
Supplementary Material617

A Regret Analysis618

In this section we provide proofs for the theorems in Sec. 3.3.619

Since those assume non-negative temporal losses, let us first modify the losses in Eq. 3 to be620

non-negative by adding the same constant log(↵̃) to all possible values:621

˜̀
t,i =

8
<

:

0 if i 2 Ct and yt > Mt�1

log(↵̃�̃) if i 2 Ct and yt Mt�1

log(↵̃) if i /2 Ct

(7)

This modification does not change the resulted distribution ⇡t induced over the coordinates as it is622

invariant to shifts of the losses:623

⇡t,i =
wt,i

Wt
=

e�⌘
Pt

⌧=1
˜̀
⌧,i

PD
j=1 e

�⌘
Pt

⌧=1
˜̀
⌧,j

=
e�⌘

Pt
⌧=1(`⌧,i+log(↵̃))

PD
j=1 e

�⌘
Pt

⌧=1(`⌧,j+log(↵̃))
=

e�⌘t log(↵̃)e�⌘
Pt

⌧=1 `⌧,i

e�⌘t log(↵̃)
PD

j=1 e
�⌘

Pt
⌧=1 `⌧,j

=
e�⌘

Pt
⌧=1 `⌧,i

PD
j=1 e

�⌘
Pt

⌧=1 `⌧,j
(8)

Thus also ⇡̃t,i and ⇡̂t,i introduced in sections A.1 and A.2 remain unchanged as well and for624

simplicity we refer to ˜̀as ` throughout this section.625

A.1 Regret analysis for sampling from the combinatorial space of coordinate blocks626

The probability ⇡̃t,It of selecting a certain coordinate block It ⇢ I = {1, · · · , D} of size |It| = c 2627

C follows sampling according to ⇡t such that:628

w̃t,It =

Y

i2It

w
1

|It|
t,i ; W̃t =

X

c2C

X

It2Sc

w̃t,It ; ⇡̃t,It =
w̃t,It

W̃t

8It 2
[

c2C

Sc (9)

such that629
X

c2C

X

It2Sc

⇡̃t,It = 1 (10)

A.1.1 Proof of Lemma 1630

Lemma 1. For ⌘ > 0 and non-negative losses `t,i � 0 the update rule in (4) satisfies for any block631

of coordinates I⇤:632

TX

t=1

X

c2C

X

It2Sc

⇡̃t,It ·
1

|It|
X

i2It

`t,i �
TX

t=1

1

|I⇤|
X

i2I⇤

`t,i 

⌘
TX

t=1

X

c2C

X

It2Sc

⇡̃t,It ·

1

|It|
X

i2It

`t,i

!2

+
D log(D)

⌘
(11)

Proof. Set633

w̃0,It = 1 8It 2
[

c2C

Sc (12)

15

Thus,634

W̃t+1 =

X

c2C

X

It2Sc

w̃t+1,It =

X

c2C

X

It2Sc

Y

i2It

w
1

|It|
t+1,i (13)

=

X

c2C

X

It2Sc

Y

i2It

w
1

|It|
t,i e�

⌘
|It|

`t,i
=

X

c2C

X

It2Sc

Y

i2It

w
1

|It|
t,i · e�

⌘
|It|

P
i2It

`t,i (14)

=

X

c2C

X

It2Sc

w̃t,It · e
�

⌘
|It|

P
i2It

`t,i (15)

= W̃t

X

c2C

X

It2Sc

⇡̃t,It · e
�

⌘
|It|

P
i2It

`t,i (16)

 W̃t

X

c2C

X

It2Sc

⇡̃t,It

0

@1� ⌘

|It|
X

i2It

`t,i + ⌘2

1

|It|
X

i2It

`t,i

!2
1

A (17)

 W̃t

0

@1 +

X

c2C

0

@
X

It2Sc

⌘2⇡̃t,It

1

|It|
X

i2It

`t,i

!2

� ⌘

|It|
⇡̃t,It

X

i2It

`t,i

1

A

1

A (18)

