
Table 1: Summary of notations.
Variable Meaning
n Number of training samples
T Number of testing samples
d Degrees of freedom (one HGP for each)
α |ψj(t)| ≤ α (cf. Assumption 4.2)
κ k(t, t′) ≤ κ (cf. Assumption 4.1)
ν ν = max1≤j≤d∥ 1√

n
yj∥

Σnoise ∈ Rn×n Diagonal time-varying noise variance at training points
R = Σnoise/n Normalized noise variance at training points
σ2

noise,t∗ ∈ R Noise variance at testing point t∗

r2t∗ = σ2
noise,t∗/n Normalized noise variance at testing point t∗

0 < γ < 1 Rii > γ, 1 ≤ i ≤ n

S : H → Rn Sampling operator with normalization n−1/2

L = SS∗ = K/n ∈ Rn×n Normalized Gram matrix with exact kernel
LR ∈ Rn×n LR = L+R

ψj(t) = ψ(ωj , t) Element of approximate feat. vector
ϕ̃(t) = m−1/2[ψ1(t), . . . , ψm(t)]T Approximate feat. vector
Sm : Rm → Rn Sampling operator with normalization n−1/2

Lm = SmS
∗
m = K̃/n ∈ Rn×n Normalized Gram matrix with RF kernel

Lm,R ∈ Rn×n Lm,R = Lm +R

A HGP Posterior Equations Revisited400

In this section, we will rewrite the exact and approximated HGP posterior equations from Sec-401

tion 2 in terms of standard linear operators used in RKHS theory. For a linear operator A,402

we denote its adjoint by A∗. Let H be the RKHS associated to the kernel of interest. In403

order to retrieve a suitable expression, we denote S : H → Rn the sampling operator de-404

fined as Sf := 1√
n
[f(t1), . . . f(tn)]

T . Moreover, the adjoint of the sampling operator is de-405

fined as S∗ : Rn → H : S∗a = 1√
n

∑n
i=1 aik(ti, ·), ai being the i-th entry of a. Now, let406

L : Rn → Rn, L := SS∗. Note that K = nL. Let R = 1
nΣnoise, let rt∗ = 1

nσ
2
noise,t∗ . Lastly,407

let ⟨·, ·⟩Rn denote the inner product of n-dimensional vectors. With this notation, let us consider408

a single DOF of the trajectory to be processed. The posterior mean of the associated exact HGP409

from Equation (1) is410

µpost(t
∗) =

〈
(L+R)−1Sk(t∗, ·), 1√

n
y

〉
Rn

. (7)

Moreover, the posterior variance from Equation (2) is given by411

σ2
post(t

∗) = k(t∗, t∗) + nrt∗ − ⟨Sk(t∗, ·), (L+R)−1Sk(t∗, ·)⟩Rn . (8)

Considering RFs, we can define the operator Sm : Rm → Rn, Sm := 1√
n
[ϕ̃(t1) . . . , ϕ̃(tn)]

T , and412

Lm : Rn → Rn, Lm := SmS
∗
m. With this notation, let us consider a single DOF of the trajectory413

to be processed. The RF-based posterior mean of the associated HGP from Equation (4) can be414

rewritten as415

µ̃post(t
∗) =

〈
(Lm +R)−1Smϕ̃(t∗),

1√
n
y

〉
Rn

. (9)

On the other hand, the RF-based posterior variance from Equation (5) is given by416

σ̃2
post(t

∗) = k̃(t∗, t∗) + nrt∗ − ⟨Smϕ̃(t∗), (Lm +R)−1Smϕ̃(t∗)⟩Rn . (10)

A summary of the main operators and constants that will appear in the proofs can be found in Table 1.417
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Fast matrix inversion By defintion, the operators Lm and Sm are matrices. The inversion of418

the matrix Lm + R appearing in Equations (9) and (10) can be performed by means of Woodbury419

identity [29], as follows:420

L−1
m,R = (SmS

∗
m +R)−1 (11)

