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Figure 9: PromptGen on synthetic data. (a) The real distribution is a Gaussian mixture distribution
biased towards one mode. We derive a closed-form fair classifier. (b) A GAN trained on this real
distribution. (c) With the fair classifier as control, PromptGen learns a distribution concentrated in
a specific region. (d) We derive the moment constraint following Section 3.1 and Section 4.2, and
PromptGen learns to up-weight the under-represented regions.

A PromptGen on Synthetic Data

We demonstrate the behavior of our PromptGen with two-dimensional synthetic data, using GAN as
the generative model. This synthetic experiment is illustrated in Figure 9. Specifically, we created
a “real” distribution that is a Gaussian mixture distribution biased towards one mode. We derive a
closed-form fair classifier based on this distribution, detailed in the purple block in Figure 9. When a
GAN is trained to approximate this distribution, its outputs are biased towards the over-represented
mode, as shown by Figure 9(b). Figure 9(c) illustrates the controllability experiment: using the fair
classifier as control, PromptGen learns a distribution concentrated in a specific region of the output
space. Figure 9(d) illustrates the de-biasing experiment: using the moment constraint (Section 3.1
and Section 4.2), PromptGen upweights the under-represented regions of the output space.

B Method Details and Derivations

B.1 Controllability as EBM

In Section 3, we defined a control C as M independent properties {y1, . . . ,yM}. For example, y1 can
be a text description, and y2 can be an attribute. In this part, we first elaborate on why controllability
can be formed as EBMs in Eq. (1). We then provide concrete examples of the distributions derived
from different energy functions defined in Section 3.1.

We denote the image prior as px(x), the only distribution that can be estimated from data when
labels for the control are not provided during generative model pre-training. Given the control
C = {y1, . . . ,yM}, we resort to Bayes’ theorem to rewrite the conditional distribution p(x|C) as

p(x|C) / px(x)p(C|x) (13)

= px(x)p(y1|x)
MY

i=2

p(yi|x,y<i) (14)

= px(x)
MY

i=1

p(yi|x) (independence assumption). (15)

For Eq. (15) to be well-defined, we need to define p(yi|x) for each yi. In order to incorporate the
knowledge of arbitrary off-the-self models (besides image classifiers), we define each p(yi|x) as

p(yi|x) =
exp(��iEi(x,yi))

Zi
, Zi =

Z

y0
i

exp(��iEi(x,y
0
i))dy

0
i. (16)
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Eq. (16) says that p(yi|x) is proportional to the exponential of an energy function Ei(x,yi), where
yi with lower energy has higher density or mass. Note that Eq. (16) defines a distribution over all
possible values of yi instead of all possible values of x. Combining Eq. (15) and Eq. (16), we have

p(x|C) = px(x)e�EC(x)

ZX
, EC(x) =

MX

i=1

�iEi(x,yi), ZX =

Z

x0
px(x

0)e�EC(x
0)dx0, (17)

which is the same equation as Eq. (1).

In the following, we use Eq. (16) to derive the distributions from the classifier energy, CLIP energy,
and inverse graphics energy defined in Section 3.1.

Classifier energy: Given a classifier P (·|x) and the target class a, we define the classifier energy as
Eclassifier(x, a) = � logP (a|x). Using Eq. (16), we arrive at:

pclassifier(a|x) =
exp(�classifier logP (a|x))P
a0 exp(�classifier logP (a0|x)) =

P (a|x)�classifier

P
a0 P (a0|x)�classifier

, (18)

which is equivalent to a temperature-adjusted distribution of the original classifier.

CLIP energy: Using Eq. (16), the CLIP energy in Eq. (3) is equivalent to

pCLIP(t|x) / exp

 
� �CLIP

L

LX

l=1

✓
1� cos

D
CLIPimg

�
DiffAugl(x)

�
,CLIPtext(t)

E◆!
. (19)

Inverse graphics energy: Using Eq. (16), the inverse graphics energy in Eq. (4) is equivalent to

pinv-graphics(⇢|x) / exp(��inv-graphicsd
⌦
fX!P(x),⇢

↵2
). (20)

If the geodesic distance d
⌦
·, ·
↵

is the Euclidean distance, then pinv-graphics(⇢|x) is a Gaussian distribu-
tion whose mean is ⇢ and whose variance depends on the hyperparameter �inv-graphics; if the geodesic
distance d

⌦
·, ·
↵

is the spherical distance (e.g., the distance between pose parameters defined on a unit
sphere), then pinv-graphics(⇢|x) is a vMF distribution.