 W̃te
P

c2C ·

✓P
It2Sc

⌘2⇡̃t,It

⇣
1

|It|
P

i2It
`t,i

⌘2
�

⌘
|It|

⇡̃t,It

P
i2It

`t,i

◆

(19)

where,635

• (16) follows from (9).636

• (17) holds since e�x  1� x+ x2 for x � 0.637

• (18) holds due to Eq. 10.638

• (19) holds since 1 + x  ex.639

Due to Eq. (12), we have,640

w̃t,It =

Y

i2It

w
1

|It|
t,i =

Y

i2It

w
1

|It|
0,i e�

⌘
|It|

PT
t=1 `t,i

= e�
⌘
It

PT
t=1

P
i2It

`t,i (20)

And,641

W0 =

X

c2C

X

It2Sc

w̃0,It =

X

c2C

X

It2Sc

1 =

X

c2C

|Sc| =
X

c2C

✓
D

c

◆
 (D!)

|C| (21)

Given that the weight of a certain coordinate block I⇤ is less than the total sum of all weights, together642

with Eq. (19), (12) and (21) we have:643

e�
⌘

|I⇤|
PT

t=1

P
i2I⇤ `t,i

= w̃t,I⇤  W̃T

 (D!)
|C|e

PT
t=1

P
c2C ·

✓P
It2Sc

⌘2⇡̃t,It

⇣
1

|It|
P

i2It
`t,i

⌘2
�

⌘
|It|

⇡̃t,It

P
i2It

`t,i

◆

(22)

Taking the log of both sides, we have:644

�⌘
TX

t=1

1

|I⇤|
X

i2I⇤

`t,i 
TX

t=1

X

c2C

·

0

@
X

It2Sc

⌘2⇡̃t,It

1

|It|
X

i2It

`t,i

!2

� ⌘

|It|
⇡̃t,It

X

i2It

`t,i

1

A

+ |C| log(D!) (23)

and since D!  DD the result follows.645

16

A.1.2 Proof of Theorem 1646

Proof. Since `t,i  log(↵̃�̃) then:647

1

|It|
X

i2It

`t,i

!2



1

|It|
X

i2It

log(↵̃�̃)

!2

 log(↵̃�̃)2 (24)

Thus due to Eq. (10):648

X

c2C

X

It2Sc

⇡̃t,It ·

1

|It|
X

i2It

`t,i

!2


X

c2C

X

It2Sc

⇡̃t,It log(↵̃�̃)
2
= log(↵̃�̃)2 (25)

And setting ⌘ =
1

log(↵̃�̃)

q
|C|D log(D)

T in Eq. (11) yields:649

Regrett  ⌘T log(↵̃�̃)2 +
|C|D log(D)

⌘
= 2 log(↵̃�̃)

p
T |C|D log(D) (26)

650

A.2 Regret analysis for sampling coordinates without replacement651

Denote by pc the probability of choosing a certain block size c 2 C, such that pc > 0 and
P

c2C
pc =652

1, e.g., for a uniform sampling of the block size pc = 1/|C| for all c 2 C.653

The probability ⇡̂t,It of selecting a certain coordinate block It ⇢ I = {1, · · · , D} of size |It| = c 2654

C follows sampling according to ⇡t (Eq. (2)) without replacement, such that,655

⇡̂t,It =

X

p2perm(It)

Y

k2p

⇡t,k

1�
P

j2p1:k
⇡t,j

(27)

=

Y

i2It

⇡t,i

!
·

0

B@
X

p2perm(It)

Y

k2p

0

@1�
X

j2p1:k

⇡t,j

1

A
�1
1

CA = P(It) · R(It) (28)

where perm(It) are all the permutations of the set It and p1:k are the first k coordinates in the656

permutation p. Eq. (28) holds due to the common numerator of all permutations where the left term657

