A DISTRIBUTION OF VALUES s_t in Flattened Gradient Vector s

We illustrate the distribution of elemental values s_t in s by conducting LLM training on WIKITEXT using various batch sizes. The positive word types (orange bars) and negative word types (blue bars) are binned separately. In all plots, the positive cluster possesses a much flatter distribution than the negative cluster, *i.e.*, $\sigma_p \gg \sigma_n$, as discussed in Rmk. I The shape of the mixture distribution is affected by the total number of types in the batches. Larger batches usually mean higher count numbers for positive types while the distributions for the negative clusters are similar.

Figure 5: The comparison of the distributions of values s in the flattened vectors s, derived from \mathcal{B} with varying number of sentences in $\{4, 8, 16\}$ and max sentence length is 100.

Figure 6: The comparison of the distributions of values s in the flattened vectors s, derived from \mathcal{B} with varying max sentence length in $\{25, 50, 100\}$ and number of sentence is 32.

B POLYNOMIAL REGRESSION MODELS FOR PREDICTING TYPE NUMBER

We compare the performance of regression models with various degrees $d \in \{1, 2, 3, 4\}$ for predicting the number of word types $|\mathcal{T}|$ in Table 6 We consider the settings that batch shapes are seen $(8 \times 25, 16 \times 50 \text{ and } 32 \times 100)$ or unseen $(64 \times 50 \text{ and } 128 \times 100)$ in LLM training. For MT experiments, we chunk the batches to within $\{100, 500, 1000, 1500, 2000\}$ total tokens. The mean absolute error ratio (MAER) is used to evaluate the difference ratio between predicted type size $\mathcal{R}(\phi_p)$ and ground-truth number of word types $|\mathcal{T}|$,

$$MAER \triangleq \frac{||\mathcal{T}| - \mathcal{R}(\phi_p)|}{|\mathcal{T}|}.$$

Table 6: The comparison of estimator based on polynomial regression model \mathcal{R} with various degrees $d \in \{1, 2, 3, 4\}$. The best averaged results (Avg.) of regression models are highlighted with \ddagger .

Test (\mathcal{B} Shape)	#Type	$\mathcal{R}(d=1)$	$\mathcal{R}(d=2)$	$\mathcal{R}(d=3)$	$\mathcal{R}(d=4)$			
	51	MAER	MAEK	MAEK	MAER			
8 x 25	140.8	0.3026	0.1626	0.1625	0.1576			
16 x 50	426.3	0.3281	0.4822	0.4835	0.4930			
32 x 100	1169.0	0.1102	1.1167	0.9053	0.2200			
64 x 50	1211.5	0.0635	1.0081	0.8120	0.1828			
128 x 100	3152.4	0.3267	0.9391	0.4220	5.1350			
Avg.	1220.0	0.2262^{\ddagger}	0.7417	0.5571	1.2377			
		(a) LLM	- IMDB					
		$\mathcal{R}(d=1)$	$\mathcal{R}(d=2)$	$\mathcal{R}(d=3)$	$\mathcal{R}(d=4)$			
Test (B Shape)	#Type	MAER	MAER	MAER	MAER			
8 x 25	149.4	0.3605	0.1497	0.1496	0.1416			
16 x 50	447.3	0.3468	0.5641	0.5585	0.5607			
32 x 100	936.0	0.1811	0.8987	0.7764	0.3032			
64 x 50	1439.5	0.0786	1.1548	0.8643	0.9165			
128 x 100	2684.8	0.2282	1.1890	0.5965	5.4291			
Avg.	1131.4	0.2390 [‡]	0.7913	0.5891	1.4702			
(b) LLM- AGNEWS								
		$\mathcal{R}(d=1)$	$\mathcal{R}(d=2)$	$\mathcal{R}(d=3)$	$\mathcal{R}(d=4)$			
Test (#Token)	#Type	MAER	MAER	MAER	MAER			
100	52.3	0.0487	0.0642	0.0434	0.0458			
500	214.2	0.0756	0.0885	0.0596	0.0549			
1000	379.2	0.0557	0.0623	0.0623	0.0641			
1500	577.1	0.1287	0.1242	701.3872	0.1338			
2000	762.8	0.2699	0.2645	534.2593	6476.1500			
Avg.	402.4	0.1157 [‡]	0.1207	247.1624	1295.2900			
(c) MT- Scratch								
	#T	$\mathcal{R}(d=1)$	$\mathcal{R}(d=2)$	$\mathcal{R}(d=3)$	$\mathcal{R}(d=4)$			
Test (#Token)	#Type	MAER	MAER	MAER	MAER			
100	58.8	0.1884	0.1968	0.1401	0.2531			
500	204.6	0.1312	0.1337	0.1776	0.2090			
1000	419.6	0.2466	0.2397	0.2874	0.2752			
1500	577.1	0.3367	0.3324	0.3433	0.3310			
2000	723.9	0.3728	0.3693	0.3652	0.3568			
Avg.	396.7	0.2552	0.2544 [‡]	0.2627	0.2850			