B.2 Equivalence between Image-Space EBM and Latent-Space EBM

Proposition 1. Define x ⇠ px(x) as z ⇠ pz(z),x = G(z) and p(x|C) as z ⇠ p(z|C),x = G(z),
where p(z|C) is defined as the following EBM:

p(z|C) = pz(z)e�EC(G(z))

Z
, EC(x) =

MX

i=1

�iEi(x,yi), Z =

Z

z0
pz(z

0)e�EC(G(z0))dz0. (21)

We have

p(x|C) = px(x)e�EC(x)

ZX
, ZX =

Z

x0
px(x

0)e�EC(x
0)dx0. (22)

In spirit, our proof follows the proof in [52], which follows [19]. The difference between our proof
and that in [52] is that we derive p(x|C) from p(z|C) while they derived p(z|C) from p(x|C).

Proof. Based on Lemma 1 in [19] and Lemma 1 in [52], p(z|C) is equivalent to rejection sampling
with proposal distribution pz(z) and acceptance probability

r(z) =
e�EC(G(z))

MC · Z , where 8z,MC >
e�EC(G(z))

Z
. (23)

Since p(x|C) is defined as z ⇠ pz(z|C),x = G(z), p(x|C) is equivalent to rejection sampling with
proposal distribution pz(z),x = G(z) and acceptance probability

r(x) =
e�EC(x)

MC · Z . (24)
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Note that the above proposal distribution z ⇠ pz(z),x = G(z) is the same as px(x) by definition.
Based on Lemma 1 in [19] and Lemma 1 in [52], we arrive at:

p(x|C) = px(x)r(x)

Ex0⇠px(x0)[r(x0)]
(25)

=
px(x)e�EC(x)/(MC · Z)

Ex0⇠px(x0)[e�EC(x0)/(MC · Z)]
(26)

=
px(x)e�EC(x)

Ex0⇠px(x0)[e�EC(x0)]
(27)

=
px(x)e�EC(x)

ZX
, ZX =

Z

x0
px(x

0)e�EC(x
0)dx0. (28)

B.3 Derivation of Eq. (9): Approximating EBM with INN

The full derivation of Eq. (9) is given by:

DKL(p✓(z)kp(z|C))

= Ez⇠p✓(z)

h
log

p✓(z)

p(z|C)

i

= Ez⇠p✓(z),x=G(z)

h
log

p✓(z)

pz(z)e�EC(x)/Z

i

= E✏⇠N (0,I),z=f✓(✏),x=G(z)

h
logN (✏|0, I)� log | det(@f✓

@✏
)|

� log pz(z) + EC(x) + logZ
i

= E✏⇠N (0,I),z=f✓(✏),x=G(z)

h
� log | det(@f✓

@✏
)|� log pz(z)

+ EC(x)
i
�HN (0,I) + logZ.

(29)

B.4 Derivation of Eq. (11): Extension to Generative Models with a Class-Embedding Space

The full derivation of Eq. (11) is given by:

DKL(p✓(z,y)kp(z,y|C))

= E(z,y)⇠p✓(z,y)

h
log

p✓(z,y)

p(z,y|C)

i

= E(z,y)⇠p✓(z,y),x=G(z,y)

h
log

p✓(z,y)

pz,y(z,y)e�EC(x)/Z

i

= E(z,y)⇠p✓(z,y),x=G(z,y)

h
log

p✓(z,y)

pz(z)py(y)e�EC(x)/Z

i
(z and y are independent)

= E✏⇠N (0,I),⇠⇠N (µ,�2I),z=f✓(✏),y=h✓(⇠),x=G(z,y)

h
logN (✏|0, I)� log | det(@f✓

@✏
)|

+ logN (⇠|µ,�2I)� log | det(@h✓

@⇠
)|� log pz(z)� log py(y) + EC(x) + logZ

i

= E✏⇠N (0,I),⇠⇠N (µ,�2I),z=f✓(✏),y=h✓(⇠),x=G(z,y)

h
� log | det(@f✓

@✏
)|� log | det(@h✓

@⇠
)|

� log pz(z)� log py(y) + EC(x)
i
�HN (0,I) �HN (µ,�2I) + logZ.