= R−1 −R−1Sm(I + S∗
mR

−1Sm)−1S∗
mR

−1. (12)

The latter expression involves inverting an m × m matrix, which boosts the speed of the HGP421

posterior calculation if m≪ n.422

B Proofs of the Main Results423

In this appendix, we report the proofs of the two main theoretical results of our paper, along with424

some technical propositions that will be extensively used. In the following, we denote by AR the425

operatorA+R, withR diagonal positive definite matrix, and byAγ the operatorA+γI . Moreover,426

in the remainder, ∥·∥ denotes the operator norm, while ∥·∥2 denotes the Euclidean norm of a vector.427

B.1 Useful Propositions428

In this part, we report three propositions that will be useful in the proofs.429

Proposition B.1 (Proposition 8 of [25]). LetH be a separable Hilbert space, A,B be two bounded430

self-adjoint positive linear operators onH, and λ > 0. Then431

∥A−1/2
λ B1/2∥ ≤ ∥A−1/2

λ B
1/2
λ ∥ ≤

1

(1− β)1/2
, (13)

where432

β = λmax

[
B

−1/2
λ (B −A)B−1/2

λ

]
. (14)

433

Proposition B.2. Let Sm : Rm → Rn, Sm := 1√
n
[ϕ̃(t1) . . . , ϕ̃(tn)]

T , and assume that the entries434

of the RF vectors are bounded, that is, |ψj(t)| ≤ α,∀j ∈ {1, . . . ,m}. Then,435

∥Sm∥ ≤ α. (15)

436

Proof. The result follows from the definition of operator norm:437

∥Sm∥ = sup
a∈Rn,∥a∥2≤1

∥Sma∥2 (16)

= sup
a∈Rn,∥a∥2≤1

1√
n

√
⟨ϕ̃(t1),a⟩22 + · · ·+ ⟨ϕ̃(tn),a⟩22 (17)

≤ 1√
n

√
nα2 = α, (18)

as reported in the statement.438

Proposition B.3. Let A be a bounded positive semi-definite operator, and let AR := A+R, with R439

diagonal positive definite and Aγ = A+ γI . Lastly, assume all entries in R are greater or equal to440

γ. Then,441

∥A−1/2
R A1/2

γ ∥ ≤ 1. (19)

Proof. Noting that AR −Aγ = (R− γI) ≽ 0 by hypothesis, it holds Aγ ≼ AR and thus442

∥A−1/2
R A1/2

γ ∥2 = ∥A−1/2
R AγA

−1/2
R ∥ ≤ ∥I∥ = 1. (20)

443
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B.2 Proof of Theorem 4.4 (Deviation of Approximate Posterior Mean)444

We report here the proof of Theorem 4.4. We start by considering a single DOF, and generalize to445

a d-valued GP at the end of this section. We begin by proving a lemma that will be used to retrieve446

the main result.447

Lemma B.4. Let m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ), and δ = (0, 1]. Then, the following bound holds, with448

probability at least 1− δ,449

∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2 ≤

√
2κ
√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 . (21)

450

Proof. In order to bound the term of interest, we can use the fact that, for any invertible matrices A451

and B, A−1 −B−1 = A−1(I −AB−1) = A−1(B −A)B−1, and Proposition B.3, as follows:452

∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2 (22)

=∥L−1
m,R(LR − Lm,R)L

−1
R Sk(t∗, ·)∥2 (23)

=∥L−1/2
m,R L

−1/2
m,R L1/2

m,γL
−1/2
m,γ L1/2

γ L−1/2
γ (L− Lm)L−1

R Sk(t∗, ·)∥2 (24)

≤ 1
√
γ
∥L−1/2

m,R L1/2
m,γ∥∥L−1/2

m,γ L1/2
γ ∥∥L−1/2

γ (L− Lm)L−1
R Sk(t∗, ·)∥2 (25)

≤ κ
√
γ
∥L−1/2

m,γ L1/2
γ ∥∥L−1/2

γ (L− Lm)L−1/2
γ ∥∥L−1/2

R S∥. (26)

