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ABSTRACT

Despite significant advancements in out-of-distribution (OOD) detection, existing
methods still struggle to maintain robustness against adversarial attacks, com-
promising their reliability in critical real-world applications. Previous studies
have attempted to address this challenge by exposing detectors to auxiliary OOD
datasets alongside adversarial training. However, the increased data complexity
inherent in adversarial training, and the myriad of ways that OOD samples can arise
during testing, often prevent these approaches from establishing robust decision
boundaries. To address these limitations, we propose AROS, a novel approach
leveraging neural ordinary differential equations (NODEs) with Lyapunov stability
theorem in order to obtain robust embeddings for OOD detection. By incorporating
a tailored loss function, we apply Lyapunov stability theory to ensure that both
in-distribution (ID) and OOD data converge to stable equilibrium points within the
dynamical system. This approach encourages any perturbed input to return to its
stable equilibrium, thereby enhancing the model’s robustness against adversarial
perturbations. To not use additional data, we generate fake OOD embeddings by
sampling from low-likelihood regions of the ID data feature space, approximating
the boundaries where OOD data are likely to reside. To then further enhance
robustness, we propose the use of an orthogonal binary layer following the stable
feature space, which maximizes the separation between the equilibrium points of
ID and OOD samples. We validate our method through extensive experiments
across several benchmarks, demonstrating superior performance, particularly under
adversarial attacks. Notably, our approach improves robust detection performance
from 37.8% to 80.1% on CIFAR-10 vs. CIFAR-100 and from 29.0% to 67.0%
on CIFAR-100 vs. CIFAR-10. Code and pre-trained models are available at
https://github.com/AdaptiveMotorControlLab/AROS.

1 INTRODUCTION

Deep neural networks have demonstrated remarkable success in computer vision, achieving significant
results across a wide range of tasks. However, these models are vulnerable to adversarial examples —
subtly altered inputs that can lead to incorrect predictions (1; 2; 3). As a result, designing a defense
mechanism has emerged as a critical task. Various strategies have been proposed, and adversarial
training has become one of the most widely adopted approaches (4; 5; 6). Recently, Neural Ordinary
Differential Equations (NODEs) have attracted attention as a defense strategy by leveraging principles
from control theory. By leveraging the dynamical system properties of NODEs, and imposing stability
constraints, these methods aim to enhance robustness with theoretical guarantees. However, they
have been predominantly studied in the context of classification tasks (7; 8; 9; 10; 11; 12; 13; 14; 15),
and not in out-of-distribution (OOD) detection.

OOD detection is a safety-critical task that is crucial for deploying models in the real world. In this
task, training is limited to in-distribution (ID) data, while the inference task involves identifying OOD
samples, i.e., samples that deviate from the ID data (16; 17). Recent advancements have demonstrated
impressive performance gains across various detection benchmarks (18; 19; 20; 21). However, a
significant challenge arises concerning the robustness of OOD detectors against adversarial attacks.
An adversarial attack on a detector involves introducing minor perturbations to test samples, causing
the detector to predict OOD as ID samples or vice versa. Yet, a robust OOD detector is imperative,
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(A) ImageNet vs. Texture
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(C) CIFAR100 vs. CIFAR10

Figure 1: OOD detection performance for various models under different perturbation magni-
tudes. The perturbations are generated using PGD1000 (ℓ∞) attack targeting both test ID and OOD
samples. (A) ImageNet is used as the ID dataset, while the Texture dataset is used as the OOD during
test time. (B) CIFAR-10 is utilized as the ID, with CIFAR-100 as the OOD. (C) CIFAR-100 is used
as the ID, with CIFAR-10 as the OOD. A perfect detector achieves an AUROC of 100%, a random
detector scores 50%, and a fully compromised detector under attack scores 0%. Notably, no other
model achieves detection performance above random (i.e., greater than 50% AUROC) at ϵ = 8

255 .

especially in scenarios like medical diagnostics and autonomous driving (22; 23; 24; 25; 26). Recently,
several approaches have sought to address this challenge by first demonstrating that relying solely
on ID data is insufficient for building adversarially robust detectors (27; 28; 29; 23; 30; 26; 31; 32;
33; 34; 35; 36; 37; 38). Consequently, new methods propose incorporating copious amounts of
auxiliary OOD data in conjunction with adversarial training to improve the detector’s robustness.
While effective, a significant gap remains between detector performance on clean data and their
robustness against adversarial attacks (see Figure 1, Tables 1, 2a, and 2b).

This performance gap primarily arises from the wide variety of potential OOD samples encountered
during testing. Relying exclusively on an auxiliary dataset to generate perturbed OOD data can bias
the model toward specific OOD instances, thereby compromising the detector’s ability to generalize to
unseen OOD data during inference (16; 39; 40; 41; 42; 43). This limitation is particularly pronounced
in adversarial settings, where adversarial training demands a higher level of data complexity compared
to standard training (44; 45; 46; 5; 47). Additionally, the collection of auxiliary OOD data is a costly
process, as it must be carefully curated to avoid overlap with ID semantics to ensure that the detector
is not confused by data ambiguities (39; 41). Finally, as our empirical analysis reveals, existing
OOD detection methods are vulnerable even to non-adversarial perturbations – a concerning issue
for open-world applications, where natural factors such as lighting conditions or sensor noise can
introduce significant variability (48) (see Table 3).

Our Contribution: We propose AROS (Adversarially Robust OOD Detection through Stability), a
novel approach that leverages NODEs with the Lyapunov stability theorem (Figure 2). This constraint
asserts that small perturbations near stable equilibrium points decay over time, allowing the system
state to converge back to equilibrium. By ensuring that both ID and OOD data are stable equilibrium
points of the detector, the system’s dynamics mitigate the effects of perturbations by guiding the state
back to its equilibrium. Instead of using extra OOD image data, we craft fake OOD samples in the
embedding space by estimating the ID boundary. Additionally, we show that adding an orthogonal
binary layer increases the separation between ID and OOD equilibrium points, enhancing robustness.
We evaluate AROS under both adversarial and clean setups across various datasets, including large-
scale datasets such as ImageNet (49) and real-world medical imaging data (i.e., ADNI (22)), and
compare it to previous state-of-the-art methods. Under adversarial scenarios, we apply strong attacks,
including PGD1000 (44), AutoAttack (50), and Adaptive AutoAttack (51).