(30)
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Algorithm 3: Extension of Algorithm 2 to Conditional INN
while not converged do

1. Sample ✏ ⇠ N (0, I),⇢ ⇠ p⇢(⇢)
2. Map ✏ to latent code z = f✓(✏,⇢)
3. Map z to an image x = G(z)

4. Optimize ✓ with gradient r✓

⇣
� log | det(@f✓

@✏
)|� log pz(z) + EC⇢(x)

⌘

B.5 Extension to Conditional INN

Algorithm 3 illustrates how we extend the training algorithm (Algorithm 2) to conditional INN, which
helps generalize to controls specified by continuous values ⇢. The training objective becomes

argmin
✓

E⇢⇠p⇢(⇢)

⇥
DKL

�
p✓(z|⇢)kp(z|C⇢)

�⇤
, (31)

where C⇢ means that the control is specified by value ⇢. The derivation of Algorithm 3 is given by:

E⇢⇠p⇢(⇢)

⇥
DKL

�
p✓(z|⇢)kp(z|C⇢)

�⇤

= E⇢⇠p⇢(⇢),z⇠p✓(z|⇢)

h
log

p✓(z|⇢)
p(z|C⇢)

i

= E⇢⇠p⇢(⇢),z⇠p✓(z|⇢),x=G(z)

h
log

p✓(z|⇢)
pz(z)e

�EC⇢ (x)/Z

i

= E⇢⇠p⇢(⇢),✏⇠N (0,I),z=f✓(✏,⇢),x=G(z)

h
logN (✏|0, I)� log | det(@f✓

@✏
)|

� log pz(z) + EC⇢(x) + logZ
i

= E⇢⇠p⇢(⇢),✏⇠N (0,I),z=f✓(✏,⇢),x=G(z)

h
� log | det(@f✓

@✏
)|� log pz(z)

+ EC⇢(x)
i
�HN (0,I) + logZ.

(32)

B.6 Derivation for Latent-Space Moment Constraint

Given a mapping � : X ! R
K , moment constraint [7, 37] defines the target distribution p(x|C) as

p(x|C) = argmin
p(x|C)

DKL(p(x|C)kpx(x))
| {z }
Deviation from the pre-trained distribution

, s.t. Ex⇠p(x|C)
⇥
�(x)

⇤
= µ

| {z }
Moment constraint

, (33)

where µ is the user-specified constraint. Examples are provided in the main text, and we omit them
here for brevity. [7] showed that Eq. (33) can be approximated to an arbitrary precision by

p(x|C) / px(x) exp
�
�̂>�(x)

�
, (34)

where �̂ needs to be computed. [37] estimates �̂ by solving the following regression problem:

�̂ = argmin
�

E
x(1),...,x(N) i.i.d.⇠ px(x)

����

PN
j=1 exp

�
�>�(x(j))

�
�(x(j))

PN
j0=1 exp

�
�>�(x(j0))

� � µ

����
2

2

. (35)

In [37], sampling x ⇠ px(x) is straightforward since they focus on autoregressive language models.
In the context of latent-variable vision generative models, where x ⇠ px(x) is implicitly defined as
z ⇠ pz(z),x = G(z), Eq. (35) is equivalent to

�̂ = argmin
�

E
z(1),...,z(N) i.i.d.⇠ pz(z),x(j)=G(z(j))

����

PN
j=1 exp

�
�>�(x(j))

�
�(x(j))

PN
j0=1 exp

�
�>�(x(j0))

� � µ

����
2

2

. (36)
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Finally, based on Proposition 1, we can generalize the moment constraint to the latent space as

p(z|C) =
pz(z) exp

⇣
�̂>�

�
G(z)

�⌘

Z
, Z =

Z

z0
pz(z

0) exp
⇣
�̂>�

�
G(z0)

�⌘
dz0. (37)

Note that Eq. (36) and Eq. (37) are verbatim copies of Eq. (7) and Eq. (6), respectively.

Algorithm 4: Extension of Algorithm 3 with ID Energy (Section 4.3)
while not converged do

1. Sample ✏ ⇠ N (0, I),⇢ ⇠ p⇢(⇢)
2. Map ✏ to latent codes z = f✓(✏,⇢) and z0 = f✓(✏,⇢0)
3. Map z to an image x = G(z) and z0 to an image x0 = G(z0)
4. Optimize ✓ with gradient

r✓

⇣
� log | det(@f✓

@✏
)|� log pz(z) + EC⇢(x) + �IDEID(x0,x)