We can now proceed to bound each of the three factors. To start off, let us consider ∥L−1/2
R S∥. This453

term can be bounded by using the polar decomposition of the bounded linear operator S, as follows.454

Let S = (SS∗)1/2U , where U is a partial isometry. By Proposition B.3, the definition of polar455

decomposition, and by considering that L ≼ Lγ by definition,456

∥L−1/2
R S∥ = ∥L−1/2

R (SS∗)1/2U∥ (27)

≤ ∥L−1/2
R L1/2∥∥U∥ (28)

≤ ∥L−1/2
R L1/2

γ ∥∥U∥ (29)
≤ 1. (30)

Now, we can move on to bound ∥L−1/2
γ (L − Lm)L

−1/2
γ ∥. To do so, we can observe that, by457

definition,458

Lm = SmS
∗
m (31)

=
1

n

1

m

m∑
i=1

[
ψi(t1)
. . .

ψi(tn)

]
⊗

[
ψi(t1)
. . .

ψi(tn)

]
. (32)

Moreover, due to linearity of expectation,459

Eω[Lm] = L. (33)

We can therefore apply Proposition C.4, with p = m, Q = L, and Qp = Lm. Note that TrL is the460

trace of the normalized Gram matrix 1
nK and hence is smaller or equal to κ2 under Assumption 4.1.461

Lastly, the value of the constant F∞(γ) in Proposition C.4 can be computed as follows:462 〈
1√
n

[
ψi(t1)
. . .

ψi(tn)

]
,

1√
n
L−1
γ

[
ψi(t1)
. . .

ψi(tn)

]〉
Rn

≤ α2

γ
. (34)

Thus, we obtain, with probability at least 1− δ,463

∥L−1/2
γ (L− Lm)L−1/2

γ ∥ ≤
2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm
. (35)
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To conclude the proof, we can bound ∥L−1/2
m,γ L

1/2
γ ∥. By Proposition B.1, we have that464

∥L−1/2
m,γ L1/2

γ ∥ ≤
1

(1− β)1/2
, where β = λmax

[
L−1/2
γ (L− Lm)L−1/2

γ

]
. (36)

According to Equation (33), we can apply Proposition C.4 and see that with probability at least 1−δ465

β ≤
2 log 8κ2

γδ

3m
+

√
2 log 8κ2

γδ α
2

γm
≤ 0.5 (37)

provided that m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ).466

Proof of Theorem 4.4 In order to retrieve the main concentration result, we can consider the fol-467

lowing decomposition of the error on the posterior mean. By Cauchy-Schwarz inequality and Equa-468

tions (7) and (9),469

|µ̃post(t
∗)− µpost(t

∗)| =
∣∣∣∣〈L−1

m,RSmϕ̃(t∗)− L−1
R Sk(t∗, ·), 1√

n
y

〉
Rn

∣∣∣∣ (38)

≤ ν∥L−1
m,RSmϕ̃(t∗)− L−1

m,RSk(t
∗, ·) + L−1

m,RSk(t
∗, ·)− L−1

R Sk(t∗, ·)∥2
(39)

≤ ν∥L−1
m,R(Smϕ̃(t∗)− Sk(t∗, ·))∥2 + ν∥(L−1

m,R − L
−1
R )Sk(t∗, ·)∥2 (40)

≤ ν/γ∥Smϕ̃(t∗)− Sk(t∗, ·)∥2 + ν∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2. (41)

Now, we can upper bound the two norms appearing in the expression above. The first addend can be470

directly bounded by applying Corollary C.3. The second addend in Equation (41) can be bounded471

by Lemma B.4. Hence, we obtain the following bound with probability at least 1− δ:472

|µ̃post(t
∗)− µpost(t

∗)| ≤ ν/γ∥Smϕ̃(t∗)− Sk(t∗, ·)∥2 + ν∥(L−1
m,R − L

−1
R )Sk(t∗, ·)∥2 (42)

≤

√
2ν2α4 log 2Tn

δ

mγ2
+

√
2κν
√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 .
(43)