2 PRELIMINARIES

Out-of-Distribution Detection. In an OOD detection setup, it is assumed that there are two
sets: an ID dataset and an OOD dataset. We denote the ID dataset as Din, which consists of
pairs (xin, yin), where xin represents the ID data, and yin ∈ Y in := {1, . . . ,K} denotes the class
label. Let Dout represent the OOD dataset, containing pairs (xout, yout), where yout ∈ Yout :=
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{K + 1, . . . ,K + O}, and Yout ∩ Y in = ∅ (52; 18). In practice, different datasets are often used
for Din and Dout. Alternatively, another scenario is called open-set recognition, where a subset of
classes within a dataset is considered as ID, while the remaining classes are considered as OOD
(53; 16; 54; 55). A trained model F assigns an OOD score SF to each test input, with higher scores
indicating a greater likelihood of being OOD.

Adversarial Attack on OOD Detectors. Adversarial attacks involve perturbing an input sample x
to generate an adversarial example x∗ that maximizes the loss function ℓ(x∗; y). The perturbation
magnitude is constrained by ϵ to ensure that the alteration remains imperceptible. Formally, the
adversarial example is defined as x∗ = argmaxx′ ℓ(x′; y), subject to ∥x−x∗∥p ≤ ϵ, where p denotes
the norm (e.g., p = 2,∞) (56; 3; 44). A widely used attack method is Projected Gradient Descent
(PGD) (44), which iteratively maximizes the loss by following the gradient sign of ℓ(x∗; y) with a
step size α. For adversarial evaluation (28; 34; 37), we adapt this approach by targeting the OOD
score SF (x). Specifically, the adversarial attack aims to mislead the detector by increasing the OOD
score for ID samples and decreasing it for OOD samples, causing misprediction:

x∗
0 = x, x∗

t+1 = x∗
t + α · sign (I(y) · ∇xSF (x

∗
t )) , x∗ = x∗

n,

where n is the number of steps, and I(y) = +1 if y ∈ Y in and −1 if y ∈ Yout.

Neural ODE and Stability. In the NODE framework, the input and output are treated as two
distinct states of a continuous dynamical system, whose evolution is described by trainable layers
parameterized by weights ϕ and denoted as hϕ. The state of the neural ODE, represented by Z,
evolves over time according to these dynamics, establishing a continuous mapping between the input
and output (57; 58; 59). The relationship between the input and output states is governed by the
following differential equations: dz(t)

dt = hϕ(z(t), t), z(0) = zinput, z(T ) = zoutput.

3 RELATED WORK

OOD Detection Methods. Existing OOD detection methods can be broadly categorized into post-
hoc and training-based approaches. Post-hoc methods involve training a classifier on ID data and
subsequently using statistics from the classifier’s outputs or intermediate representations to identify
OOD samples. For instance, Hendrycks et al. (52) propose using the maximum softmax probability
distributions (MSP) as a metric. The MD method (60) leverages the Mahalanobis Distance in the
feature space, and OpenMax (61) recalibrates classification probabilities to improve OOD detection.
Training-based methods, modify the training process to enhance OOD detection capabilities. Such
modifications can include defining additional loss functions, employing data augmentation techniques,
or incorporating auxiliary networks. Examples of training-based methods designed for standard OOD
detection include VOS (39), DHM (19), CATEX (62), and CSI (63). On the other hand, ATOM (30),
ALOE (28), ATD (34), and RODEO (37) have been developed specifically for robust detection. For
detailed descriptions of these methods, please refer to Appendix A1.

Stable NODE for Robustness. TiSODE (64) introduces a time-invariant steady NODE to constrain
trajectory evolution by keeping the integrand close to zero. Recent works employ Lyapunov stability
theory to develop provable safety certificates for neural network systems, particularly in classification
tasks. PeerNets (9) was among the first to use control theory and dynamical systems to improve
robustness. Kolter et al. (65) designed a Lyapunov function using neural network architectures to
stabilize a base dynamics model’s equilibrium. ASODE (66) uses non-autonomous NODEs with
Lyapunov stability constraints to mitigate adversarial perturbations in slowly time-varying systems.
LyaDEQ (67) introduces a new module based on ICNN (68) into its pipeline, leveraging deep
equilibrium models and learning a Lyapunov function to enhance stability. SODEF (69) enhances
robustness against adversarial attacks by applying regularizers to stabilize the behavior of NODE
under the time-invariant assumption. In Table 4a, we analyze these stability-based classifiers as OOD
detectors and highlight the potential of Lyapunov’s theorem as a framework for robust OOD detection,
and show our method’s ability to improve performance over these excellent baselines.

4 PROPOSED METHOD

Motivation. A robust detector should be resistant to shifting ID test samples to OOD, and vice
versa, under adversarial attack. A common approach for developing robust OOD detectors involves
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Figure 2: An illustration of AROS. (A) To obtain robust initial features for OOD detection, we
perform adversarial training on a classifier using only ID samples. (B) We estimate the ID distribution
within the embedding space and generate fake OOD embeddings as a proxy for real OOD data.
This enables the creation of two balanced classes of samples: ID and fake OOD. (C) The model
incorporates a NODE layer hϕ and an Orthogonal Binary Layer Bη. Using these two classes, we
train the pipeline with the loss function LSL to stabilize the system dynamics. (D) During inference,
an input passes through the feature extractor fθ, NODE hϕ, and Orthogonal Binary Layer Bη, and
the resulting likelihood from Bη serves as the OOD score. The complete algorithmic workflow of
AROS can be found in Appendix A2.