P(It) corresponds to the probability of sampling a subset of coordinates with replacement, and the658

right term R(It) is associated with sampling without replacement. Of course, summing over all the659

possible blocks of size c results
P

It2Sc
⇡̂t,It = 1 for all c 2 C.660

Thus ⇡̃t,It = pc · ⇡̂t,It and the probability of sampling every block of coordinates of any size sum up661

to 1 as well:662 X

c2C

X

It2Sc

⇡̃t,It =

X

c2C

pc
X

It2Sc

⇡̂t,It =

X

c2C

pc = 1 (29)

A.2.1 Proof of Lemma 2663

Lemma 2. Sample a block size c 2 C with probability pc > 0 and c coordinates without replacement664

according to ⇡t. Assume C � {1}, ⌘ > 0 and non-negative losses `t,i � 0. Then the update rule in665

(4) satisfies for any block of coordinates I⇤:666

TX

t=1

X

c2C

pc
X

It2Sc

⇡̂t,It ·
1

|It|
X

i2It

`t,i �
TX

t=1

1

|I⇤|
X

i2I⇤

`t,i

 ⌘
TX

t=1

X

c2C

pc
X

It2Sc

⇡̂t,It ·

1

|It|
X

i2It

`t,i

!2

+
log(D)

⌘
� T log(p1)

⌘
(30)

17

Proof. Starting with a uniform distribution over the coordinates w0,i ⌘ 1
D such that W0 = 1 and we667

have:668

p1 ·Wt+1 = p1 ·
X

i2I

wt+1,i (31)


X

c2C

pc
X

It2Sc

Y

i2It

wt+1,i (32)

= Wt

X

c2C

pc
X

It2Sc

W�1
t

Y

i2It

wt,ie
�⌘`t,i (33)

Wt

X

c2C

pc
X

It2Sc

W�|It|

t

Y

i2It

wt,ie
�⌘`t,i · |perm(It)| (34)

= Wt

X

c2C

pc
X

It2Sc

Y

i2It

wt,i

Wt
e�⌘`t,i ·

X

p2perm(It)

1 (35)

= Wt

X

c2C

pc
X

It2Sc

Y

i2It

⇡t,ie
�⌘`t,i ·

X

p2perm(It)

Y

k2p

1 (36)

Wt

X

c2C

pc
X

It2Sc

e�⌘
P

i2It
`t,i
Y

i2It

⇡t,i ·
X

p2perm(It)

Y

k2p

0

@1�
X

j2p1:k

⇡t,j

1

A
�1

(37)

= Wt

X

c2C

pc
X

It2Sc

⇡̂t,Ite
�⌘

P
i2It

`t,i (38)

Wt

X

c2C

pc
X

It2Sc

⇡̂t,Ite
�

⌘
|It|

P
i2It

`t,i (39)

Wt

X

c2C

pc
X

It2Sc

⇡̂t,It

0

@1� ⌘

|It|
X

i2It

`t,i + ⌘2

1

|It|
X

i2It

`t,i

!2
1

A (40)

Wt

0

@1 +

X

c2C

pc ·

0

@
X

It2Sc

⌘2⇡̂t,It

1

|It|
X

i2It

`t,i

!2

� ⌘

|It|
⇡̂t,It

X

i2It

`t,i

1

A

1

A (41)

Wte
P

c2C pc·

✓P
It2Sc

⌘2⇡̂t,It

⇣
1

|It|
P

i2It
`t,i

⌘2
�

⌘
|It|

⇡̂t,It

P
i2It

`t,i

◆

(42)

where669

• (32) is since C � {1} always contains a block size of 1 and thus:670

X

c2C

pc
X

It2Sc

Y

i2It

wt+1,i = p1
X

It2S1

Y

i2It

wt+1,i +

X

c2C\{1}

pc
X

It2Sc

Y

i2It

wt+1,i

= p1
X

i2I

wt+1,i +

X

c2C\{1}

pc
X

It2Sc

Y

i2It

wt+1,i

� p1
X

i2I

wt+1,i

• (34) holds since W0 = 1 and Wt is monotonically non-increasing following the update rule671