The final result for the vector-valued GP can be obtained by applying a union bound.473

B.3 Proof of Theorem 4.5 (Deviation of Approximate Posterior Variance)474

In this section, we prove our result related to the concentration of the approximate posterior variance.475

Again, we begin by stating some lemmas that will be used in the proof.476

Lemma B.5. Let δ = (0, 1]. Then, the following bound holds, with probability at least 1− δ,477

|⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1
R Sk(t∗, ·)⟩Rn | ≤

√
2κ2α4 log 2Tn

δ

γm
. (44)

478

Proof. By Cauchy-Schwarz,479

|⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1
R Sk(t∗, ·)⟩Rn | ≤ ∥Sk(t∗, ·)− Smϕ̃(t∗)∥2∥L−1

R Sk(t∗, ·)∥2. (45)
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By using the polar decomposition of S, for a suitable partial isometry operator U , and according480

to Propositions B.1 and B.3481

∥L−1
R Sk(t∗, ·)∥2 ≤ ∥L−1

R (SS∗)1/2U∥∥k(t∗, ·)∥H (46)

≤ κ∥L−1
R L1/2∥ (47)

≤ κ∥L−1/2
R ∥∥L−1/2

R L1/2∥ (48)

≤ κ
√
γ
∥L−1/2

R L1/2
γ ∥∥L−1/2

γ L1/2∥ (49)

≤ κ
√
γ
∥L−1/2

γ L1/2
γ ∥ (50)

≤ κ
√
γ
. (51)

To conclude the proof, we can observe that, according to Corollary C.3,482

∥Sk(t∗, ·)− Smϕ̃(t∗)∥2 ≤

√
2α4 log 2Tn

δ

m
. (52)

483

Lemma B.6. Let δ = (0, 1]. Then, the following bound holds, with probability at least 1− δ,484

|⟨Smϕ̃(t∗), L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn | ≤ α2

γ

√
2α4 log 2Tn

δ

m
. (53)

485

Proof. By Cauchy-Schwarz inequality and Proposition B.2,486

|⟨Smϕ̃(t∗), L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn | ≤ ∥Smϕ̃(t∗)∥2∥L−1

R (Sk(t∗, ·)− Smϕ̃(t∗))∥2 (54)

≤ ∥Sm∥∥ϕ̃(t∗)∥2∥L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))∥2

(55)

≤ α2

γ
∥Sk(t∗, ·)− Smϕ̃(t∗)∥2. (56)

Now, we can again observe that, according to Corollary C.3,487

∥Sk(t∗, ·)− Smϕ̃(t∗)∥2 ≤

√
2α4 log 2Tn

δ

m
, (57)

which concludes the proof.488

Lemma B.7. Let m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ), and δ = (0, 1]. Then, the following bound holds, with489

probability at least 1− δ,490

|⟨Smϕ̃(t∗), (L−1
R − L

−1
m,R)Smϕ̃(t∗)⟩Rn | ≤ α3

√
2

√
γ

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 .
(58)

491
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Proof. Firstly, we can observe that, by Cauchy-Schwarz inequality, Propositions B.2 and B.3, the492

polar decomposition of Sm, and the fact that Lm ≼ Lm,γ by definition, we have that493

|⟨Smϕ̃(t∗),(L−1
R − L

−1
m,R)Smϕ̃(t∗)⟩Rn |

= |⟨Smϕ̃(t∗), L−1
m,R(L− Lm)L−1

R Smϕ̃(t∗)⟩Rn | (59)

= |⟨L−1/2
m,R Smϕ̃(t∗), L

−1/2
m,R (L− Lm)L−1

R Smϕ̃(t∗)⟩Rn | (60)

≤ ∥L−1/2
m,R Smϕ̃(t∗)∥2∥L−1/2

m,R (L− Lm)L−1
R Smϕ̃(t∗)∥2 (61)