(d) MT- FineTune

Test		IMDB			AGNEWS		
$(\mathcal{B} \text{ Shape})$	Prec.	Recall	F-1	Prec.	Recall	F-1	
Using oracle number of word types $ \mathcal{T} $							
8 x 25	0.8257	0.8257	0.8257	0.8536	0.8536	0.8536	
16 x 50	0.8263	0.8263	0.8263	0.8254	0.8254	0.8254	
32 x 100	0.8086	0.8086	0.8086	0.8086	0.8086	0.8086	
64 x 50	0.8064	0.8064	0.8064	0.7968	0.7968	0.7968	
128 x 100	0.7875	0.7875	0.7875	0.7788	0.7788	0.7788	
Using predicted $ \mathcal{T} $ by $\mathcal{R}(d=1)$							
8 x 25	0.7098	0.8655	0.7800	0.6731	0.8938	0.7679	
16 x 50	0.6756	0.8926	0.7691	0.6689	0.8825	0.7610	
32 x 100	0.7625	0.8454	0.8018	0.7420	0.8370	0.7867	
64 x 50	0.7805	0.8270	0.8031	0.7856	0.7979	0.7917	
128 x 100	0.8607	0.5790	0.6923	0.8356	0.6410	0.7254	
Using predicted $ \mathcal{T} $ by $\mathcal{R}(d=2)$							
8 x 25	0.8065	0.7995	0.8030	0.8030	0.8643	0.8325	
16 x 50	0.6171	0.9037	0.7334	0.5994	0.8970	0.7186	
32 x 100	0.4514	0.9497	0.6120	0.5003	0.9101	0.6456	
64 x 50	0.4671	0.9331	0.6226	0.4378	0.9200	0.5932	
128 x 100	0.5098	0.9222	0.6566	0.4612	0.9124	0.6127	
Using predicted $ \mathcal{T} $ by $\mathcal{R}(d=3)$							
8 x 25	0.8101	0.7959	0.8030	0.8052	0.8608	0.8321	
16 x 50	0.6166	0.9042	0.7332	0.5997	0.8966	0.7187	
32 x 100	0.4965	0.9422	0.6503	0.5272	0.9043	0.6661	
64 x 50	0.5126	0.9256	0.6598	0.4952	0.9084	0.6410	
128 x 100	0.6415	0.8755	0.7404	0.5757	0.8757	0.6947	

Table 7: Comparison of attack performance using polynomial regression models \mathcal{R} with various degrees $d \in \{1, 2, 3\}$.

Test		Scratch			FineTune)
(#Tokens)	Prec.	Recall	F-1	Prec.	Recall	F-1
	Using	oracle nu	mber of w	ord types	\mathcal{T}	
100	0.9556	0.9556	0.9556	0.8233	0.8233	0.8233
500	0.9190	0.9190	0.9190	0.8006	0.8006	0.8006
1000	0.8514	0.8514	0.8514	0.7751	0.7751	0.7751
1500	0.7912	0.7912	0.7912	0.7683	0.7683	0.7683
2000	0.7810	0.7810	0.7810	0.7505	0.7505	0.7505
	Usi	ing predict	ted $ \mathcal{T} $ by	$\mathcal{R}(d=1)$		
100	0.9364	0.9576	0.9469	0.7936	0.8108	0.8021
500	0.8826	0.9188	0.9003	0.7851	0.7896	0.7874
1000	0.8525	0.8523	0.8524	0.8616	0.6041	0.7102
1500	0.8820	0.7812	0.8280	0.8484	0.5535	0.6699
2000	0.9231	0.6710	0.7771	0.8483	0.5331	0.6548
	Usi	ing predict	ted $ \mathcal{T} $ by	$\mathcal{R}(d=2)$		
100	0.7947	0.7994	0.7971	0.9902	0.9395	0.9642
500	0.7810	0.7933	0.7871	0.8698	0.9201	0.8942
1000	0.8494	0.6450	0.7332	0.8426	0.8559	0.8492
1500	0.8501	0.5685	0.6814	0.8778	0.7839	0.8282
2000	0.8486	0.5364	0.6573	0.9222	0.6751	0.7796
	Usi	ing predict	ted $ \mathcal{T} $ by	$\mathcal{R}(d=3)$		
100	0.9642	0.9556	0.9599	0.8384	0.7573	0.7958
500	0.9448	0.9052	0.9246	0.8349	0.7298	0.7788
1000	0.8644	0.8458	0.8550	0.8602	0.6117	0.7150
1500	0.7725	0.7289	0.7501	0.8477	0.5583	0.6732
2000	0.8284	0.6045	0.6989	0.8439	0.5369	0.6562

(a) Large Language Model (LLM)

(b) Machine Translation (MT)

Then, we test FLATCHAT using different regression models in Table 7. The attack performance is strongly correlated to the type number estimator. Linear regression model, $\mathcal{R}(d = 1)$, on average achieves the most stable and the best averaged performance compared with high-order polynomial regression models ($d \ge 2$). Notably, $\mathcal{R}(d = 3)$ and $\mathcal{R}(d = 4)$ sometimes diverge on MT-Scratch as shown in Table 6 c. The linear models are used as type number estimators in our main paper.