(4) with non-negative losses, thus wt  1 for all t.672

• (38) follows from (28).673

• (40) holds since e�x  1� x+ x2 for x � 0.674

• (41) holds due to Eq. 29.675

• (42) holds since 1 + x  ex.676

18

Given that the sum of weights of a certain coordinate block I⇤ is less than the total sum of weights,677

together with Eq. 42, w0,i ⌘ 1
D and W0 = 1 we have:678

1

D

X

i2I⇤

e�⌘
PT

t=1 `t,i =

X

i2I⇤

wt,i WT

 p�T
1 e

PT
t=1

P
c2C pc·

✓P
It2Sc

⌘2⇡̂t,It

⇣
1

|It|
P

i2It
`t,i

⌘2
�

⌘
|It|

⇡̂t,It

P
i2It

`t,i

◆

(43)

Taking the log of both sides, we have:679

log

X

i2I⇤

e�⌘
PT

t=1 `t,i

!
� log(D)


TX

t=1

X

c2C

pc ·

0

@
X

It2Sc

⌘2⇡̂t,It

1

|It|
X

i2It

`t,i

!2

� ⌘

|It|
⇡̂t,It

X

i2It

`t,i

1

A� T log(p1) (44)

Following the same certain block, all the participating coordinates suffer the same loss `⇤t at every680

time step as follows from Eq. 3, hence:681

log

X

i2I⇤

e�⌘
PT

t=1 `t,i

!
= log

X

i2I⇤

e�⌘
PT

t=1 `⇤t

!

= log

⇣
|I⇤|e�⌘

PT
t=1 `⇤t

⌘

= log(|I⇤|)� ⌘
TX

t=1

`⇤t

� �⌘
TX

t=1

`⇤t (45)

Thus Eq. 44 and 45 yield:682

�⌘
TX

t=1

`⇤t � log(D) 
TX

t=1

X

c2C

pc ·

0

@
X

It2Sc

⌘2⇡̂t,It

1

|It|
X

i2It

`t,i

!2

� ⌘

|It|
⇡̂t,It

X

i2It

`t,i

1

A� T log(p1)

(46)

And the result follows.683

A.2.2 Proof of Theorem 2684

Proof. Since `t,i  log(↵̃�̃) then:685

1

|It|
X

i2It

`t,i

!2



1

|It|
X

i2It

log(↵̃�̃)

!2

 log(↵̃�̃)2 (47)

Thus due to Eq. 29:686

X

c2C

pc
X

It2Sc

⇡̂t,It ·

1

|It|
X

i2It

`t,i

!2


X

c2C

pc
X

It2Sc

⇡̂t,It log(↵̃�̃)
2
= log(↵̃�̃)2 (48)

And Eq. 30 reads,687

Regrett  ⌘T log(↵̃�̃)2 +
log(D)

⌘
� T log(p1)

⌘
(49)

Choosing ⌘ � 1, we have:688

Regrett  ⌘T log(↵̃�̃)2 +
log(D)

⌘
� ⌘T log(p1) = ⌘T (log(↵̃�̃)2 � log(p1)) +

log(D)

⌘
(50)

19

Thus setting ⌘ =

q
log(D)

T (log(↵̃�̃)2�log(p1))
� 1 finally we have:689

Regrett  O
✓q

(log(↵̃�̃)2 � log(p1)) · T log(D)

◆
(51)

690

Remark: Note that the condition ⌘ � 1 can be replaced by setting an appropriate p1 = T
p
✏ for691

0 < ✏  1. Thus Eq. 49 reads:692

Regrett  ⌘T log(↵̃�̃)2 +
log(D)� log(✏)

⌘
(52)

The setting ⌘ =
1

log(↵̃�̃)

q
log(D)�log(✏)

T yields:693

Regrett  O
⇣
log(↵̃�̃)�1

p
T (log(D)� log(✏))

⌘
(53)

