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A ACQUISITION FUNCTIONS α

Variance Ratio = 1− 1

T

T∑
t=1

(
δ

(
arg max

c
p(y = c|x, ωt) = ĉ

))
ĉ = arg max

c

(
arg max

c
p(y = c|x, ωt) ∀t ∈ (1, T )

) (6)

where ĉ is the most common class prediction across the T MC samples and δ is the Dirac delta
function that evaluates to 1 if its argument is true, and 0 otherwise.

Entropy H = −
C∑
c=1

p(y = c|x) log p(y = c|x) (7)

BALD = JSD(p1, p2, . . . , pT )

= H(p(y|x))− Ep(w|Dtrain) [H(p(y|x,w))]
(8)

where C is the number of classes in the task formulation and p(y = c|x, ω) is the probability assigned
by a network parameterised by ω to a particular class c when given an input x.
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B DERIVATION OF MONTE CARLO PERTURBATIONS

BALDMCP = JSD(p1, p2, . . . , pT )

= H(p(y|x))− Ep(z|Dtrain) [H(p(y|x, z))] (9)

H(p(y|x)) = H

(∫
p(y|z)p(z|x)dz

)
= H

(∫
p(y|z)qφ(z|x)dz

)
≈ H

(
1

T

T∑
t=1

p(y|ẑt)

) (10)

where z represents the perturbed input, T is the number of Monte Carlo samples, and ẑt ∼ qφ(z|x) is
a sample from some perturbation generator.

Ep(z|Dtrain) [H(p(y|x, z))] = Eqφ(z|x) [H(p(y|x, z))]

≈ 1

T

T∑
t=1

[H(p(y|ẑt))]

=
1

T

T∑
t=1

[
−

C∑
c=1

p(y = c|ẑt) log p(y = c|ẑt)

] (11)

C DERIVATION OF BAYESIAN ACTIVE LEARNING BY CONSISTENCY

BALCJSD = Ep(ω|Dtrain) [DKL(p(y|x, ω) ‖ p(y|z, ω))]−DKL(p(y|x) ‖ p(y|z)) (12)

where z is the perturbed version of the input and DKL is the Kullback-Leibler divergence.

Ep(ω|Dtrain) [DKL(p(y|x, ω) ‖ p(y|z, ω))] = Eqθ(ω) [DKL(p(y|x, ω) ‖ p(y|z, ω))]

≈ 1

T

T∑
t=1

[DKL(p(y|x, ω̂t ‖ p(y|x̂, ω̂t))]

=
1

T

T∑
t=1

[
C∑
c=1

p(y = c|x, ω̂t) log
p(y = c|x, ω̂t)
p(y = c|z, ω̂t)

]
(13)

DKL(p(y|x)||p(y|z)) = DKL
(∫

p(y|ω, x)p(ω)dω

∥∥∥∥ ∫ p(y|ω, z)p(ω)dω

)
= DKL

(∫
p(y|ω, x)qθ(ω)dω

∥∥∥∥ ∫ p(y|ω, z)qθ(ω)dω

)
≈ DKL

(
1

T

T∑
t=1

p(y|ω̂t, x)

∥∥∥∥ 1

T

T∑
t=1

p(y|ω̂t, z)
)

=
1

C

C∑
c=1

[
1

T

T∑
t=1

p(y = c|ω̂t, x) log
1
T

∑T
t=1 p(y = c|ω̂t, x)

1
T

∑T
t=1 p(y = c|ω̂t, x̂)

]
(14)

where the integral is approximated by T Monte Carlo samples, ω̂ ∼ qθ(w) represents the parameters
sampled from the Monte Carlo distribution, and C represents the number of classes in the task
formulation.
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D CHERNOFF BOUND ON ERROR RATE OF SELECTION NETWORK

D.1 DERIVATION OF CHERNOFF BOUND

In this section, we derive the Chernoff bound as an upper bound on the binary classification error,
P (error), of the oracle selection network hθ. This helps determine how reliable the output of hθ is as
a proxy for the classification performance of the main task.