C PROOF OF SPARSE VALUES IN FLATTENED GRADIENT VECTOR S

In this section, we ground the rationality of using the absolute value of s_t (*Abs.*) to infer word type usage. *Abs.* is considered as a baseline to *GMM* (Rmk.3), compared in Section 4.2.3.

Theorem 5 (Sparsity of g.) For the gradient vector g_i regarding the output token / label y_i , only one element's absolute value $|g_{y_i,i}|$ is significantly larger than the absolute values of any other elements t in g_i ,

$$|g_{y_i,i}| \gg |g_{t,i}|, \text{ if } t \neq y_i.$$

$$\tag{14}$$

Proof We first calculate the gradient vector g_i on the *i*-th incidence, where p_i is the output probability vector by the language model and y_i is a one-hot vector with the *t*-th element to be one and other elements equal to zero,

$$\boldsymbol{g}_i \triangleq \frac{\partial \mathcal{L}}{\partial \boldsymbol{z}_i} = \boldsymbol{p}_i - \boldsymbol{y}_i. \tag{15}$$

Taking the sum of the gradient values, we show the absolute gradient value regarding the ground-truth token is the sum of the absolute values by others, i.e., $|g_{y_i,i}| = \sum_{t \neq y_i} |g_{t,i}|$,

$$g_{y_i,i} + \sum_{t \neq y_i} g_{t,i} = (p_{y_i,i} - 1) + \sum_{t \neq y_i} p_{t,i} = \sum_t p_{t,i} - 1 = 1 - 1 = 0.$$
(16)

Then, we have

$$|g_{y_i,i}| = \Big|\sum_{t \neq y_i} g_{t,i}\Big|. \tag{17}$$

Because, $\forall t \neq y_i, g_{t,i} = p_{t,i} \geq 0$, as probabilistic outputs are larger or equal to zero,

$$|g_{y_i,i}| = \sum_{t \neq y_i} |g_{t,i}|.$$
 (18)

Considering the huge number of unused tokens $|\mathcal{V}| - 1$, we have Eqn. 14

Remark 4 (*Abs.* scorer on s_t) We can approximately consider gradient vectors g_i as scaled 'onehot' vectors with the t-th element significantly larger than other elements, where $t = y_i$. Then, the flattened vector s is a weighted combination of these sparse gradient vectors with the used types usually possess much larger absolute values, $|s_t|$ where $t \in T$, than the absolute values regarding the unused types, $|s_n|$ where $n \notin T$. Ranking s_t provides clues to the used word types.

D TRAINING LANGUAGE MODELS

The architectures of victim language models. The architectures of the neural network used as victim models for MT and LLM experiments are summarized in Table 8 and 9. More details about the implementation of the model basis are at FAIRSEQ and HuggingFace.

Computational environment for Attackers. To conduct fair comparison, FLATCHAT and RLG use the same experimental environment, CPU servers with Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz. All computations are based on basic NumPy package in Python without specific optimization to the algorithms. Note that *i*) FLATCHAT can be easily sped up by using GPU to compute the matrix operations; and *ii*) Running time of RLG grows in a linear manner in terms of search rounds, but there is no notable improvement in attack performance.

Model Type	Transformer	Model Type	GPT-2
Embedding Dimension	512	Embedding Dimension	768
Number of Heads	4	Number of Heads	12
Number of Layer	6	Number of Layer	12
Attention Dropout Rate	0.3	Attention Dropout Rate	0.1
Embedding Dropout Rate	0.3	Embedding Dropout Rate	0.1
Vocabulary Size	16,594	Vocabulary Size	50,257

Table 8: The setting of victim models used in MT Table 9: The setting of victim models used in experiments.

LLM experiments.

PERFORMANCE OF MACHINE TRANSLATION MODELS WITH DEFENSE E

The performance of machine translation models is evaluated based on IWSLT 2017 test set using scareBLEU. We validate the models with various defense settings such as freezing different layers (Last, Emb and Last+Emb) and DP-SGD with varying noise multipliers $\sigma \in \{0.0, 10^{-3}, 10^{-5}\}$, as addressed in Table 10. The main results are aligned with those of losses on the validation set reported in Figure 4. Although freezing layers provide strong defense against gradient inference attacks on corresponding layers, the performance of the models drops significantly. In contrast, DP-SGD with small noise achieves highly competitive results with the vanilla model and clipping gradients even encourages more robust training.

Table 10: The comparison of machine translation models trained with different defense settings. For each setting, two checkpoints at epoch 10 and epoch 50 are tested.

Model	Freeze			DP-SGD			
Model	variilia	Emb	Last	Emb+Last	$\sigma = 0.0$	$\sigma = 10^{-3}$	$\sigma = 10^{-5}$
Epoch 10	14.2	1.9	8.2	1.2	16.6	15.0	17.8
Epoch 50	16.7	2.4	9.9	3.6	17.6	18.9	20.6