A.3 Regret analysis for consistent queries694

The regret analyses presented in sections A.1 and A.2 hold when incorporating the consistent queries695

mentioned in section 3.2 for an adapted settings.696

Consider the update rule of Eq. 4 at each time step t = 1, . . . , T where the sampling of next coordinate697

blocks happens for K  T time steps at 0 = t0 < t1 < · · · < tk < · · · < tK�1 < tk = T . Both698

K and {tk}K�1
k=0 are unknown in advance and are revealed to the decision maker along the process.699

At each time tk a coordinate block is selected and fixed for the next tk+1 � tk steps. The effective700

losses incurred to the coordinates are the aggregation of all the temporal losses in this time interval701

t 2 [tk, tk+1 � 1]:702

¯̀
k,i =

tk+1�1X

t=tk

`t,i (54)

where those are all non-negative ¯̀
k,i � 0 since `t,i � 0.703

Since the update rule in Eq. 2 is applied in every time step t = 1, . . . , T , we effectively have:704

wk+1,i = wk,i

tk+1�1Y

t=tk

e�⌘`t,i = wk,ie
�⌘

Ptk+1�1

t=tk
`t,i

= wk,ie
�⌘ ¯̀k,i (55)

Define the stopping rule mentioned in section 3.2 such that the number of consistent queries in a705

subspace does not cross ⌧ 2 [1, 2, . . . , T], such that:706

tk+1 � tk  ⌧ 8k = 0, . . . ,K � 1 (56)

and thus ¯̀
k,i  ⌧ log(↵̃�̃) since `t,i  log(↵̃�̃).707

Hence, all the results hold by replacing T with K and log(↵̃�̃) with ⌧ log(↵̃�̃).708

B Implementation709

The proposed CobBO algorithm is implemented in Python 3. The source code is attached for review710

and is publicly released online. The original log files of all the experiments are attached for the review.711

The specifications of the testbed are as follows: CPU: Intel(R) Xeon(R) CPU E5-2682 v4 2.50GHz,712

Memory: 32GB, GPU: NVIDIA Tesla P100 PCIe 16GB.713

The code has been utilized for various complex real-world applications and handles many corner cases714

(hence the error fallbacks). For example, a parameter “smooth” of Scipy RBF (kernel=multiquadric,715

default=0.0) is increased by 0.02 upon “try catch” numerical issues of ill conditioning.716

20

C Auxiliary components and corner cases717

Besides the key components of CobBO, several auxiliary components are utilized for dealing with a718

larger variety of problems and corner cases.719

C.1 ✏-greedy block selection720

In order to balance between exploitation and exploration, we alternate between two different ap-721

proaches in selecting Ct. For the first approach that emphasizes exploitation, we estimate the top722

performing coordinate directions. A similar method is used in [39]. We select Ct to be the coordinates723

with the largest absolute gradient values of the RBF regression on the whole space ⌦ at point Vt.724

The second selection policy is as described in Sec. 3.1 works well for low dimensions where |Ct|/D725

is relatively large, as shown in Section 4.2.1. However, in high dimensions, |Ct|/D could be small.726

In this case, additionally we also encourage cyclic order for exploration. With a certain probability727

✏ (e.g., ✏ = 0.3), we select |Ct| coordinates whose ⇡t values are the largest, and with probability728

1� ✏, we randomly sample a coordinate subset according to the distribution ⇡t without replacement.729

Picking the coordinates with the largest values approximately implements a cyclic order, due to the730

selected weights update (Eq. 2) incurring probability oscillations. Since improvements tend to be less731

common than failures, the weights of the selected coordinates tend to decrease as the probability for732

choosing unselected coordinates increase in turn.733

C.2 Designing a stopping rule734

Section 3.2 describes the considerations for designing a stopping rule that determines when to sample735

a new coordinate block and perform Bayesian optimization in the corresponding subspace. Below are736

the details of CobBO that designs a rule based heuristic stopping time for a large variety of problems737

and corner cases.738

For each iteration t, denote the relative improvement at iteration t by �t =
yt�Mt�1

max(|Mt�1|,0.1)
. When739

looking backward in time from iteration t, denote by Pt the number of consecutive improvements740