P (error) =

∫ ∞
−∞

P (error|x)p(x)dx

=

∫ ∞
−∞

min [P (y = 0|x), P (y = 1|x)] p(x)dx

≤
∫ ∞
−∞

P (y = 0|x)βP (y = 1|x)1−βp(x)dx

= P (y = 0)βP (y = 1)1−β
∫ ∞
−∞

P (x|y = 0)βP (x|y = 1)1−βdx

= P (y = 0)β
∗
P (y = 1)1−β

∗
e
−
[
β∗(1−β∗)(µ0−µ1)2

2(β∗σ20+(1−β∗)σ21)
+ 1

2 log
β∗σ20+(1−β∗)σ21

σ
2β∗
0 σ

2(1−β∗)
1

]

(15)

In order to calculate β∗, we minimize the following term using the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) algorithm with an initial value of β0 = 0.

β∗ = argminβ −

[
β(1− β)(µ0 − µ1)2

2(βσ2
0 + (1− β)σ2

1)
+

1

2
ln
βσ2

0 + (1− β)σ2
1

σ2β
0 σ

2(1−β)
1

]
(16)
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E ALGORITHMS

E.1 BAYESIAN ACTIVE LEARNING BY CONSISTENCY

Algorithm 1 illustrates the BALC procedure with the option of incorporating temporal information
shown in blue.

Algorithm 1: Bayesian Active Learning by Consistency
Input: acquisition epochs τ , temporal period ∆t, labelled data L, unlabelled data U , network parameters ω,
MC samples T, acquisition percentage b
while training do

if epoch in ∆t then
for x ∼ U do
z = x+ ε, ε ∼ N (0, σ2)
for MC sample in T do

obtain p(y|x, ω)
obtain p(y|z, ω)

end for
calculate α using eq. 2 or eq. 1
α(t) = α

end for
end if
if epoch in τ then

calculate α using eq. 3
SortDescending(α)
Ub ⊆ U
U ∈ (U \ Ub)
L ∈ (L ∪ Ub)

end if
end while

E.2 SOQAL

In this section, we outline the algorithm for performing SoQal. More specifically, Al-
gorithm 2 presents the generic framework for the active learning procedure. Algorithm 3
elucidates the exact steps required to perform selective oracle questioning using SoQal.

Algorithm 2: Active Learning Procedure
Input: acquisition epochs τ , temporal period
∆t, labelled data L, unlabelled data U , network
parameters ω, MC samples T, acquisition
percentage b
while training do

if epoch in ∆t then
for x ∼ U do

for MC sample in T do
obtain p(y|x, ω)

end for
calculate α

end for
end if
if epoch in τ then

SortDescending(α)
xb ⊂ XU
yb = SoQal(xb)
U ∈ (U \ (xb, yb))
L ∈ (L ∪ (xb, yb))

end if
end while

Algorithm 3: SoQal
Input: unlabelled inputs xb, Hellinger distance
DH , Hellinger threshold S
for x ∼ xb do
o = gθ(x)
if DH > S then

calculate p(asking oracle) from eq. 5
if p(asking oracle) = 1 then
yb ⊂ YU

else
yb = argmaxp(y|x, ω)

end if
end if

end for
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F DATASETS

F.1 DATA PREPROCESSING

Each dataset consists of cardiac time-series waveforms alongside their corresponding cardiac ar-
rhythmia label. Each waveform was split into non-overlapping frames of 2500 samples.

PhysioNet 2015 PPG,D1 (Clifford et al., 2015). This dataset consists of photoplethysmogram (PPG)
time-series waveforms sampled at 250Hz and five cardiac arrhythmia labels: Asystole, Extreme
Bradycardia, Extreme Tachycardia, Ventricular Tachycardia, and Ventricular Fibrillation. Only
patients with a True Positive Alarm are considered. The PPG frames were normalized in amplitude
between the values of 0 and 1.

PhysioNet 2015 ECG, D2 (Clifford et al., 2015). This dataset consists of electrocardiogram (ECG)
time-series waveforms sampled at 250Hz and five cardiac arrhythmia labels: Asystole, Extreme
Bradycardia, Extreme Tachycardia, Ventricular Tachycardia, and Ventricular Fibrillation. Only
patients with a True Positive Alarm are considered. The ECG frames were normalized in amplitude
between the values of 0 and 1.