employing adversarial training on ID data, combined with an auxiliary real OOD dataset, to expose the
detector to potential vulnerable perturbations. The core intuition is that adversarial training on ID data
alone, without an accompanying OOD dataset, leaves the detector susceptible to perturbations that
alter the boundary between ID and OOD data during testing (28; 29; 30; 23; 34; 26; 31; 33; 36; 35; 37).
Beyond the unsatisfactory performance of the prior approach, there are further challenges with this
strategy. A key issue is the cost of preparing an auxiliary dataset disjoint from the ID data, along
with ensuring that the selected OOD images adequately cover the boundary between ID and OOD
samples—a critical factor for such frameworks (70; 37; 30; 24). Moreover, adversarial training of
neural networks is notably more data-intensive than standard setups, further increasing complexity
(45; 46; 5; 47). There is also the concern that exclusively relying on perturbed OOD data may
introduce biases toward specific OOD examples (39; 41). To address these challenges, we propose
AROS, which utilizes provable stability theorems in the embedding space to develop a robust OOD
detector without requiring exposure to perturbed OOD image data.

Overview of AROS. AROS ensures that perturbed input samples remain close to their non-perturbed
counterparts in the feature space by leveraging the Lyapunov stability theorem (71; 72; 73; 74).
By using a NODE, we consider the model as a dynamical system and design it so that ID and
OOD samples converge to distinct stable equilibrium points of that system. This approach prevents
significant deviations in the output when adversarial perturbations are applied. However, since OOD
data is unavailable, we craft fake OOD samples in the embedding space by estimating the boundaries
of the ID distribution and sampling from the corresponding low-likelihood regimes. To further avoid
any misprediction between OOD and ID data caused by perturbations, we maximize the distance
between their equilibrium points by leveraging an orthogonal binary layer for classification. In the
following, we will thoroughly explain each proposed component, highlighting the benefits of AROS.

4.1 FAKE EMBEDDING CRAFTING STRATEGY

There have been efforts to utilize synthetic features, primarily under clean scenarios (39; 41; 75; 70).
However, for adversarial settings, prior work has often relied on a large pre-trained model and
additional data. In contrast, our approach limits information to ID samples, proposing to craft OOD
data from ID data in the embedding space. These generated OOD samples are subsequently utilized
in the training step.
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We employ a well-trained encoder to transform ID training data into robust embedding spaces. To
achieve these embeddings, we first adversarially train a classifier on ID training samples using
cross-entropy loss LCE and the PGD10(l∞) attack. By removing the last fully connected layer from
the classifier, we utilize the remaining encoder, denoted as fθ, to extract ID embeddings r, where
r = fθ(x) from an ID training sample x (Figure 2A). Specifically, by considering Din

train with K
classes, we estimate their distribution as a K class-conditional Gaussian distribution, a well-known
approach in the detection literature (39; 76; 77; 78; 79; 80). We then select fake embeddings r from
the feature space corresponding to class j such that r ∼ N (µ̂j , Σ̂j) satisfies:

1
(2π)d/2|Σ̂j |1/2

exp
(
− 1

2 (r − µ̂j)
T Σ̂−1

j (r − µ̂j)
)
< β, (1)

where, β serves as a likelihood threshold, and we set that to a small value (e.g., 0.001) (Figure 2B).
Additionally, we conduct an ablation study to evaluate the impact of different values of β and discuss
practical considerations (see Appendix A3.3).Our comprehensive ablation experiments demonstrate
the consistent performance of AROS across varying β values. Note, d is the dimensionality of the
feature vectors r, and j = 1, . . . ,K. The terms µ̂j and Σ̂j represent the mean vector and covariance
matrix of the j-th class of ID training samples in feature space, respectively:

µ̂j =
1
nj

∑
i:yi=j fθ(xi), Σ̂j =

1
nj−1

∑
i:yi=j(fθ(xi)− µ̂j)(fθ(xi)− µ̂j)

T , (2)

where nj is the number of samples in class j. By sampling equally across each class of Din
train,

we generate a set of synthetic, “fake” OOD embeddings (Figure 2C), denoted as rOOD. We then
construct a balanced training set by taking the union of the embeddings of ID samples and the OOD
embeddings, defining it as: Xtrain =

{
fθ(Din

train) ∪ rOOD
}
. We define the labels y for this set as 0 for

ID and 1 for fake OOD embeddings.

4.2 LYAPUNOV STABILITY FOR ROBUST OOD DETECTION

As mentioned, several approaches have been proposed to apply Lyapunov’s theorem to deep networks
in practice, including methods such as LyaDEQ (67), ASODE (66), and SODEF (69). Here, we utilize
their framework to define the objective function and also benchmark our approach to these baselines.
Amongst them, SODEF adopts a time-invariant (69; 64) assumption, which makes stability analysis
more practical, as the behavior of the neural ODE depends solely on the state z(t), independent of
the specific time that the state is reached. This assumption implies that the equilibrium points of the
NODE remain constant over time, facilitating a more tractable analysis of how perturbations evolve
around these points (64; 81; 69). This is supported by our experiments in Table 4a, which highlight
SODEF’s superior robustness. Consequently, we adopt the time-invariant framework and use their
approach to define the loss function. In order to gain intuition for our approach, we provide the basic
mathematical overview of how we leverage the Lyapunov theorems. In this study, as a practical
consideration, we assume that the networks utilized have continuous first derivatives with respect to
the input z(0), which has been shown to be a reasonable assumption (82).

For a given dynamic system dz(t)
dt = hϕ(z(t)), a state z⋆ is an equilibrium point of system if z⋆

satisfies h(z⋆) = 0. An equilibrium point is stable if the trajectories starting near z⋆ remain around it
all the time. More formally:

Definition 1: (Lyapunov stability (83)). An equilibrium z⋆ is said to be stable in the sense of
Lyapunov if, for every ε > 0, there exists δ > 0 such that, if ∥z(0)− z⋆∥ < δ, then ∥z(t)− z⋆∥ < ε
for all t ≥ 0. If z⋆ is stable, and limt→∞ ∥z(t)− z⋆∥ = 0, z⋆ is said to be asymptotically stable.