≤ α3∥L−1/2
m,R (SmS

∗
m)1/2U∥∥L−1/2

m,R L1/2
m,γL

−1/2
m,γ (L− Lm)L−1

R Smϕ̃(t∗)∥2 (62)

≤ α3∥L−1/2
m,R L1/2

m,γ∥∥L−1/2
m,γ L1/2

γ ∥∥L−1/2
γ (L− Lm)L−1/2

γ ∥|L1/2
γ L

−1/2
R ∥∥L−1/2

R ∥
(63)

≤ α3

√
γ
∥L−1/2

m,γ L1/2
γ ∥∥L−1/2

γ (L− Lm)L−1/2
γ ∥. (64)

Now, we can bound the two factors. According to Propositions B.1 and C.4, with probability at least494

1− δ, for δ ∈ (0, 1] and m ≥ 8
(

1
3 + α2

γ

)
log( 8α

2

γδ ), we have that495

∥L−1/2
m,γ L1/2

γ ∥∥L−1/2
γ (Lγ−Lm,γ)L

−1/2
γ ∥ ≤

√
2

2 log 8κ2

γδ (1 + α2/γ)

3m
+

√
2 log 8κ2

γδ α
2

γm

 , (65)

concluding the proof.496

Proof of Theorem 4.5 We are now ready to prove Theorem 4.5. According to Equations (8)497

and (10), and similarly to what we did for the posterior mean, we can decompose the error on the498

variance of a single DOF as follows:499

|σ2
post(t

∗)− σ2
post(t

∗)| =|k(t∗, t∗)− ⟨Sk(t∗, ·), L−1
R Sk(t∗, ·)⟩Rn

− k̃(t∗, t∗) + ⟨Smϕ̃(t∗), L−1
m,RSmϕ̃(t∗)⟩Rn | (66)

≤|k(t∗, t∗)− k̃(t∗, t∗)|
+ |⟨Sk(t∗, ·), L−1

R Sk(t∗, ·)⟩Rn − ⟨Smϕ̃(t∗), L−1
m,RSmϕ̃(t∗)⟩Rn | (67)

≤|k(t∗, t∗)− k̃(t∗, t∗)|
+ |⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1

R Sk(t∗, ·)⟩Rn |
+ |⟨Smϕ̃(t∗), L−1

R Sk(t∗, ·)− L−1
m,RSmϕ̃(t∗)⟩Rn | (68)

≤|k(t∗, t∗)− k̃(t∗, t∗)|
+ |⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1

R Sk(t∗, ·)⟩Rn |
+ |⟨Smϕ̃(t∗), L−1

R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn |
+ |⟨Smϕ̃(t∗), (L−1

R − L
−1
m,R)Smϕ̃(t∗)⟩Rn |. (69)

Now, we can upper bound the four addends appearing in the decomposition above. The first addend500

can by directly bounded by Corollary C.2. The second addend of the decomposition in Equation (69)501

can be bounded by Lemma B.5. The third addend in Equation (69) can be bounded by Lemma B.6.502

The last addend in Equation (69) can be bounded by Lemma B.7. In this way, we retrieve the result503

of Theorem 4.5, obtaining the following bound holding with probability at least 1−δ. Having defined504
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C :=

√
2α4 log 2T

δ

m +
√

2κ2α4 log 2Tn
δ

γm + α2

γ

√
2α4 log 2Tn

δ

m + α3
√
2√

γ

[
2 log 8κ2

γδ (1+α2/γ)

3m +

√
2 log 8κ2

γδ α2

γm

]
:505

|σ2
post(t

∗)− σ2
post(t

∗)| ≤ |⟨k(t∗, ·), k(t∗, ·)⟩H − ⟨ϕ̃(t∗), ϕ̃(t∗)⟩Rm |

+ ⟨Sk(t∗, ·)− Smϕ̃(t∗), L−1
R Sk(t∗, ·)⟩Rn |

+ |⟨Smϕ̃(t∗), L−1
R (Sk(t∗, ·)− Smϕ̃(t∗))⟩Rn |

+ |⟨Smϕ̃(t∗), (L−1
R − L

−1
m,R)Smϕ̃(t∗)⟩Rn | (70)