PhysioNet 2017 ECG,D3 (Clifford et al., 2017). This dataset consists of ECG time-series waveforms
sampled at 300Hz and four labels: Normal, Atrial Fibrillation, Other, and Noisy. The ECG frames
were not normalized.

Cardiology ECG, D4 (Hannun et al., 2019). This dataset consists of ECG time-series waveforms
sampled at 200Hz and twelve cardiac arrhythmia labels: Atrial Fibrillation, Atrio-ventricular Block,
Bigeminy, Ectopic Atrial Rhythm, Idioventricular Rhythm, Junctional Rhythm, Noise, Sinus Rhythm,
Supraventricular Tachycardia, Trigeminy, Ventricular Tachycardia, and Wenckebach. Sudden brady-
cardia cases were excluded from the data as they were not included in the original formulation by the
authors. The ECG frames were not normalized.

CIFAR10, D5 (Krizhevsky et al., 2009). This dataset consists of 60,000 colour images of dimension
32 × 32 associated with 10 classes. These classes are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. Each image was normalized between the range of -1 and 1. No data
augmentation was applied during the training procedure.
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F.2 DATA SAMPLES

All datasets were split into training, validation, and test sets according to patient ID using a 60, 20, 20
configuration. In other words, patients appeared in only one of the sets. Samples in the training set
were further split into a labelled and an unlabelled subset, also according to patient ID. In Tables 2
and 3, we show the number of samples and patients used in each of these sets.

F.2.1 CONSISTENCY-BASED ACTIVE LEARNING EXPERIMENTS

Table 2: Sample sizes (number of patients for cardiac datasets) of train/val/test splits. Datasets D1 to
D4 are defined in Sec. 5.1 of the main manuscript.

Dataset Fraction β Train Labelled Train Unlabelled Val Test

D1

0.1 401 (18) 4,233 (171)

1,124 (47) 1,435 (58)
0.3 1,285 (55) 3,349 (134)
0.5 2,187 (92) 2,447 (97)
0.7 3,132 (129) 1,502 (60)
0.9 4,184 (166) 450 (23)

D2

0.1 401 (18) 4,233 (171)

1,124 (47) 1,435 (58)
0.3 1,285 (55) 3,349 (134)
0.5 2,187 (92) 2,447 (97)
0.7 3,132 (129) 1,502 (60)
0.9 4,184 (166) 450 (23)

D3

0.1 1,776 (545) 16,479 (4,914)

4,582 (1,364) 5,824 (1705)
0.3 5,399 (1636) 12,856 (3,823)
0.5 9,054 (2727) 9,201 (2,732)
0.7 12,733 (3818) 5,522 (1,641)
0.9 16,365 (4909) 1,890 (550)

D4

0.1 452 (20) 4,110 (181)

1,131 (50) 1,386 (62)
0.3 1,368 (60) 3,194 (141)
0.5 2,280 (101) 2,282 (100)
0.7 3,200 (140) 1,362 (61)
0.9 4,079 (180) 483 (21)

D5

0.5 20,000 20,000
10,000 10,0000.7 28,000 12,000

0.9 36,000 4,000

F.2.2 SELECTIVE ORACLE QUESTIONING EXPERIMENTS

Table 3: Sample sizes (number of patients) of training, validation, and test sets.

Dataset Training Labelled Training Unlabelled Validation Test

D1 401 (18) 4233 (171) 1124 (47) 1435 (58)
D2 401 (18) 4233 (171) 1124 (47) 1435 (58)
D3 1,776 (545) 16,479 (4,914) 4,582 (1,364) 5,824 (1,705)
D4 452 (20) 4,110 (181) 1,131 (50) 1,386 (62)
D5 676 (12) 5,880 (116) 1,566 (32) 1,971 (40)
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G IMPLEMENTATION DETAILS

In this section, we outline the network architecture used for all experiments conducted in the main
manuscript. We also outline the batchsize and learning rate associated with training on each of the
datasets.

G.1 NETWORK ARCHITECTURE

Table 4: Network architectures used for time-series and image experiments. K, Cin, and Cout represent
the kernel size, number of input channels, and number of output channels, respectively. A stride of 3
and 1 was used for Conv1D and Conv2D operators, respectively.