Theorem 1: (Hartman–Grobman Theorem (84)). Consider a time-invariant system with continuous
first derivatives, represented by dz(t)

dt = h(z(t)). For a fixed point z∗, if the Jacobian matrix ∇h
evaluated at z∗ has no eigenvalues with a real part equal to zero, the behavior of the original
nonlinear dynamical system can be analyzed by studying the linearization of the system around this
fixed point. The linearized system is given by dz′(t)

dt = Az′(t), where A is the Jacobian matrix
evaluated at z∗. This allows for a simplified analysis of the local dynamics in the vicinity of z∗.

Theorem 2: (Lyapunov Stability Theorem (83)) The equation dz′(t)
dt = Az′(t), is asymptotically

stable if and only if all eigenvalues of A have negative real parts.
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Theorem 3: (Levy–Desplanques Theorem (85)) Let A = [aij ] be an n-dimensional square matrix
and suppose it is strictly diagonally dominant, i.e., |aii| ≥

∑
i̸=j |aij | and aii ≤ 0 for all i. Then

every eigenvalue of A has a negative real part.

Definition 1 introduces the concept of asymptotic stability. Building on this, Theorem 1 demonstrates
that the behavior of a nonlinear, time-invariant system near a fixed point can be effectively analyzed
through its linearization. Theorem 2 then establishes a key condition for the asymptotic stability of
linear systems: all eigenvalues of the system matrix must have negative real parts. To facilitate the
verification of this stability condition, Theorem 3 provides a practical criterion based on the matrix’s
eigenvalues. In the subsequent section, we will introduce an objective function designed to adhere to
these stability criteria.

4.3 ORTHOGONAL BINARY LAYER AND TRAINING STEP

We propose incorporating an orthogonal binary layer (86) denoted as Bη after the NODE hϕ in our
pipeline to maximize the distance between the equilibrium points of ID and OOD data. Intuitively,
this layer prevents the misalignment of convergence between perturbed OOD data and ID data
by maximizing the distance between their equilibrium points. Given the output z from the hϕ,
the orthogonal binary layer Bη applies a transformation using weights w such that wTw = I ,
ensuring orthogonality. Although Lyapunov stability encourages perturbed inputs to converge to
neighborhoods of their unperturbed counterparts, the infinite-depth nature of NODE (87) makes them
susceptible to degraded activations due to exploding or vanishing gradients (88). The introduction of
an orthogonal layer mitigates this risk. Moreover, encouraging orthogonality within neural networks
has demonstrated multiple benefits, such as preserving gradient norms and enforcing low Lipschitz
constants—both of which contribute to enhanced robustness (89; 90; 91).

To satisfy the aforementioned conditions, we optimize the following empirical Lagrangian LSL with
training data (Xtrain, y):

LSL = min
ϕ,η

1

|Xtrain|

(
ℓCE(Bη(hϕ(Xtrain)), y) + γ1∥hϕ(Xtrain)∥2 + γ2exp

(
−

n∑
i=1

[∇hϕ(Xtrain)]ii

)

+ γ3exp

 n∑
i=1

−|[∇hϕ(Xtrain)]ii|+
∑
j ̸=i

|[∇hϕ(Xtrain)]ij |

) (3)

Note that here, Xtrain serves as the initial hidden state, i.e., z(0), for the NODE layer. The first term,
ℓCE, is a cross-entropy loss function. The second term forces z(0) to be near the equilibrium points,
while the remaining terms ensure strictly diagonally dominant derivatives, as described in Theorem
3. The exp(.) function is selected as a monotonically increasing function with a minimum bound to
limit the unbounded influence of the two regularizers, preventing them from dominating the loss.
We set γ1 = 1 to balance the first regularization term with ℓCE, and γ2 = γ3 = 0.05 to assign small,
equal values that effectively enforce stability without overpowering the other terms. By setting γ2
and γ3 equal, we ensure that both stability conditions contribute equally. Details of the ablation study
on these hyperparameters, along with other training step specifics, are provided in Appendices A3.3.2
and A4. By optimizing this objective function, the model learns Lyapunov-stable representations
where ID and OOD equilibrium points are well-separated in the feature space after the NODE. The
Bη captures the probability distribution over the binary classes (ID vs. fake OOD), and for the OOD
score of an input x, we use its probability assigned to the OOD class (Figure 2D).

5 EXPERIMENTS

Here we present empirical evidence to validate the effectiveness of our method under various setups,
including adversarial attacks, corrupted inputs (non-adversarial perturbations), and clean inputs
(non-perturbed scenarios). We note that the backbone architecture for the methods considered is the
same as described in Table 1.

First, we adversarially train a classifier on ID data and then use it to map the data into a robust
embedding space. A Gaussian distribution is fitted around these embeddings, and low-likelihood
regions of the distribution are sampled to create fake OOD data as a proxy for OOD test samples. We
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Table 1. Performance of OOD detection methods under clean evaluation, random corruption (Gaussian
noise), and PGD (l∞) adversarial attack with 1000 steps and 8

255 , as well as AutoAttack and Adaptive
AutoAttack (AA), measured by AUROC (%). A clean evaluation is one where no attack is made on
the data. For corruption evaluation, Gaussian noise from the ImageNet-C (48) benchmark was used.
The best results are highlighted in bold, and the second-best results are underlined in each row.

† These methods leveraged auxiliary datasets and these ∗ used large pretrained models as part of their pipeline.