≤ C. (71)

The final result for the vector-valued GP can be obtained by applying a union bound.506

C Concentration Results507

We first provide a few lemmas for the concentration of the approximate kernel functions that derive508

from Hoeffding inequality, and then a lemma for the concentration of random operators that derives509

from Bernstein inequality. Again, we denote by Aγ the operator A + γI . ∥·∥ denotes the operator510

norm, while ∥·∥2 denotes the Euclidean norm of a vector.511

C.1 Approximation of the Kernel Function512

Note that if a uniform convergence of the RF-HGP posterior is seeked w.r.t. the domain of the513

function modelled with the HGP, our proofs could be adapted by replacing the following Lemma C.1514

with a uniform convergence result. For instance, in the case of RFFs, such a result can be found515

in [17, Claim 1].516

Lemma C.1. Let δ = (0, 1]. Then, for any (t1, t2) it holds with probability at least 1− δ, it holds517

∣∣∣ϕ̃(t1)T ϕ̃(t2)− k(t1, t2)∣∣∣ ≤
√

2α4 log 2
δ

m
, ∀t1, t2 ∈ X . (72)

Proof. To upper bound the quantity of interest, we can use Hoeffding’s inequality for bounded518

random variables. Let Aj(t1, t2) := ψj(t1)ψj(t2) − Eωψ(ω, t1)ψ(ω, t2). Since −α2 ≤519

ψj(t1)ψj(t2) ≤ α2 according to Assumption 4.2, by Hoeffding inequality, we have that520

Pr

 1

m

∣∣∣∣∣∣
m∑
j=1

Aj(t1, t2)

∣∣∣∣∣∣ ≥ t

m

 ≤ 2e−
2t2

4mα4 . (73)

Therefore, by setting the above upper bound smaller than δ, for δ ∈ (0, 1], we get that with proba-521

bility at least 1− δ522

∣∣∣ϕ̃(t1)T ϕ̃(t2)− k(t1, t2)∣∣∣ = 1

m

∣∣∣∣∣∣
m∑
j=1

Aj(t1, t2)

∣∣∣∣∣∣ ≤
√

2α4 log 2
δ

m
. (74)

523

Corollary C.2. Let δ = (0, 1]. Then with probability at least 1− δ, it holds524

∣∣∣ϕ̃(t∗)T ϕ̃(t∗)− k(t∗, t∗)∣∣∣ ≤
√

2α4 log 2|T |
δ

m
, ∀t∗ ∈ T . (75)

Proof. We apply Lemma C.1 on each element of T with δ′ := δ/T . The claimed result then follows525

using a union bound.526
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Corollary C.3. Let δ = (0, 1]. Then with probability at least 1− δ,527

∥Smϕ̃(t∗)− Sk(t∗, ·)∥2 ≤

√
2α4 log 2Tn

δ

m
, ∀t∗ ∈ T . (76)

Proof. It holds528

∥Smϕ̃(t∗)− Sk(t∗, ·)∥22 =
1

n

n∑
i=1

[
ϕ̃(ti)

T ϕ̃(t∗)− k(ti, t∗)
]2

(77)

The result thus follows from applying nT times Lemma C.1 on the pairs ((ti, t∗))1≤i≤n,t∗∈T with529

probability δ′ := δ/(nd) and using a union bound.530

C.2 Concentration of the Kernel matrix531

The following result derives from the Bernstein inequality for sums of random operators on separa-532

ble Hilbert spaces in operator norm.533

Proposition C.4 (Proposition 6 and Remark 10 of [25]). Let v1, ...,vp with p ≥ 1, be independent534

and identically distributed random vectors on a separable Hilbert spacesH such that Q = Ev ⊗ v535

is trace-class, and for any λ > 0 there exists a constant F∞(λ) <∞ such that ⟨v, (Q+λI)−1v⟩ ≤536