(a) Network for time-series datasets

Layer Number Layer Components Kernel Dimension

1

Conv 1D 7 x 1 x 4 (K x Cin x Cout)
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

2

Conv 1D 7 x 4 x 16
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

3

Conv 1D 7 x 16 x 32
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

4 Linear 320 x 100
ReLU

5 Linear 100 x C (classes)

(b) Network for CIFAR10

Layer Number Layer Components Kernel Dimension

1
Conv 2D 5 x 3 x 6

ReLU
MaxPool(2)

2
Conv 2D 5 x 6 x 16

ReLU
MaxPool(2)

3
Linear 160 x 120
ReLU

Dropout(0.1)

4
Linear 120 x 84
ReLU

Dropout(0.1)

5 Linear 84 x C (classes)
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G.2 EXPERIMENT DETAILS

Table 5: Batchsize and learning rates used for training with different datasets. The Adam optimizer
was used for all experiments.

Dataset Batchsize Learning Rate

D1 256 10-4

D2 256 10-4

D3 256 10-4

D4 16 10-4

G.3 PERTURBATION DETAILS

When conducting the MCP and BALC experiments, we perturbed each of the time-series frames
with additive Gaussian noise, ε ∼ N (0, σ) where we chose σ based on the specific dataset to avoid
introducing too much noise. For CIFAR10, we perturbed the images by applying a sequence of data
augmentation steps inspired by work in Chen et al. (2020). The details of these perturbations can be
found in Table 6. We applied all perturbations to the input data before normalization.

Table 6: Perturbations applied to different datasets during MCP and BALC implementations. p
represents the probability of applying a particular augmentation method.

Dataset Perturbation

D1 ε ∼ N (0, 100)
D2 ε ∼ N (0, 100)
D3 ε ∼ N (0, 100)
D4 ε ∼ N (0, 100)

D5

1) RandomResizedCrop(scale = (0.8, 1.0))
2) RandomApply(ColorJitter(0.8,0.8,0.8,0.2),p = 0.2)
3) RandomGrayscale(p = 0.2)
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G.4 BASELINE IMPLEMENTATIONS

In this section, we outline our implementation of the baseline methods used in the selective oracle
questioning experiments.

G.4.1 ENTROPY RESPONSE

This approach is anchored around the idea that network outputs that exhibit high entropy (i.e.,
close to a uniform distribution) are likely to correspond to instances that the network is uncertain
of. Consequently, we exploited this idea to determine whether a label is requested from an oracle
or if a pseudo-label should be generated instead. More specifically, we introduced a threshold,
SEntropy = w × SMax, which is a fraction of the maximum entropy possible for a particular
classification problem. As mentioned, SMax = logC, where C is the number of classes. We chose
w = 0.9 to balance between oracle dependence and pseudo-label accuracy. This value was kept fixed
during training. In our implementation, we take the mean of the network outputs as a result of the
perturbations, calculate its entropy, and determine whether it exceeds the aforementioned threshold.
If it does, then the uncertainty is deemed high and a label is requested from an oracle.

G.4.2 EPSILON GREEDY

This approach is inspired by the reinforcement learning literature and is used to decay the dependence
of network on the oracle. More specifically, we define ε = e

−epoch
k×τ where epoch represents the training

epoch number and τ is the epoch interval at which acquisitions are performed. ε decays from 1→ 0
as training progresses. We chose k = τ = 5 in order to balance between oracle dependence and
pseudo-label accuracy. To determine whether a label is requested from an oracle, we generate a
random number, R ∼ U(0, 1), for a uniform distribution and check whether it is below ε. If this
is satisfied, then an oracle is requested for a label, and a pseudo-label is generated otherwise. As
designed, this approach starts off with 100% dependence on an oracle and decays towards minimal
dependence as training progresses.
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H TEST SET PERFORMANCE IN THE ABSENCE OF ORACLE

In this section, we quantify and compare the performance of our consistency-based active learning
framework to state-of-the-art AL methods on four diverse datasets,D1 -D4 and for a range of fraction
values, β = (0.1, 0.3, 0.5, 0.7, 0.9). Across Tables 7 - 11, we show that our method outperforms the
baseline methods in 17 out of 28 (61%) experimental categories. Moreover, in half of all experimental
categories, temporal acquisition functions perform best.