Dataset Attack Method

Din Dout
VOS DHM CATEX∗ CSI ATOM† ALOE† ATD†∗ RODEO†∗ AROS
(ResNet) (WideResNet) (CLIP-ViT) (ResNet) (DenseNet) (WideResNet) (WideResNet) (CLIP-ViT) (WideResNet)

C
IF

A
R

10

C
IF

A
R

10
0

Clean 87.9 100.0 88.3 92.2 94.2 78.8 82.0 75.6 88.2

Corruption 56.2 57.7 60.4 54.7 57.3 54.5 59.2 58.6 84.3

PGD1000 4.2 1.8 0.8 3.6 1.6 16.1 37.1 37.8 80.1

AutoAttack 0.0 1.2 0.0 0.4 0.5 14.8 36.2 35.9 78.9

AdaptiveAA 0.0 0.0 1.7 0.0 0.0 11.5 34.8 32.3 76.4

C
IF

A
R

10
0

C
IF

A
R

10

Clean 71.3 100.0 85.1 53.2 87.5 43.6 57.5 61.5 74.3

Corruption 53.8 58.2 57.4 50.1 55.3 56.1 56.0 54.9 71.8

PGD1000 5.4 0.0 4.0 2.8 2.0 1.3 12.1 29.0 67.0

AutoAttack 2.6 0.0 0.3 0.9 0.0 0.0 10.5 28.3 66.5

AdaptiveAA 0.0 1.4 0.0 0.0 0.0 0.2 9.4 26.7 65.2

then demonstrate that time invariance, which establishes that the NODE’s behavior does not explicitly
depend on time, leads to more stable behavior of the detector under adversarial attacks (see Section
5). Consequently, we leverage Lyapunov stability regularization under a time-invariant assumption
for training. However, a potential challenge arises when ID and OOD equilibrium points are located
near each other. As a remedy, we introduce an orthogonal binary layer (86; 92; 93) that enhances
the separation between ID and OOD data by increasing the distance between their neighborhoods
of Lyapunov-stable equilibrium. This enhances the model’s robustness against shifting adversarial
samples from OOD to ID and vice versa. Finally, we use the orthogonal binary layer’s confidence
output as the OOD score during inference.

Experimental Setup & Datasets. We evaluated OOD detection methods under both adversarial and
clean scenarios (see Tables 1 and 2a). Each experiment utilized two disjoint datasets: one as the ID
dataset and the other as the OOD test set. For Table 1, CIFAR-10 or CIFAR-100 (94) served as the
ID. Table 2a extends the evaluation to ImageNet-1k as the ID, with OOD being comprised of Texture
(95), SVHN (96), iNaturalist (97), Places365 (98), LSUN (99), and iSUN (100).

An OSR (101) setup was also tested, in which each experiment involved a single dataset that was
randomly split into ID (60%) and OOD (40%) subclasses, with results averaged over 10 trials.
Datasets used for OSR included CIFAR-10, CIFAR-100, ImageNet-1k, MNIST (102), FMNIST
(103), and Imagenette (104) (Table 2b). Additionally, models were evaluated on corrupted data
using the CIFAR-10-C and CIFAR-100-C benchmarks (48) (see Table 3). Specifically, both the ID
and OOD data were perturbed with corruptions that did not alter semantics but introduced slight
distributional shifts during testing. Further details on the datasets are provided in Appendix A5.

Evaluation Details. For adversarial evaluation, all ID and OOD test data were perturbed by using a
fully end-to-end PGD (l∞) attack targeting their OOD scores (as described in Section 2). We used
ϵ = 8

255 for low-resolution images and ϵ = 4
255 for high-resolution images. The PGD attack steps

denoted as M were set to 1000, with 10 random initializations sampled from the interval (−ϵ, ϵ).
The step size for the attack was set to α = 2.5 × ϵ

M (4). Additionally, we considered AutoAttack
and Adaptive AutoAttack (Table 1). Details on how these attacks are tailored for the detection task
can be found in Appendix A4. As the primary evaluation metric, we used AUROC, representing
the area under the receiver operating characteristic curve. Additionally, we used AUPR and FPR95
as supplementary metrics, with results presented in Table 4b. AUPR represents the area under
the precision-recall curve, while FPR95 measures the false positive rate when the model correctly
identifies 95% of the true positives.

Reported and Re-Evaluated Results. Some methods may show different results here compared to
those reported in their original papers (30; 28) due to our use of stronger attacks we incorporated
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Table 2a. Performance of OOD detection methods under clean evaluation and PGD1000(l∞) measured by
AUROC (%). The perturbation budget ϵ is set to 8

255
for low-resolution datasets and 4

255
for high-resolution

datasets. The table cells denote results in the ‘Clean/PGD1000 ’ format.

Dataset Method

Din Dout VOS DHM CATEX CSI ATOM ALOE ATD RODEO AROS
(Ours)

C
IF

A
R

-1
0

CIFAR-100 87.9/4.2 100.0/1.8 88.3/0.8 92.2/3.6 94.2/1.6 78.8/16.1 82.0/37.1 75.6/37.8 88.2/80.1

SVHN 93.3/2.8 100.0/ 4.5 91.6/2.3 97.4/1.7 89.2/4.7 83.5/26.6 87.9/39.0 83.0/38.2 93.0/86.4

Places 89.7/5.2 99.6/0.0 90.4/ 4.7 93.6/0.1 98.7/5.6 85.1/21.9 92.5/59.8 96.2/70.2 90.8/83.5

LSUN 98.0/7.3 100.0/2.6 95.1/0.8 97.7/0.0 99.1/1.0 98.7/50.7 96.0/68.1 99.0/ 85.1 90.6/ 82.4

iSUN 94.6/0.5 99.1/2.8 93.2/ 4.4 95.4/3.6 99.5/2.5 98.3/49.5 94.8/65.9 97.7/78.7 88.9/81.2

C
IF

A
R

-1
00

CIFAR-10 71.3/5.4 100.0/2.6 85.1/ 4.0 53.2/0.7 87.5/2.0 43.6/1.3 57.5/12.1 61.5/29.0 74.3/67.0

SVHN 92.6/3.2 100.0/0.8 94.6/5.7 90.5/4.2 92.8/5.3 74.0/18.1 72.5/27.6 76.9/31.4 81.5/70.6

Places 75.5/0.0 100.0/3.9 87.3/1.4 73.6/0.0 94.8/3.0 75.0/12.4 83.3/40.0 93.0/66.6 77.0/69.2