(�s > 0, s  t) and by Nt the total number of consecutive queries in the same subspace as in ⌦t,741

respectively. We set742

Ct+1 =

⇢
sample a new coordinate block, Nt � ⌧ and �t  0.1 and Pt  ⇠
Ct, Nt < ⌧ or �t > 0.1 or Pt > ⇠

where the value ⌧ depends on both T and D, e.g.,743

⌧ =
T

1000
+

8
>>>>><

>>>>>:

1 D < 20

2 20  D < 70

3 70  D < 100

4 100  D < 200

5 200  D

; ⇠ =

8
<

:

4 �t < 0.05
2 0.05  �t  0.1
0 0.1 < �t

C.3 Escaping trapped local optima744

CobBO can be viewed as a variant of block coordinate ascent. Each subspace ⌦t contains a pivot745

point Vt. If fixing the coordinates’ values incorrectly, one is condemned to move in a suboptimal746

subspace. Considering that those are determined by Vt, it has to be changed in the face of many747

consecutive failures to improve over Mt in order to escape this trapped local maxima. We do that748

by decreasing the observed function value at Vt and setting Vt+1 as a selected sub-optimal random749

point in Xt. Specifically, we randomly sample a few points (e.g., 5) in Xt with their values above the750

median and pick the one furthest away from Vt.751

Figure 6 shows that the way CobBO escapes local optima is beneficial.752

We further the experiment with Levy and Ackley functions of 100 dimensions, as described in753

Section E.3 to compute the fraction of queries that improve the already observed maximal points due754

to the change of Vt.755

21

Figure 6: Ablation study for escaping local optima for Rastrigin on [�5, 10]50 with 20 initial random
samples. The best performing run out of 5 runs for each configuration is presented.

Problem Average # improved queries Average # improved queries due to escaping
Ackley 228 15.3
Levy 155 3

Table 1: The number of improved queries due to escaping local maxima

We observe that optimizing the Levy function yields very few queries that improve the maximal756

points by changing the pivot point, while optimizing the Ackley function can benefit more from that.757

C.4 Forming trust regions on two time scales758

Trust regions have been shown to be effective in Bayesian optimization [14, 1, 20, 41]. They are759

formed by shrinking the domain, e.g., by centering at Vt and halving the domain in each coordinate.760

CobBO forms coarse and fine trust regions on both slow and fast time scales, respectively, and761

alternates between them. This brings yet another tradeoff between exploration and exploitation. Since762

sampled points tend to reside near the boundaries in high dimensions [47], inducing trust regions763

encourages sampling densely in the interior. However, aggressively shrinking those trust regions764

too fast around Vt can lead to an over-exploitation, getting trapped in a local optimum. Hence, we765

alternate between two trust regions, following different time scales, as fast ones are formed inside766

slow ones. When the former allows fast exploitation of local optima, the latter avoids getting trapped767

in those.768

The refinements of trust regions are triggered when a virtual clock Kt, characterizing the Bayesian769

optimization progress, reaches certain thresholds. Specifically,770

Kt+1 =

8
<

:

Kt + 1 if �t  0

�t(�t, xt, xt�1) ·Kt if 0 < �t  �
0 if �t > �

(57)

where �t =
yt�Mt�1

max(|Mt�1|,0.1
is the relative improvement and for example,771

�t(�t, xt, xt�1) =

✓
1� �t

�

◆
·

1� ||xt � xt�1||p

|Ct|

!