⌘

B.7 Inverse Graphics Control with Identity Energy

This subsection provides more detail on how we use an inverse graphics model, DECA [16], to control
the pose of faces generated by StyleGAN2 trained on FFHQ 10242, as introduced in Section 4.3.
Recall that we use the conditional INN extension, detailed in Algorithm 3, for this experiment. To
enable generating different poses of the same identity, we add additional identity energy using the
IR-SE50 model [8]. The training algorithm is detailed in Algorithm 4. Specifically, we generate a
canonical latent code z0 = f✓(✏,⇢0) for each ✏, where ⇢0 is the canonical pose. The latent code z
and the canonical latent code z0 are mapped to the image x and the canonical image x0. The identity
energy in Eq. (12), copied below, encourages the embeddings of the two images to be similar:

EID(x0,x) = 1� cos
⌦
R(x0), R(x)

↵
, x0 = G(z0),x = G(z). (38)

B.8 Experimental Details

Our INN architecture contains 8 blocks. Each block consists of a soft permutation of channels [2], an
affine coupling layer [12], and an ActNorm layer [39]. In the affine coupling layer, we model the
sub-network as an MLP with one hidden layer, where the hidden dimension is 256 and the non-linear
activation is LeakyReLU0.1.

For the prior distribution p⇢(⇢) of the pose parameter ⇢ in the inverse graphics experiments (Sec-
tion 4.3), we sample the x-axis and y-axis rotations relative to a canonical pose ⇢0, whose x-axis
and y-axis rotations are 0.3 and 0, respectively. The relative pose’s x-axis and y-axis rotations are
uniformly sampled from [�(1/9)⇡, (1/9)⇡].

Each experiment was run on an NVIDIA RTX A4000 GPU (with 16G memory). Our code imple-
mentation is based on the PyTorch framework. Our code can be found at https://github.com/
ChenWu98/Generative-Visual-Prompt.

21

https://github.com/ChenWu98/Generative-Visual-Prompt
https://github.com/ChenWu98/Generative-Visual-Prompt


(a) photo of a cat with closed eyes (AFHQ-Cats) (b) photo of a cat with eyes wide open (AFHQ-Cats)

(c) photo of a church during day (LSUN-Churches) (d) photo of a church at night (LSUN-Churches)

(e) photo of a happy person (FFHQ) (f) photo of a sad person (FFHQ)

(g) photo of a woman with glasses (FFHQ)

Figure 10: Additional results for image synthesis based on text description, guided by the CLIP
model. As the pre-trained generative model, we use StyleGAN2 trained on FFHQ, AFHQ-Cats and
LSUN-Churches datasets. The captions are the text descriptions given to the CLIP model.

C Additional Results for Image Synthesis based on Text Description

Figure 10 presents additional results of PromptGen for image synthesis from text, using the CLIP
model as control. As the pre-trained generative model, we explore StyleGAN2 trained on AFHQ-Cats
[6], LSUN-Churches [83], and FFHQ [35].

D Additional Results for De-Biasing Generative Models

Table 5 provides quantitative results of de-biasing StyleGAN2 across categorical attributes (Figure 6).
Specifically, we used the pre-trained classifier provided by FairFace [32] to classify the attributes
of the generated images. We then report the KL divergence between the attribute distribution of the
generated images and the uniform distribution. Figure 11 and Figure 12 visualize the de-biasing
results. We report the KL divergence between the generated distribution and the uniform distribution.
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Table 5: Quantitative results for de-biasing categorical attributes (Figure 6). See details in Appendix D.
PromptGen de-biases StyleGAN2 in terms of race, age, and gender.

FFHQ MetFaces

D
race
KL # D

age
KL# D

race
KL # D

age
KL# D

gender
KL #

StyleGAN2 0.860 0.597 1.624 0.546 0.019

PromptGen (ours; � = 1) 0.286 0.357 0.687 0.397 0.000

PromptGen (ours; � = 2) 0.099 0.172 0.189 0.247 0.005

Interestingly, on MetFaces, de-biasing the race results in more sculptures, and we postulate that the
reason is that almost all paintings and sketches in MetFaces are for white individuals.
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(a) Pre-trained StyleGAN2

(b) PromptGen (race de-biasing; � = 1) (c) PromptGen (race de-biasing; � = 2)

(d) PromptGen (age de-biasing; � = 1) (e) PromptGen (age de-biasing; � = 2)
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(f) Race distribution

StyleGAN2 PromptGen (l = 1) PromptGen (l = 2)
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[60, 69]

[70, +•)

(g) Age distribution

Figure 11: Using our moment constraint, PromptGen de-biases the racial and age distributions
of StyleGAN2 trained on FFHQ with truncation  = 0.7. All synthesized images are 10242 in
resolution and resized for visualization. We fixed the random seed for PromptGen, so please zoom in
to see detailed differences between images.
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(a) Pre-trained StyleGAN2