LSUN 92.9/5.7 100.0/1.6 94.0/8.9 63.4/1.8 96.6/1.5 98.7/50.7 96.0/68.1 98.1/63.1 74.3/68.1

iSUN 70.2/4.5 99.6/3.6 81.2/0.0 81.4/3.0 96.4/1.4 98.3/49.5 94.8/65.9 95.1/65.6 72.8/67.9

Im
ag

eN
et

-1
k

Texture 86.7/0.8 82.4/0.0 92.7/0.0 85.8/0.6 88.9/7.3 76.2/21.8 74.2/15.7 71.3/19.4 78.3/69.2

iNaturalist 94.5/0.0 80.7/0.0 97.9/2.0 85.2/1.7 83.6/10.5 78.9/19.4 72.5/12.6 72.7/15.0 84.6/75.3

Places 90.2/0.0 76.2/0.4 90.5/0.0 83.9/0.2 84.5/12.8 78.6/15.3 75.4/17.5 69.2/18.5 76.2/68.1

LSUN 91.9/0.0 82.5/0.0 92.9/0.4 78.4/1.9 85.3/11.2 77.4/ 16.9 68.3/15.1 70.4/16.2 79.4/69.0

iSUN 92.8/2.7 81.6/0.0 93.7/0.0 77.5/0.0 80.3/14.1 75.3/11.8 76.6/15.8 72.8/17.3 80.3/71.6

Mean 88.1/2.8 93.4/1.6 91.2/2.3 83.3/1.5 91.4/5.6 81.4/25.5 81.6/37.4 82.1/44.4 82.0/74.0

Table 2b. Performance (Clean/PGD1000) of OOD detection methods under clean and PGD1000(l∞), measured
by AUROC (%), on the OSR setup, which splits one dataset’s classes randomly to create Din and Dout.

Dataset Method

VOS DHM CATEX CSI ATOM ALOE ATD RODEO AROS
(Ours)

MNIST 86.3/4.8 92.6/0.4 92.3/1.9 93.6/6.1 74.8/4.1 79.5/37.3 68.7/56.5 97.2/85.0 94.4/86.3

FMNIST 78.1/2.0 85.9/0.0 87.0/0.4 84.6/1.2 64.3/4.2 72.6/28.5 59.6/42.1 87.7/65.3 84.1/72.6

CIFAR-10 74.7/0.0 90.8/0.0 95.1/0.0 91.4/0.6 68.3/5.0 52.4/25.6 49.0/32.4 79.6/62.7 78.8/69.5

CIFAR-100 63.5/0.0 78.6/0.0 91.9/0.0 86.7/1.9 51.4/2.6 49.8/18.2 50.5/36.1 64.1/35.3 67.0/58.2

Imagenette 76.7/0.0 84.2/0.0 96.4/1.6 92.8/0.0 63.5/8.2 61.7/14.2 63.8/28.4 70.6/39.4 78.2/67.5
ADNI 73.5/4.1 69.4/5.2 86.9/0.1 82.1/0.0 66.9/2.3 64.0/11.0 68.3/33.9 75.5/24.6 80.9/61.7

Mean 75.5/1.8 83.6/0.9 91.6/0.7 88.5/1.6 64.9/4.4 63.3/22.5 60.0/38.2 79.1/52.1 80.6/69.3

for evaluation, or the more challenging benchmarks used. For example, ALOE (28) considered a
lower perturbation budget for evaluation (i.e., 1

255 ), and the ATD (34) and RODEO (37) benchmarks
used CIFAR-10 vs. a union of several datasets, rather than CIFAR-10 vs. CIFAR-100. The union
set included datasets such as MNIST, which is significantly different from CIFAR-10, leading to a
higher reported robust performance.

Results Analysis. Without relying on additional datasets or pretrained models, AROS significantly
outperforms existing methods in adversarial settings, achieving up to a 40% improvement in AUROC
and demonstrating competitive results under clean setups (see Table 2b). Specifically, AROS also
exhibits greater robustness under various corruptions, further underscoring its effectiveness in OOD
detection. We further verify our approach through an extensive ablation study of various components
in AROS (see Section 6).

We note the superiority of AROS compared to representative methods in terms of robust OOD
detection. Notably, AROS, without relying on pre-trained models or extra datasets, improves
adversarial robust OOD detection performance from 45.9% to 74.0%. In the OSR setup, the results
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Table 3. Performance of OOD detection methods under various types of non-adversarial perturbations,
referred to as image corruptions, as introduced in the CIFAR-10-C and CIFAR-100-C datasets (48),
measured by AUROC (%). Specifically, test inputs, including both ID and OOD, are perturbed with a
particular corruption in each experiment.

Dataset Methods Corruption
Mean

Din Dout Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

C
IF

A
R

-1
0-

C

C
IF

A
R

-1
00

-C

VOS 56.2 67.5 76.5 77.7 73.9 78.7 76.3 72.0 54.1 77.0 58.5 79.1 81.2 83.6 74.4 72.5
DHM 57.7 78.7 72.4 75.4 75.6 73.9 77.5 75.8 70.8 56.8 74.5 58.0 77.4 78.4 80.6 72.2
CATEX 62.4 80.9 73.0 78.4 76.3 78.6 81.3 79.9 78.9 58.3 80.0 54.0 79.0 80.5 82.4 74.9
CSI 54.7 58.0 58.7 62.9 61.7 69.0 65.9 77.2 69.2 74.8 91.9 65.8 74.2 62.6 74.9 68.1
ATOM 57.3 75.5 63.6 70.7 72.2 69.9 74.6 77.2 76.5 55.3 80.5 54.1 74.7 77.4 80.8 70.7
ALOE 54.5 76.4 64.0 71.5 73.0 70.9 75.5 78.2 77.9 56.3 81.5 54.0 76.9 79.3 82.1 71.5
ATD 59.2 79.2 71.0 76.7 76.9 75.6 79.5 78.2 74.9 59.5 77.8 59.5 79.0 80.8 82.9 73.7
RODEO 58.6 76.0 68.5 73.5 73.8 72.1 75.5 74.5 70.9 57.8 74.5 57.7 75.3 76.8 79.5 71.0
AROS 84.3 76.5 79.2 83.8 77.3 82.0 81.3 83.4 84.0 84.0 84.7 83.3 80.7 79.6 82.5 81.8

