
Under review as a conference paper at ICLR 2024

A DISTRIBUTION OF VALUES st IN FLATTENED GRADIENT VECTOR s

We illustrate the distribution of elemental values st in s by conducting LLM training on WIKITEXT
using various batch sizes. The positive word types (orange bars) and negative word types (blue bars)
are binned separately. In all plots, the positive cluster possesses a much flatter distribution than
the negative cluster, i.e., �p � �n, as discussed in Rmk. 1. The shape of the mixture distribution
is affected by the total number of types in the batches. Larger batches usually mean higher count
numbers for positive types while the distributions for the negative clusters are similar.

Figure 5: The comparison of the distributions of values s in the flattened vectors s, derived from B

with varying number of sentences in {4, 8, 16} and max sentence length is 100.

Figure 6: The comparison of the distributions of values s in the flattened vectors s, derived from B

with varying max sentence length in {25, 50, 100} and number of sentence is 32.

12

Under review as a conference paper at ICLR 2024

B POLYNOMIAL REGRESSION MODELS FOR PREDICTING TYPE NUMBER

We compare the performance of regression models with various degrees d 2 {1, 2, 3, 4} for predicting
the number of word types |T | in Table 6. We consider the settings that batch shapes are seen (8⇥ 25,
16⇥ 50 and 32⇥ 100) or unseen (64⇥ 50 and 128⇥ 100) in LLM training. For MT experiments, we
chunk the batches to within {100, 500, 1000, 1500, 2000} total tokens. The mean absolute error ratio
(MAER) is used to evaluate the difference ratio between predicted type size R(�p) and ground-truth
number of word types |T |,

MAER , ||T |�R(�p)|

|T |
.

Table 6: The comparison of estimator based on polynomial regression model R with various degrees
d 2 {1, 2, 3, 4}. The best averaged results (Avg.) of regression models are highlighted with ‡.

Test (B Shape) #Type R(d = 1)
MAER

R(d = 2)
MAER

R(d = 3)
MAER

R(d = 4)
MAER

8 x 25 140.8 0.3026 0.1626 0.1625 0.1576
16 x 50 426.3 0.3281 0.4822 0.4835 0.4930
32 x 100 1169.0 0.1102 1.1167 0.9053 0.2200

64 x 50 1211.5 0.0635 1.0081 0.8120 0.1828
128 x 100 3152.4 0.3267 0.9391 0.4220 5.1350

Avg. 1220.0 0.2262‡ 0.7417 0.5571 1.2377

(a) LLM- IMDB

Test (B Shape) #Type R(d = 1)
MAER

R(d = 2)
MAER

R(d = 3)
MAER

R(d = 4)
MAER

8 x 25 149.4 0.3605 0.1497 0.1496 0.1416
16 x 50 447.3 0.3468 0.5641 0.5585 0.5607
32 x 100 936.0 0.1811 0.8987 0.7764 0.3032

64 x 50 1439.5 0.0786 1.1548 0.8643 0.9165
128 x 100 2684.8 0.2282 1.1890 0.5965 5.4291

Avg. 1131.4 0.2390‡ 0.7913 0.5891 1.4702

(b) LLM- AGNEWS

Test (#Token) #Type R(d = 1)
MAER

R(d = 2)
MAER

R(d = 3)
MAER

R(d = 4)
MAER

100 52.3 0.0487 0.0642 0.0434 0.0458
500 214.2 0.0756 0.0885 0.0596 0.0549

1000 379.2 0.0557 0.0623 0.0623 0.0641
1500 577.1 0.1287 0.1242 701.3872 0.1338
2000 762.8 0.2699 0.2645 534.2593 6476.1500

Avg. 402.4 0.1157‡ 0.1207 247.1624 1295.2900

(c) MT- Scratch

Test (#Token) #Type R(d = 1)
MAER

R(d = 2)
MAER

R(d = 3)
MAER

R(d = 4)
MAER

100 58.8 0.1884 0.1968 0.1401 0.2531
500 204.6 0.1312 0.1337 0.1776 0.2090

1000 419.6 0.2466 0.2397 0.2874 0.2752
1500 577.1 0.3367 0.3324 0.3433 0.3310
2000 723.9 0.3728 0.3693 0.3652 0.3568

Avg. 396.7 0.2552 0.2544‡ 0.2627 0.2850

(d) MT- FineTune

13

Under review as a conference paper at ICLR 2024

Table 7: Comparison of attack performance using polynomial regression models R with various
degrees d 2 {1, 2, 3}.