H.1 PHYSIONET 2015 PPG, D1

Table 7: Mean test Set AUC on D1. Bolded elements represent the best performing method and
acquisition function α for each fraction β. No AL represents training without an active learning
strategy. Results shown across 5 seeds.

Fraction β Method
Acquisition Metric

Non-temporal Temporal
Var Ratio Entropy BALD - Var Ratio Entropy BALD - No AL

0.1

MCD 0.476 ± 0.022 0.475 ± 0.020 0.465 ± 0.017 - 0.468 ± 0.032 0.492 ± 0.022 0.476 ± 0.015 -

0.577 ± 0.014MCP 0.475 ± 0.037 0.448 ± 0.019 0.464 ± 0.023 - 0.497 ± 0.028 0.490 ± 0.032 0.515 ± 0.025 -
BALCJSD - - - 0.511± 0.031 - - - 0.494 ± 0.021
BALCKLD - - - 0.500 ± 0.023 - - - 0.496 ± 0.024

0.3

MCD 0.603 ± 0.021 0.618 ± 0.026 0.606 ± 0.032 - 0.607 ± 0.012 0.614 ± 0.009 0.617± 0.035 -

0.653 ± 0.017MCP 0.633 ± 0.024 0.607 ± 0.015 0.598 ± 0.015 - 0.626 ± 0.032 0.627 ± 0.026 0.606 ± 0.031 -
BALCJSD - - - 0.594 ± 0.009 - - - 0.600 ± 0.016
BALCKLD - - - 0.633± 0.017 - - - 0.617 ± 0.019

0.5

MCD 0.650 ± 0.011 0.650 ± 0.011 0.660 ± 0.013 - 0.654 ± 0.014 0.653 ± 0.024 0.655 ± 0.008 -

0.665 ± 0.007MCP 0.655 ± 0.013 0.653 ± 0.008 0.647 ± 0.019 - 0.642 ± 0.027 0.669 ± 0.016 0.648 ± 0.012 -
BALCJSD - - - 0.658 ± 0.003 - - - 0.652 ± 0.025
BALCKLD - - - 0.662± 0.015 - - - 0.661 ± 0.014

0.7

MCD 0.650 ± 0.008 0.640 ± 0.008 0.658 ± 0.010 - 0.656 ± 0.008 0.636 ± 0.0134 0.655 ± 0.007 -

0.642 ± 0.015MCP 0.653 ± 0.010 0.652 ± 0.009 0.654 ± 0.008 0.646 ± 0.015 - 0.649 ± 0.006 0.651 ± 0.010 -
BALCJSD - - - 0.642 ± 0.011 - - - 0.649 ± 0.008
BALCKLD - - - 0.653 ± 0.010 - - - 0.656 ± 0.012

0.9

MCD 0.704 ± 0.009 0.691 ± 0.012 0.698 ± 0.018 - 0.690 ± 0.022 0.693 ± 0.015 0.692 ± 0.020 -

0.680 ± 0.039MCP 0.702 ± 0.019 0.678 ± 0.020 0.700 ± 0.015 - 0.703 ± 0.016 0.680 ± 0.017 0.692 ± 0.009 -
BALCJSD - - - 0.690 ± 0.006 - - - 0.700 ± 0.028
BALCKLD - - - 0.699 ± 0.011 - - - 0.689 ± 0.013

H.2 PHYSIONET 2015 ECG, D2

Table 8: Test Set AUC on D2. Bolded elements represent the best performing method and acquisition
function α for each fraction β. No AL represents training without an active learning strategy. Results
are averaged across 5 seeds.