C
IF

A
R

-1
00

-C

C
IF

A
R

-1
0-

C

VOS 53.8 55.7 65.6 58.2 47.1 51.4 57.6 53.9 59.0 57.2 56.5 54.8 48.2 59.4 51.1 55.3
DHM 58.2 59.9 64.0 57.7 48.9 58.0 57.4 57.6 58.5 57.9 58.1 58.3 49.8 55.6 56.7 57.1
CATEX 57.4 60.2 65.7 59.6 64.9 62.9 59.3 67.5 61.4 59.8 60.0 64.2 56.8 57.5 58.6 61.0
CSI 50.1 48.8 50.6 47.8 47.5 46.9 46.8 50.6 50.3 51.8 49.9 52.2 42.9 48.0 47.7 48.8
ATOM 55.3 51.2 53.1 50.2 49.9 49.2 49.6 53.1 52.8 54.4 52.4 54.8 45.0 50.4 50.8 51.5
ALOE 56.1 53.4 62.8 54.5 51.8 54.9 54.1 54.4 55.6 54.8 52.7 56.4 47.8 51.7 53.2 54.3
ATD 56.0 57.4 61.5 57.5 44.8 57.1 54.2 56.9 58.3 55.2 53.7 57.5 49.3 50.8 56.0 55.1
RODEO 54.9 58.1 60.6 56.4 51.0 60.5 58.9 58.4 57.9 54.6 57.4 52.3 52.7 53.5 51.2 55.9
AROS 71.8 74.8 67.7 59.6 72.6 73.9 65.7 68.5 64.4 59.8 75.0 64.2 72.8 69.5 58.6 67.9

Table 4a. Comparison of post-hoc OOD detection meth-
ods using different classifiers trained with various strate-
gies and evaluated with multiple scoring functions. The
comparison (Clean/PGD1000) is conducted under clean
and PGD1000 conditions, measured by AUROC (%).

Classifier Posthoc CIFAR-10 CIFAR-100
Method CIFAR-100 SVHN CIFAR-10 SVHN

MSP 87.9/0.0 91.8/1.4 75.4/0.2 71.4/3.6
Standard MD 88.5/4.3 99.1/0.6 75.0/1.9 98.4/0.6

OpenMax 86.4/0.0 94.7/2.8 77.6/0.0 93.9/4.2

MSP 79.3/16.0 85.1/19.7 67.2/10.7 74.6/11.3
AT MD 81.4/25.6 88.2/27.5 71.8/15.0 81.5/19.7

OpenMax 82.4/27.8 86.5/26.9 80.0/16.4 75.4/22.9

MSP 84.2/10.6 89.3/15.4 69.7/12.5 76.1/23.8
ODENet MD 80.7/9.1 84.6/13.0 66.4/14.8 72.9/16.4

OpenMax 83.8/14.2 87.4/20.9 70.3/15.6 75.6/18.2

MSP 77.5/56.5 83.7/58.5 69.1/48.0 69.4/53.3
LyaDEQ MD 79.1/56.9 82.0/56.5 60.3/ 53.4 69.3/54.2

OpenMax 76.0/47.4 77.5/56.5 67.8/57.1 73.3/ 58.0

MSP 76.3/56.3 80.5/62.5 64.6/44.9 64.6/58.9
ASODE MD 74.9/49.5 76.1/54.4 59.3/ 52.0 72.1/55.1

OpenMax 72.6/44.2 75.9/57.9 66.1/52.1 80.5/ 50.4

MSP 83.5/61.9 86.4/65.3 67.2/53.1 73.7/60.4
SODEF MD 75.4/57.7 81.9/64.2 65.8/58.4 71.8/62.5

OpenMax 82.8/65.3 86.4/69.1 66.3/56.6 75.2/64.9

AROS N/A 88.2/80.1 93.0/86.4 74.3/67.0 82.5/70.6

Table 4b. Performance of OOD detection methods
under clean and PGD1000, measured by AUPR↑ (%)
and FPR95 ↓(%) metrics. The perturbation budget ϵ
is set to 8

255
. The table cells present results in the

‘Clean/PGD1000’ format.

Method Metric
CIFAR-10 CIFAR-100

CIFAR-100 SVHN CIFAR-10 SVHN

VOS AUPR↑ 85.8/0.0 90.4/6.2 75.8/0.0 93.9/7.6
FPR95↓ 35.2/100.0 38.2/99.8 48.7/100.0 41.5/98.2

DHM AUPR↑ 100.0/0.3 100.0/4.8 100.0/0.0 100.0/3.2
FPR95↓ 0.2/99.2 0.0/98.5 1.1/100.0 0.4/99.7

CATEX AUPR↑ 89.5/0.4 93.1/7.6 84.2/0.0 96.6/1.3
FPR95↓ 36.6/99.1 27.3/95.6 42.8/100.0 37.1/98.4

CSI AUPR↑ 93.4/0.0 98.2/4.6 65.8/0.0 82.9/0.4
FPR95↓ 40.6/100.0 37.4/99.1 65.2/100.0 42.6/97.5

ATOM AUPR↑ 97.9/5.8 98.3/11.6 89.3/5.1 94.6/7.2
FPR95↓ 24.0/96.4 12.7/93.1 38.6/98.0 29.2/97.9

ALOE AUPR↑ 80.4/21.7 86.5/27.3 54.8/9.2 85.1/18.6
FPR95↓ 38.6/89.2 45.1/93.7 72.8/96.1 57.4/84.8

ATD AUPR↑ 81.9/44.6 85.3/53.7 61.4/27.2 68.3/26.1
FPR95↓ 47.3/86.2 42.4/83.0 68.2/94.8 59.0/91.9

RODEO AUPR↑ 83.5/47.0 88.2/51.6 72.8/26.5 81.7/42.9
FPR95↓ 42.9/81.3 49.6/75.4 65.3/89.0 61.8/83.5

AROS AUPR↑ 87.2/80.5 97.2/91.4 71.0/65.3 72.4/66.8
FPR95↓ 39.3/45.2 15.5/27.0 54.2/67.8 46.3/62.7

increased from 52.1% to 69.3%. Similar gains are observed in robustness against corruptions, as
shown in Table 3.

