27.12 2496 | 72.48 54.08 4747 5276 71.38 60.28 59.74
DICE 46.47 33.12 523 17.52 6539 3636 34.02 | 88.20 67.38 57.39 37.62 9193 6191 67.40
ASH 46.16 32.67 12.44 12.61 4276 30.71 29.56 | 84.20 66.14 44.44 33.29 69.00 69.96 61.17
Scale 38.12 26.82 7.51 9.41 40.66 28.63 25.19 | 77.97 54.12 48.74 38.84 81.73 58.93 60.05
NCI (Ours)| 36.08 29.50 8.44 5.67 16.22 30.83 21.12 | 84.99 57.33 29.71 25.99 50.16 64.40 52.10
Evaluation under AUROC 1
MSP 87.97 89.52 92.79 9330 87.29 89.25 90.02 | 74.11 76.74 74.42 68.40 69.99 75.14 73.14
ODIN 88.94 91.31 97.28 93.28 87.67 92.17 91.78 | 73.20 80.86 77.30 76.55 7424 81.01 77.20
Energy |89.38 92.37 97.54 94.74 8549 9252 92.00 | 73.50 81.71 78.66 78.38 69.63 79.60 76.92
MDS 60.33 56.43 63.17 90.15 88.42 56.63 69.19 | 50.41 57.26 74.78 70.14 88.67 56.80 66.34
KNN 88.75 90.78 96.61 99.13 96.14 90.42 93.63 | 60.59 73.97 93.89 9424 92.88 68.18 80.63
ViM 87.71 89.64 9582 9520 95.16 89.50 92.17 | 67.93 7837 70.73 78.70 93.12 76.78 77.60
fDBD 89.98 92.04 97.52 9834 9558 92.17 94.27 | 75.83 8237 84.46 8505 90.26 77.79 82.63
GradNorm | 78.47 85.19 9791 95.85 83.14 83.18 87.29 | 51.75 64.64 86.41 89.63 73.16 66.61 72.03
NECO 89.43 9238 97.44 9493 85.87 92.53 92.10 | 73.77 81.76 78.83 78.58 70.40 79.62 77.30
ReAct 90.06 92.67 97.17 9498 90.77 93.03 93.11 | 7438 81.86 81.65 79.02 76.47 78.82 78.70
DICE 86.71 91.17 98.84 96.23 86.59 91.01 91.76 | 59.87 76.21 80.45 89.39 77.20 79.32 77.07
ASH 87.55 91.29 96.84 9695 90.60 91.76 92.50 | 66.25 76.46 86.38 89.02 83.63 72.78 79.08
Scale 89.77 93.04 98.04 97.45 90.60 92.84 93.62 | 73.11 8198 82.14 8591 77.53 79.77 80.08
NCI (Ours)| 90.31 92.29 9793 98.67 9587 91.86 94.49 | 69.84 80.75 91.42 92.12 88.46 76.99 83.26

D EVALUATION ON DENSENET

In addition to evaluation on ResNet and transformer-based model in Section we report the perfor-
mance of our NCI along with the baselines under AUROC and FPR95 across OpenOOD benchmarks
in Table[§]

E THE PREVALENCE OF NEURAL COLLAPSE ACROSS CANONICAL
CLASSIFICATION TASKS

The phenomenon of Neural Collapse, as established in the seminal work by Papyan et al. |Papyan
et al.| (2020) and corroborated by subsequent studies [Han et al.|(2021); [Mixon et al.|(2020); Zhou
et al.| (2022); |Zhu et al.| (2021), widely exists across canonical classification datasets and model
architectures. The prevalent occurrence of Neural Collapse forms a robust foundation for the design
of our versatile OOD detectors. To this end, we review the empirical evidence of Neural Collapse
across different datasets and model architectures in Figure [3] Figure [4] Figure E] Figure and
Figure|/| Comparing CIFAR-10 and ImageNet behaviors with ResNet backbone 1n Figure[/| we
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note that the clustering of CIFAR-10 is more prominent than Imagenet, as indicated by a higher
ratio of between-class variance to within-class covariance. Note that the figures and captions are
sourced from[Papyan et al.|(2020). The definition and notation follow Section 3]
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Figure 3: (ref. Figure 2 inPapyan et al.|(2020)) Train class means become equinorm. In each array
cell, the vertical axis shows the coefficient of variation of the centered class-mean norms as well as
the network classifiers norms. In particular, the blue lines show Std.(||p. — e l2) /Ave(||n—pcl2)
where {u.} are the class means of the last-layer activations of the training data and p¢ is the
corresponding train global mean; the orange lines showStd. (|lw.||2)/Avg(||w.||2) where {w,} is
the last-layer classifier of the c th class. As training progresses, the coefficients of variation of both
class means and classifiers decrease.
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Figure 4: (ref. Figure 3 in|Papyan et al.|(2020)) Classifiers and train class means approach
equiangularity. In each array cell, the vertical axis shows the SD of the cosines between pairs of
centered class means and classifiers across all distinct pairs of classes ¢ and ¢/. Mathematically,
denote cos,(c,c’) =< pe — pa, p. — pe > /e — pell2llpm. — pell2 and cosy(c, ) =<
we,w, > /|we|2]|w]|2, where {w.}S |, {p.}S . and pg are as in Figure We measure
Std., e (cos, (¢, ¢')) (orange) and Std. .- (cos, (¢, ¢')). As training progresses, the SDs of the cosines
approach zero, indicating equiangularity.
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Figure 5: (ref. Figure 4 in [Papyan et al.| (2020)) Classifiers and train class means ap-
proach maximal-angle equiangularity. We plot in the vertical axis of each cell the quantities
Avg, .| cos,(c,c) + 1/(C — 1)| (blue) and Avg, .| cos,(c,c’) + 1/(C — 1)| (orange), where
cos,(c, ') and cos,(c, ') are as in Figure El As training progresses, the convergence of these
values to zero implies that all cosines converge to —1/(C' — 1). This corresponds to the maximum
separation possible for globally centered, equiangular vectors.
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Figure 6: (ref. Figure 5 in Papyan et al.|(2020)) Classifier converges to train class means. The
formatting and technical details are as described in Section 3. In the vertical axis of each cell, we
measure the distance between the classifiers and the centered class means, both rescaled to unit
norm. Mathematically, denote M = M /|| M| p where M = [p. — p,c = 1,....,C] € RP*C
is the matrix whose columns consist of the centered train class means; denote W = W/|W]|Fr
where W € RE*P is the last-layer classifier of the network. We plot the quantity |[W7 — M |2, on
the vertical axis. This value decreases as a function of training, indicating that the network classifier
and the centered-means matrices become proportional to each other (self-duality).
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Figure 7: (ref. Figure 6 in/Papyan et al.|(2020)) Training within-class variation collapses. In each
array cell, the vertical axis (log scaled) shows the magnitude of the between-class covariance com-
pared with the within-class covariance of the train activations. Mathematically, this is represented by
Tr(Zw X5 /C) where Tr(-) s the trace operator, Sy is the within-class covariance of the last-layer
activations of the training data, ¥ is the corresponding between-class covariance, C' is the total
number of classes, and [-]* is Moore-Penrose pseudoinverse. This value decreases as a function of
training—indicating collapse of within-class variation.
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