Test IMDB AGNEWS
(B Shape) Prec. Recall F-1 Prec. Recall F-1

Using oracle number of word types |T |
8 x 25 0.8257 0.8257 0.8257 0.8536 0.8536 0.8536

16 x 50 0.8263 0.8263 0.8263 0.8254 0.8254 0.8254
32 x 100 0.8086 0.8086 0.8086 0.8086 0.8086 0.8086

64 x 50 0.8064 0.8064 0.8064 0.7968 0.7968 0.7968
128 x 100 0.7875 0.7875 0.7875 0.7788 0.7788 0.7788

Using predicted |T | by R(d = 1)
8 x 25 0.7098 0.8655 0.7800 0.6731 0.8938 0.7679

16 x 50 0.6756 0.8926 0.7691 0.6689 0.8825 0.7610
32 x 100 0.7625 0.8454 0.8018 0.7420 0.8370 0.7867

64 x 50 0.7805 0.8270 0.8031 0.7856 0.7979 0.7917
128 x 100 0.8607 0.5790 0.6923 0.8356 0.6410 0.7254

Using predicted |T | by R(d = 2)
8 x 25 0.8065 0.7995 0.8030 0.8030 0.8643 0.8325

16 x 50 0.6171 0.9037 0.7334 0.5994 0.8970 0.7186
32 x 100 0.4514 0.9497 0.6120 0.5003 0.9101 0.6456

64 x 50 0.4671 0.9331 0.6226 0.4378 0.9200 0.5932
128 x 100 0.5098 0.9222 0.6566 0.4612 0.9124 0.6127

Using predicted |T | by R(d = 3)
8 x 25 0.8101 0.7959 0.8030 0.8052 0.8608 0.8321

16 x 50 0.6166 0.9042 0.7332 0.5997 0.8966 0.7187
32 x 100 0.4965 0.9422 0.6503 0.5272 0.9043 0.6661

64 x 50 0.5126 0.9256 0.6598 0.4952 0.9084 0.6410
128 x 100 0.6415 0.8755 0.7404 0.5757 0.8757 0.6947

(a) Large Language Model (LLM)

Test Scratch FineTune
(#Tokens) Prec. Recall F-1 Prec. Recall F-1

Using oracle number of word types |T |
100 0.9556 0.9556 0.9556 0.8233 0.8233 0.8233
500 0.9190 0.9190 0.9190 0.8006 0.8006 0.8006

1000 0.8514 0.8514 0.8514 0.7751 0.7751 0.7751
1500 0.7912 0.7912 0.7912 0.7683 0.7683 0.7683
2000 0.7810 0.7810 0.7810 0.7505 0.7505 0.7505

Using predicted |T | by R(d = 1)
100 0.9364 0.9576 0.9469 0.7936 0.8108 0.8021
500 0.8826 0.9188 0.9003 0.7851 0.7896 0.7874

1000 0.8525 0.8523 0.8524 0.8616 0.6041 0.7102
1500 0.8820 0.7812 0.8280 0.8484 0.5535 0.6699
2000 0.9231 0.6710 0.7771 0.8483 0.5331 0.6548

Using predicted |T | by R(d = 2)
100 0.7947 0.7994 0.7971 0.9902 0.9395 0.9642
500 0.7810 0.7933 0.7871 0.8698 0.9201 0.8942

1000 0.8494 0.6450 0.7332 0.8426 0.8559 0.8492
1500 0.8501 0.5685 0.6814 0.8778 0.7839 0.8282
2000 0.8486 0.5364 0.6573 0.9222 0.6751 0.7796

Using predicted |T | by R(d = 3)
100 0.9642 0.9556 0.9599 0.8384 0.7573 0.7958
500 0.9448 0.9052 0.9246 0.8349 0.7298 0.7788

1000 0.8644 0.8458 0.8550 0.8602 0.6117 0.7150
1500 0.7725 0.7289 0.7501 0.8477 0.5583 0.6732
2000 0.8284 0.6045 0.6989 0.8439 0.5369 0.6562

(b) Machine Translation (MT)

14

Under review as a conference paper at ICLR 2024

Then, we test FLATCHAT using different regression models in Table 7. The attack performance is
strongly correlated to the type number estimator. Linear regression model, R(d = 1), on average
achieves the most stable and the best averaged performance compared with high-order polynomial
regression models (d � 2). Notably, R(d = 3) and R(d = 4) sometimes diverge on MT-Scratch as
shown in Table 6.c. The linear models are used as type number estimators in our main paper.

C PROOF OF SPARSE VALUES IN FLATTENED GRADIENT VECTOR s

In this section, we ground the rationality of using the absolute value of st (Abs.) to infer word type
usage. Abs. is considered as a baseline to GMM (Rmk.3), compared in Section 4.2.3.