For instance, performance improved from 72.5% to 81.8% on the CIFAR-10-C vs. CIFAR-100-C
setup, and from 61.0% to 67.9% on the CIFAR-100-C vs. CIFAR-10-C benchmark. Meanwhile,
AROS achieves competitive results in clean scenarios (82.0%) compared to state-of-the-art methods
like DHM (93.4%), though it should be noted that DHM performs near zero under adversarial attacks.
The trade-off between robustness and clean performance is well-known in the field (5; 105; 44), and
AROS offers the best overall balance among existing methods. Furthermore, we demonstrate that by
using pre-trained models or auxiliary data, AROS’s clean performance can be further improved (see
Appendix A3). Moreover, we provide additional experiments in Appendix A3 to support our claims.

Classifier Training Strategies for Robust OOD Detection. We assessed the impact of different
training strategies on the robust OOD detection performance of various classifiers, including those
trained with standard training, adversarial training (AT), and NODE-based methods such as ODENet,
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Table 5. An ablation study (Clean/PGD1000), measured by AUROC (%), on our method with the
exclusion of different components while keeping all others intact. The left side is the configurations.

Config
Components CIFAR10 CIFAR100 ImageNet-1k

Adv. Trained Fake Orthogonal Extra LCE LSL CIFAR100 SVHN CIFAR10 SVHN Texture iNaturalistBackbone Sampling Binary Layer Data

A ✓ ✓ ✓ - ✓ - 81.4/17.6 86.9/23.5 68.4/12.7 79.0/16.2 76.4/18.8 82.7/20.3
B - ✓ ✓ - - ✓ 90.1/56.7 93.8/51.5 75.2/41.8 82.0/47.5 81.9/36.0 84.9/48.6
C ✓ ✓ - - - ✓ 85.6/67.3 88.2/74.6 66.9/57.1 78.4/63.3 75.4/60.7 79.8/70.2
D ✓ - ✓ - - ✓ 85.3/76.5 89.4/78.1 70.5/61.3 74.4/62.5 76.1/67.4 81.3/72.7

E(Ours ) ✓ ✓ ✓ - - ✓ 88.2/80.1 93.0/86.4 74.3/67.0 81.5/70.6 78.3/69.2 84.6/75.3
F (Ours+Data) ✓ ✓ ✓ ✓ - ✓ 90.4/81.6 94.2/87.9 75.7/68.1 82.2/71.8 79.2/70.4 85.1/76.8

LyaDEQ, SODEF, and ASODE. To utilize these classifiers as OOD detectors, various post-hoc score
functions were applied, as described in Section 3. The results are presented in Table 4a. In brief,
adversarially trained classifiers exhibit enhanced robustness compared to standard training but still
fall short of optimal performance. Furthermore, the time-invariance assumption in SODEF leads to
improved robust performance relative to ODENet, LyaDEQ, and ASODE by effectively constraining
the divergence between output states, which motivated us to explore similar frameworks. Notably,
AROS demonstrates superior performance compared to all these approaches.

Implementation details. We use a WideResNet-70-16 model as fθ (106) and train it for 200 epochs
on classification using PGD10. For the integration of hϕ, an integration time of T = 5 is applied.
To implement the orthogonal layer Bη, we utilize the geotorch.orthogonal library. Training
with the loss LSL is performed over 100 epochs. We used SGD as the optimizer, employing a cosine
learning rate decay schedule with an initial learning rate of 0.05 and a batch size of 128. See Appendix
A3 for more details and additional ablation studies on different components of AROS.

6 ABLATION STUDY

AROS Components. To verify the effectiveness of AROS, we conducted ablation studies across
various datasets. The corresponding results are presented in Table 5. In each experiment, individual
components were replaced with alternative ones, while the remaining elements were held constant.
In Config A, we ignored the designed loss function LSL and instead utilized the cross-entropy loss
function LCE for binary classification. Config B represents the scenario in which we train the classifier
in the first step without adversarial training on the ID data, instead using standard training. This
reduces robustness as fθ becomes more susceptible to perturbations within ID classes, ultimately
making the final detector more vulnerable to attacks. In Config C, the orthogonal binary layer was
replaced with a regular binary layer. In Config D, rather than estimating the ID distribution and
sampling OOD data in the embedding space, we substituted this process by creating random Gaussian
noise in the embedding space as fake OOD data. This removes the conditioning of the fake OOD
distribution on the ID data and, as a result, makes them unrelated. This is in line with previous works
that have shown that related and nearby auxiliary OOD samples are more useful (43; 24). Config
E represents our default pipeline. Finally, in Config F, we extended AROS by augmenting the fake
OOD embedding data with additional OOD images (i.e., Food-101 (107)) alongside the proposed fake
OOD strategy. Specifically, we transformed these additional OOD images into the embedding space
using fθ and combined them with the crafted fake embeddings, which led to enhanced performance.

7 CONCLUSIONS

In this paper we introduce AROS, a framework for improving OOD detection under adversarial
attacks. By leveraging Lyapunov stability theory, AROS drives ID and OOD samples toward
stable equilibrium points to mitigate adversarial perturbations. Fake OOD samples are generated
in the embedding space, and a tailored loss function is used to enforce stability. Additionally, an
orthogonal binary layer is employed to enhance the separation between ID and OOD equilibrium
points. Limitations and future directions can be found in the Appendix A6.
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