(b) PromptGen (race de-biasing; � = 1) (c) PromptGen (race de-biasing; � = 2)

(d) PromptGen (age de-biasing; � = 2) (e) PromptGen (gender de-biasing; � = 2)
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(f) Gender distribution
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(g) Race distribution
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(h) Age distribution

Figure 12: Using the moment constraint, PromptGen de-biases the racial, age, and gender distribu-
tions of StyleGAN2 trained on MetFaces with truncation  = 0.7. All images are 10242 and resized
for visualization. Interestingly, de-biasing the race results in more sculptures, and we postulate that
the reason is that almost all paintings and sketches in MetFaces are for white individuals. We fixed
the random seed for PromptGen, so we recommend zooming in to see differences between images.
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D.1 Decomposing Complex Control via Energy Composition

Energy composition EC(x) =
PM

i=1 �iEi(x,yi) in Eq. 1 allows us to decompose a complex controls
into simple ones. For instance, Figure 13(a) shows that y1 = photo of a bald black man with beard
(�1 = 6000) generates good samples of men with beard but several of them have light-skin tone;
however, by decomposing it as y1 = photo of a bald man (�1 = 1500), y2 = photo of a black man
(�1 = 3000), and y3 = photo of a man with beard (�1 = 1500), we have (on average) darker skin,
as shown in Figure 13(b). Note that the random seed for Figure 13(a) and Figure 13(b) is the same,
and hence the identities are preserved and mostly the skin tone has changed.

(a) CLIP with one complex sentence (b) CLIP with three simple sentences

Figure 13: Decomposing complex controls (e.g., photo of a bald black man with beard) into simpler
ones improves control performance. See details in Section D.1.

E Experiments on Generative 3D Face Models

3D face modeling has been an active area of research that has recently gained major interest due to
applications in virtual humans, deep faces, and digital actors. Existing 3D deep learning generative
models build 3D compact representations of shape and appearance capable of modeling non-linearity
(e.g., scatter effects, specularities) that is necessary for generating photo-realistic faces. Providing
a generative model with the capability of generating 3D faces with a particular geometry (e.g., a
specific distance between eyes or nose length) is particularly useful for technical artists when creating
new characters. However, this problem remains unaddressed, partially due to the lack of publicly
available 3D databases labeled with such constraints. We refer to this capability as the intra-sample
constraint in 3D generative models, and this section shows how our PromptGen framework is able to
achieve this by defining a new energy function based on signed distances.

We conducted the experiments on the FaceScape dataset [82], a large-scale 3D human face dataset
consisting of 16, 940 topologically uniformly registered 3D face meshes along with high-quality
textures. The dataset contains 847 identities with 20 expressions per identity, and each mesh consists
of 26, 317 vertices of which 68 are 3D landmark vertices covering eyes, nose, mouth, jaw, and
eyebrows. With some abuse of notation, we denote a 3D face mesh as x 2 R

3V (recall that x
is used to represent an image in other parts of this paper), where V = 26, 317 is the number of
vertices. Given an index l of a vertex (e.g., one of the 68 landmark vertices), the 3D coordinate of this
vertex is defined as x[l] 2 R

3. We pre-train a generative mesh model G that maps each latent code
z ⇠ N (0, I) to a 3D mesh x. PromptGen allows us to obtain geometric control on the 3D meshes.
Specifically, given two landmark vertex indices l1 and l2, we define an intra-sample constraint that
enforces the signed distance (along a given direction) between the two vertices to be s. To this effect,
we define the signed-distance energy as

Esigned-distance(x) = |d(v1,v2)� s|, v1 = x[l1],v2 = x[l2] (39)
where d(·, ·) is the signed-distance (along a given direction), and | · | is the absolute value.

Figure 14 presents several examples of 3D mesh control, in which random textures are applied to the
generated meshes. It shows that PromptGen successfully controls the generative 3D mesh model in
terms of the mouth stretch, eye openness, nose-tip stretch, and lip forward.

F Error Analysis

As we discussed in Section 5, the controlled distribution depends on (1) the pre-trained generative
model’s coverage and (2) the off-the-shelf models used for the control. In this section, we provide
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Figure 14: PromptGen with intra-sample signed-distance constraints that generate 3D face models
with varying distances in the mouth, eye openness, nose-tip stretch, and lip forward.

some examples of PromptGen failing to generate satisfactory images using the CLIP energy. For the
pre-trained generative model, we use StyleGAN2 trained on FFHQ, AFHQ-Wild, or LSUN-Churches.