Theorem 5 (Sparsity of g.) For the gradient vector gi regarding the output token / label yi, only

one element’s absolute value |gyi,i| is significantly larger than the absolute values of any other

elements t in gi,

|gyi,i| � |gt,i|, if t 6= yi. (14)

Proof We first calculate the gradient vector gi on the i-th incidence, where pi is the output probability

vector by the language model and yi is a one-hot vector with the t-th element to be one and other

elements equal to zero,

gi ,
@L

@zi
= pi � yi. (15)

Taking the sum of the gradient values, we show the absolute gradient value regarding the ground-truth

token is the sum of the absolute values by others, i.e., |gyi,i| =
P

t 6=yi
|gt,i|,

gyi,i +
X

t 6=yi

gt,i = (pyi,i � 1) +
X

t 6=yi

pt,i =
X

t

pt,i � 1 = 1� 1 = 0. (16)

Then, we have

|gyi,i| =
���
X

t 6=yi

gt,i
���. (17)

Because, 8 t 6= yi, gt,i = pt,i � 0, as probabilistic outputs are larger or equal to zero,

|gyi,i| =
X

t 6=yi

|gt,i|. (18)

Considering the huge number of unused tokens |V|� 1, we have Eqn. 14.

Remark 4 (Abs. scorer on st) We can approximately consider gradient vectors gi as scaled ‘one-

hot’ vectors with the t-th element significantly larger than other elements, where t = yi. Then, the

flattened vector s is a weighted combination of these sparse gradient vectors with the used types

usually possess much larger absolute values, |st| where t 2 T , than the absolute values regarding

the unused types, |sn| where n /2 T . Ranking st provides clues to the used word types.

D TRAINING LANGUAGE MODELS

The architectures of victim language models. The architectures of the neural network used as
victim models for MT and LLM experiments are summarized in Table 8 and 9. More details about
the implementation of the model basis are at FAIRSEQ and HuggingFace.

Computational environment for Attackers. To conduct fair comparison, FLATCHAT and RLG use
the same experimental environment, CPU servers with Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz.
All computations are based on basic NumPy package in Python without specific optimization to
the algorithms. Note that i) FLATCHAT can be easily sped up by using GPU to compute the matrix
operations; and ii) Running time of RLG grows in a linear manner in terms of search rounds, but
there is no notable improvement in attack performance.

15

https://github.com/facebookresearch/fairseq/tree/main
%20https://huggingface.co/gpt2

Under review as a conference paper at ICLR 2024

Table 8: The setting of victim models used in MT
experiments.

Model Type Transformer

Embedding Dimension 512
Number of Heads 4
Number of Layer 6
Attention Dropout Rate 0.3
Embedding Dropout Rate 0.3
Vocabulary Size 16,594

Table 9: The setting of victim models used in
LLM experiments.

Model Type GPT-2

Embedding Dimension 768
Number of Heads 12
Number of Layer 12
Attention Dropout Rate 0.1
Embedding Dropout Rate 0.1
Vocabulary Size 50,257

E PERFORMANCE OF MACHINE TRANSLATION MODELS WITH DEFENSE

The performance of machine translation models is evaluated based on IWSLT 2017 test set using
scareBLEU. We validate the models with various defense settings such as freezing different layers
(Last, Emb and Last+Emb) and DP-SGD with varying noise multipliers � 2 {0.0, 10�3, 10�5

}, as
addressed in Table 10. The main results are aligned with those of losses on the validation set reported
in Figure 4. Although freezing layers provide strong defense against gradient inference attacks on
corresponding layers, the performance of the models drops significantly. In contrast, DP-SGD with
small noise achieves highly competitive results with the vanilla model and clipping gradients even
encourages more robust training.

Table 10: The comparison of machine translation models trained with different defense settings. For
each setting, two checkpoints at epoch 10 and epoch 50 are tested.

Model Vanilla Freeze DP-SGD
Emb Last Emb+Last � = 0.0 � = 10�3 � = 10�5

Epoch 10 14.2 1.9 8.2 1.2 16.6 15.0 17.8
Epoch 50 16.7 2.4 9.9 3.6 17.6 18.9 20.6

16

https://github.com/mjpost/sacrebleu

	Introduction
	Related Work
	Gradient Flattening Attack for Inferring Training Tokens
	Preliminaries: Attacking Gradients of the Last Linear Layer
	Flattening Attack on Last Layer Gradients

	Experiments
	Experimental Setup
	Results and Discussion
	Comparison with Baseline Label Recovering Attack
	Experiments on Large-scale Language Models.
	Analytical Study
	Analysis on Defense Methods

	Conclusion
	Distribution of Values st in Flattened Gradient Vector s
	Polynomial Regression Models for Predicting Type Number
	Proof of Sparse Values in Flattened Gradient Vector s
	Training Language Models
	Performance of Machine Translation Models with Defense