772

Starting from the full domain ⌦, on a slow time scale, every time Kt reaches a threshold S (e.g.,773

S = 30), a coarse trust region ⌦S is formed followed by setting Kt+1 = 0. Within the coarse trust774

region, on a fast time scale, when the number of consecutive fails exceeds a threshold F < S (e.g,775

F = 6), a fine trust region is formed. In face of improvement, both the trust regions are back to the776

previous refinement of the coarse one.777

In addition, when the amount of queried points exceeds a threshold, e.g., 70% of the query budget,778

we shrink the total space ⌦ every time when the fraction of the queried points increases by 10%.779

Figure 7 compares CobBO with two other schemes: without any trust regions and forming only780

coarse trust regions. Two time scales yields better results.781

22

Algorithm 2: FormTrustRegions(Kt,yt,Mt�1)
1 Parameters:
2 Slow/fast thresholds S/F respectively
3 Fast duty cycle ⌧F
4 Init: ⌦0, ⌦̃0 ⌦

5 if yt > Mt�1 then
6 ⌦̃t Double ⌦̃t�1 around Vt

7 ⌦t ⌦̃t [⌦̃t is the trust region formed on the slow time scale]
8 else if Kt == S then
9 ⌦̃t Halve ⌦̃t around Vt

10 ⌦t ⌦̃t

11 Reset Kt = 0

12 else
13 ⌦̃t ⌦̃t�1

14 if mod (Kt,F + ⌧F) == F � 1 then
15 ⌦t Halve ⌦t�1 around Vt

16 else if mod (Kt,F + ⌧F) == F + ⌧F � 1 then
17 ⌦t ⌦̃t

18 else
19 ⌦t ⌦t�1

20 Output: Trust Region ⌦t

Figure 7: Ablation study for the trust regions of two scales for Rastrigin on [�5, 10]50 with 20 initial
random samples. The best performing run out of 5 runs for each configuration is presented.
D Default hyper-parameter configuration782

Table 2 specifies the default configuration of CobBO used for all the benchmarks in this paper.783

E The selected hyperparameters are robust to many problems784

We provide more experiments using the very same hyperparameters (Appendix D) for demonstrating785

thier robustnesss and the good performance of CobBO for a range of dimensions. Confidence intervals786

(95%) are computed by repeating 30 and 10 independent experiments for the small and medium-sized787

functions and the 100-dimensional functions, respectively.788

E.1 Small-sized synthetic black-box functions (minimization)789

Three additional synthetic 10 dimensional functions [57] are experimented with in Fig. 8, including790

Ackley over [�5, 10]10, Levy over [�5, 10]10 and Rastrigin over [�3, 4]10. TuRBO is configured the791

same as in [14], with a batch size of 10 and 5 concurrent trust regions where each has 10 initial points.792

23

Hyper-
parameter Description Default Value

⇥
The threshold for the number of

consecutive fails qt before changing Vt

60 if T > 2000

else 30

↵ Increase multiplicative ratio for the coordinate distribution update 2.0
� Decay multiplicative ratio for the coordinate distribution update 1.1
p Probability for selecting coordinates with the largest ⇡t values 0.3

S
The threshold for the virtual clock value Kt

before shrinking the coarse trust region ⌦S
30

F
The threshold for the number of consecutive fails qt before

shrinking the fine trust region ⌦F on the fast time scale 6

⌧F The number of consecutive fails qt in the fine trust region ⌦F 6

�
The relative improvement threshold

governing the virtual clock update rule 0.1

Gussian process kernel Matern 5/2
Table 2: CobBO’s hyperparameters configuration for all of the experiments

The other algorithms use 20 initial points. The results are shown in Fig. 8. CobBO shows competitive793

or better performance. It finds the best optima on Ackley and Levy among all the algorithms and794

outperforms the others for the difficult Rastrigin function. Notably, BADS is more suitable for low795

dimensions, as commented in [1]. Its performance is close to CobBO except for Rastrigin.