Fraction β Method
Acquisition Metric

Non-temporal Temporal
Var Ratio Entropy BALD - Var Ratio Entropy BALD - No AL

0.1

MCD 0.567 ± 0.029 0.591 ± 0.040 0.573 ± 0.063 - 0.547 ± 0.058 0.584 ± 0.055 0.598 ± 0.050 -

0.679 ± 0.040MCP 0.567 ± 0.027 0.557 ± 0.032 0.589 ± 0.045 - 0.548 ± 0.036 0.549 ± 0.046 0.554 ± 0.055 -
BALCJSD - - - 0.576 ± 0.050 - - - 0.574 ± 0.057
BALCKLD - - - 0.602 ± 0.044 - - - 0.575 ± 0.017

0.3

MCD 0.675 ± 0.022 0.666 ± 0.053 0.643 ± 0.036 - 0.644 ± 0.019 0.692 ± 0.020 0.684 ± 0.035 -

0.605 ± 0.020MCP 0.678 ± 0.036 0.660 ± 0.071 0.665 ± 0.051 - 0.643 ± 0.038 0.668 ± 0.020 0.658 ± 0.026 -
BALCJSD - - - 0.654 ± 0.033 - - - 0.677 ± 0.032
BALCKLD - - - 0.634 ± 0.032 - - - 0.672 ± 0.049

0.5

MCD 0.676 ± 0.0434 0.700 ± 0.031 0.668 ± 0.0185 - 0.709 ± 0.0407 0.694 ± 0.0431 0.669 ± 0.0238 -

0.703 ± 0.032MCP 0.687 ± 0.0183 0.695 ± 0.0212 0.712 ± 0.0235 - 0.700 ± 0.0135 0.709 ± 0.0261 0.680 ± 0.0247 -
BALCJSD - - - 0.701 ± 0.026 - - - 0.703 ± 0.018
BALCKLD - - - 0.705 ± 0.045 - - - 0.726 ± 0.031

0.7

MCD 0.758 ± 0.016 0.765 ± 0.027 0.754 ± 0.014 - 0.753 ± 0.020 0.766 ± 0.025 0.755 ± 0.024 -

0.747 ± 0.010MCP 0.744 ± 0.031 0.759 ± 0.022 0.745 ± 0.027 - 0.757 ± 0.013 0.777 ± 0.025 0.764 ± 0.014 -
BALCJSD - - - 0.750 ± 0.006 - - - 0.746 ± 0.016
BALCKLD - - - 0.730 ± 0.035 - - - 0.761 ± 0.028

0.9

MCD 0.742 ± 0.016 0.745 ± 0.048 0.757 ± 0.015 - 0.769 ± 0.0261 0.766 ± 0.018 0.754 ± 0.015 -

0.747 ± 0.011MCP 0.765 ± 0.013 0.759 ± 0.028 0.751 ± 0.013 - 0.758 ± 0.018 0.759 ± 0.021 0.743 ± 0.025 -
BALCJSD - - - 0.726 ± 0.008 - - - 0.771 ± 0.018
BALCKLD - - - 0.762 ± 0.037 - - - 0.749 ± 0.020
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H.3 PHYSIONET 2017 ECG, D3

Table 9: Test Set AUC on D3. Bolded elements represent the best performing method and acquisition
function α for each fraction β. No AL represents training without an active learning strategy. Results
are averaged across 5 seeds.

Fraction β Method
Acquisition Metric

Non-temporal Temporal
Var Ratio Entropy BALD - Var Ratio Entropy BALD - No AL

0.1

MCD 0.628 ± 0.006 0.620 ± 0.006 0.581 ± 0.014 - 0.614 ± 0.03 0.610 ± 0.013 0.562 ± 0.019 -

0.716 ± 0.012MCP 0.624 ± 0.017 0.621 ± 0.018 0.623 ± 0.020 - 0.605 ± 0.027 0.613 ± 0.026 0.622 ± 0.026 -
BALCJSD - - - 0.613 ± 0.013 - - - 0.611 ± 0.015
BALCKLD - - - 0.631 ± 0.010 - - - 0.600 ± 0.005

0.3

MCD 0.705 ± 0.003 0.672 ± 0.009 0.688 ± 0.011 - 0.704 ± 0.016 0.685 ± 0.010 0.684 ± 0.0081 -

0.766 ± 0.012MCP 0.688 ± 0.018 0.673 ± 0.007 0.719 ± 0.016 - 0.671 ± 0.016 0.684 ± 0.018 0.699 ± 0.023 -
BALCJSD - - - 0.694 ± 0.006 - - - 0.681 ± 0.010
BALCKLD - - - 0.703 ± 0.023 - - - 0.701 ± 0.015