Our first observation is that the CLIP model sometimes fails in modeling linguistic negation. For
instance, the text description photo of a man without beard results in a distribution of photos of men
with beard (Figure 15(a)). Meanwhile, Figure 15(b) shows that CLIP is capable of modeling the nega-
tion of having makeup, but with the “reporting bias” discussed in Section 4.4. Moreover, CLIP seems
to have difficulty in numerical reasoning, and gaining control over the count of specific objects in a
scene tends to be unsuccessful. We showed this by specifying photo of a church with three windows,
which did not result in the desired specification (Figure 15(c)).

To gain a deeper understanding of the above failures and biases, in Figure 16, we provide some image
samples from the LAION-400M dataset [65] with CLIP retrieval, using the same text descriptions as
Figure 15. CLIP retrieval is based on the CLIP embedding similarity between the web images and text
descriptions, while the original text below each individual image is not used. We observe an impressive
consistency between CLIP retrieval and PromptGen: in both Figure 15(a) and Figure 16(a), most
images have beard; in both Figure 15(b) and Figure 16(b), all images are female; in both Figure 15(c)
and Figure 16(c), some images do not have exactly three windows. This consistency suggests that
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(a) photo of a man without beard (FFHQ)

(b) a photo of a person without makeup (FFHQ)

(c) photo of a church with three windows (LSUN-Churches)

Figure 15: When the text description contains certain linguistic properties (e.g., negation, numerical
reasoning), CLIP sometimes fails or shows the “reporting bias” that we discuss in Section 4.4. For a
deeper understanding of these failures and biases, in Figure 16, we provide some image samples from
the LAION-400M dataset [65] with CLIP retrieval, using the same text descriptions as this figure.

the failures and biases in Figure 15 should be mostly attributed to the CLIP model rather than to our
PromptGen algorithm. We believe that our observation sheds light on the intricacy of contrastive
multi-modal (vision-language) pre-training, which is worthy of being further investigated.

Another observation is that the control tends to fail when the text description requires sampling from
low-density regions of the pre-trained generative model’s output space. In other words, the control usu-
ally fails if the pre-trained generative model does not cover the mode we are trying to gain control over.
For example, images faithful to photo of a person yawning and photo of a baby with long hair are not
commonly observed in the FFHQ dataset and, hence, these two text descriptions result in degeneration
(Figure 17(a)) or weird images (Figure 17(b)). Another example is photo of an animal from the side,
which is not commonly observed in the AFHQ-Wild dataset, and Figure 17(c) shows that the gener-
ated images fail to follow this description. Even when the control is successful (e.g., when a complex
description is decomposed in Figure 13(b)), sampling from low-density regions results in limited
diversity (e.g., the backgrounds in Figure 13(b) look similar to each other).

Finally, we also ran some failure controls using PPGM, showing that PromptGen and PPGM reveal
similar failure cases of pre-trained generative models and CLIP. Results are shown in Figure 18.
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(a) photo of a man without beard (CLIP retrieval from LAION-400M)

(b) a photo of a person without makeup (CLIP retrieval from LAION-400M)

(c) photo of a church with three windows (CLIP retrieval from LAION-400M)

Figure 16: For a deeper understanding of the failures and biases illustrated in Figure 15, we provide
some image samples from the LAION-400M dataset [65] with CLIP retrieval, using the same text
descriptions as Figure 15. CLIP retrieval is based on the CLIP embedding similarity between the
web images and text descriptions, while the original text below each individual image is not used. In
Figure 16(a), most images have a beard; in Figure 16(b), all images are female; in Figure 16(c), some
images do not have exactly three windows. These observations are consistent with those in Figure 15.
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(a) photo of a person yawning (FFHQ)

(b) photo of a baby with long hair (FFHQ)

(c) photo of an animal from the side (AFHQ-Wild)

Figure 17: When the pre-trained generative model fails in covering certain modes required by the
text description, unsatisfactory outputs are produced. In this figure, we show several text descriptions
that require sampling from low-density regions of the pre-trained generative model’s output space.

(a) photo of a man without beard (FFHQ; w/ PPGM) (b) photo of a person yawning (FFHQ; w/ PPGM)

Figure 18: Failure modes revealed by PromptGen (Figure 15 and Figure 17) also hold for PPGM.
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