Figure 8: Low dimensional problems: Ackley (left), Levy (middle) and Rastrigin (right)
796

In Fig. 9 we show that CobBO also optimizes well the Michalewicz function on 10 dimensions,797

although it has symmetric bumps, where certain subspaces pass through a point in a symmetrical798

manner and others break it. Other real applications include parameter tuning for recommendation

Figure 9: Performance over the low dimensional Michalewicz function with symmetrical and
asymmetrical subspaces

799
systems, database online performance tuning, and simulation based parameter optimization. However,800

due to deviating from the main study of this paper, we refrain from presenting these results that801

require elaborated description on the application backgrounds.802

E.2 Medium-sized synthetic black-box functions (minimization):803

We test three synthetic functions (30 dimensions), including Ackley on [�5, 10]30, Levy [�5, 10]30,804

and Rastrigin on [�3, 4]30. In addition, we add experiments for an additive function of 36 dimensions,805

24

Figure 10: Medium dimensional problems: Ackley (left), Levy (middle) and Rastrigin (right)

defined as f36(x) = Ackley(x1) + Levy(x2) + Rastrigin(x3) + Hartmann(x4), where the first806

three terms express the same functions over the same domains specified in Section 3.1 of this paper,807

with the Hartmann function over [0, 1]6. TuRBO is configured identically the same as in Section 3.1,808

with a batch size of 10 and 5 trust regions with 10 initial points each. The other algorithms use 20809

initial points. The results are shown in Fig. 10 and 11, where CobBO shows competitive or better810

performance compared to all of the methods tested across all of these problems.

Figure 11: Performance over an additive function of 36 dimensions

811

Figure 12: Performance over high dimensional synthetic problems: Levy (left) and Rastrigin (right)

E.3 100 dimensional synthetic black-box functions (minimization):812

We minimize the Levy and Rastrigin functions on [�5, 10]100 with 500 initial points. TuRBO is813

configured with 15 trust regions and a batch size of 100. As commented in [14], these two problems814

are challenging and have no redundant dimensions. Fig. 12 (left) shows that CobBO can greatly815

reduce the trial complexity. For Levy, it finds solutions close to the final one within 1, 000 trials,816

and eventually reach the best solution among all the algorithms tested. For Rastrigin, within 2, 000817

trials CobBO and TuRBO surpass the final solutions of all the other methods, eventually with a large818

margin.819

25

F Comparison to LineBO820

Although sharing some common basic ideas, LineBO [29] reduces the acquisition maximization cost821

by restricting on a line but does not reduce the expensive computational costs of the GP regression in822

the full space. Fig. 13 shows that LineBO is significantly outperformed by CobBO, through a typical823

example in D = 10 (Ackely). In another typical experiment of D = 30 and a query budget of 5000,

Figure 13: A typical example of CobBO outperforming different variants of LineBO
824

CobBO reached 0.12 and LineBO reached 7.6.825

G Comparison to ALEBO826

ALEBO [32] is designed for high-dimensional (large D) problems with low intrinsic dimensions827

(small d). For comparison, we first test CobBO using exactly the same setting as in [32] for Hartmann6828

with D = 1000 dimensions and only d = 6 intrinsic dimensions, as shown in Fig. 14. Then, for829

the general problems without the assumption on low intrinsic dimensions, we test ALEBO on830

Ackley(10D) in three sets of experiments in Fig. 15, where D = d = 10. Since ALEBO algorithm831

requires to provide a low intrinsic dimension d < D, we test d = 2, 4, 8 dimensions (i.e., ALEBO-2,832

ALEBO-4, and ALEBO-8), respectively.833

Fig. 14 and 15 show the final results by repeating each experiment 30 times. For the first case,834

ALEBO indeed outperforms CobBO, since CobBO is not suitable for dimensions larger than a few835

hundreds. For the second case, ALEBO does not show good performance and is outperformed by836

CobBO, TurBO and CMAES. Regarding the computation times, it takes 6 to 12 hours for ALEBO837

and only 3 minutes for CobBO to finish 500 queries for each experiment on our testbed for the second838

case.839

26

Figure 14: Performance on Hartmann6 (D = 1000, d = 6)

Figure 15: Compare ALEBO and CobBO on Ackley(10D)

27