F∞(λ) almost everywhere. Let Qp = 1
p

∑p
i=1 vi ⊗ vi and take 0 < λ ≤ ∥Q∥. Then for any δ ≥ 0,537

the following holds with probability at least 1− δ:538

∥Q−1/2
λ (Q−Qp)Q

−1/2
λ ∥ ≤ 2w(1 + F∞(λ))

3p
+

√
2wF∞(λ)

p
(78)

where w = log 8TrQ
λδ . Moreover, with the same probability,539

λmax

[
Q

−1/2
λ (Q−Qp)Q

−1/2
λ

]
≤ 2w

3p
+

√
2wF∞(λ)

p
. (79)

Moreover, for any s ∈ (0, 1], if ∥vi∥ ≤ α, we have that, with probability at least 1− δ,540

λmax

[
Q

−1/2
λ (Q−Qp)Q

−1/2
λ

]
≤ s. (80)

provided that p ≥ 2
t2

[
2t
3 + F∞(γ)

]
log 8α2

λδ and λ ≤ ∥Q∥.541

D Efficient Matrix Inversion and Online Updates542

In this section, we show how the expression of the posterior mean and variance can easily be updated543

when adding new samples to the dataset.544

We recall that the operators Sm and Lm,R are matrices and are defined in Appendix A. As discussed545

in Appendix A, the inversion of Lm,R, involved the posteriors of Equations (9) and (10), can be546

simplified by applying Woodbury identity [29], as follows:547

L−1
m,R = (SmS

∗
m +R)−1 (81)

= R−1 −R−1Sm(I + S∗
mR

−1Sm)−1S∗
mR

−1. (82)

The posterior mean of the HGP in Equation (9) becomes:548

µ̃post(t
∗) = ⟨

[
R−1 −R−1Sm(I + S∗

mR
−1Sm)−1S∗

mR
−1

]
Smϕ̃(t∗),

1√
n
y⟩Rn (83)

= ϕ̃(t∗)T
[
I − S∗

mR
−1Sm(I + S∗

mR
−1Sm)−1

]
S∗
mR

−1 1√
n
y (84)

= ϕ̃(t∗)T
[
I −B(I +B)−1

]
A (85)
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where A := 1√
n
S∗
mR

−1y ∈ Rm and B := S∗
mR

−1Sm ∈ Rm×m. Moreover, the only term in the549

expression of the posterior variance of Equation (10)550

σ̃2
post(t

∗) =⟨ϕ̃(t∗), ϕ̃(t∗)⟩Rm + nrt∗ − ⟨Smϕ̃(t∗), (Lm +R)−1Smϕ̃(t∗)⟩Rn (86)

which varies with n is551

⟨Smϕ̃(t∗), (Lm +R)−1Smϕ̃(t∗)⟩Rn (87)

= ϕ̃T (t∗)
[
S∗
mR

−1Sm − S∗
mR

−1Sm(I + S∗
mR

−1Sm)−1S∗
mR

−1Sm

]
ϕ̃(t∗), (88)

= ϕ̃T (t∗)
[
B −B(I +B)−1B

]
ϕ̃(t∗). (89)

When a new human demonstration is gathered, the training set is enlarged by adding nnew training552

points. This means that the matrix Sm is updated by adding nnew rows (and renormalized), contain-553

ing the RF embeddings of the new training points. The same happens to vector y and to the diagonal554

matrix R, which is enlarged by adding nnew rows and columns. This means that matrices A and B555

support online updates. In particular, after initializing A and B to the null matrix, having collected556

the new embeddings in Sm,new ∈ Rnnew×m (with normalization n−1/2
new ) and the new noise variance557

values in Rnew ∈ Rnnew×nnew (with normalization n−1
new), the updates are as follows:558

A← A+ 1√
nnew

S∗
m,newR

−1
newynew (90)

B ← B + S∗
m,newR

−1
newSm,new. (91)

Having computed the updates, the matrices appearing in the posterior mean and variance can be559

computed in constant time w.r.t. the current size of the training set during the data streaming.560
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