0.5

MCD 0.744 ± 0.013 0.735 ± 0.007 0.749 ± 0.012 - 0.772 ± 0.015 0.743 ± 0.018 0.758 ± 0.009 -

0.790 ± 0.012MCP 0.744 ± 0.008 0.733 ± 0.006 0.747 ± 0.004 - 0.741 ± 0.013 0.752 ± 0.019 0.732 ± 0.038 -
BALCJSD - - - 0.763 ± 0.022 - - - 0.771 ± 0.011
BALCKLD - - - 0.769 ± 0.006 - - - 0.761 ± 0.003

0.7

MCD 0.802 ± 0.006 0.811 ± 0.007 0.809 ± 0.004 - 0.807 ± 0.010 0.807 ± 0.003 0.815 ± 0.010 -

0.810 ± 0.008MCP 0.786 ± 0.003 0.782 ± 0.011 0.784 ± 0.016 - 0.772 ± 0.014 0.765 ± 0.013 0.762 ± 0.018 -
BALCJSD - - - 0.803 ± 0.011 - - - 0.813 ± 0.010
BALCKLD - - - 0.809 ± 0.006 - - - 0.810 ± 0.005

0.9

MCD 0.820 ± 0.006 0.824 ± 0.005 0.828 ± 0.004 - 0.821 ± 0.011 0.823 ± 0.005 0.825 ± 0.006 -

0.827 ± 0.004MCP 0.826 ± 0.002 0.821 ± 0.007 0.807 ± 0.011 - 0.828 ± 0.008 0.812 ± 0.009 0.808 ± 0.012 -
BALCJSD - - - 0.825 ± 0.003 - - - 0.824 ± 0.011
BALCKLD - - - 0.827 ± 0.005 - - - 0.829 ± 0.007

H.4 CARDIOLOGY ECG, D4

Table 10: Test Set AUC onD4. Bolded elements represent the best performing method and acquisition
function α for each fraction β. No AL represents training without an active learning strategy. Results
are averaged across 5 seeds.

Fraction β Method
Acquisition Metric

Non-temporal Temporal
Var Ratio Entropy BALD - Var Ratio Entropy BALD - No AL

0.1

MCD 0.475 ± 0.039 0.518 ± 0.016 0.486 ± 0.011 - 0.485± 0.029 0.491 ± 0.022 0.484 ± 0.040 -

0.486 ± 0.023MCP 0.508 ± 0.031 0.492 ± 0.022 0.493 ± 0.030 - 0.500 ± 0.024 0.478 ± 0.024 0.492 ± 0.022 -
BALCJSD - - - 0.460 ± 0.043 - - - 0.487 ± 0.042
BALCKLD - - - 0.505 ± 0.032 - - - 0.511 ± 0.030

0.3

MCD 0.487 ± 0.012 0.510 ± 0.018 0.498 ± 0.026 - 0.491 ± 0.014 0.496 ± 0.015 0.500 ± 0.025 -

0.533 ± 0.020MCP 0.520 ± 0.007 0.480 ± 0.019 0.494 ± 0.019 - 0.497 ± 0.007 0.529 ± 0.035 0.498 ± 0.021 -
BALCJSD - - - 0.488 ± 0.025 - - - 0.487 ± 0.016
BALCKLD - - - 0.510 ± 0.030 - - - 0.494 ± 0.014

0.5

MCD 0.563 ± 0.021 0.591 ± 0.008 0.562 ± 0.011 - 0.557 ± 0.025 0.580 ± 0.006 0.569 ± 0.010 -

0.581 ± 0.019MCP 0.529 ± 0.027 0.554 ± 0.024 0.544 ± 0.015 - 0.557 ± 0.021 0.536 ± 0.013 0.526 ± 0.012 -
BALCJSD - - - 0.559 ± 0.001 - - - 0.559 ± 0.003
BALCKLD - - - 0.575 ± 0.028 - - - 0.576 ± 0.011

0.7

MCD 0.637± 0.010 0.615 ± 0.010 0.639 ± 0.016 - 0.633 ± 0.016 0.652 ± 0.028 0.662 ± 0.014 -

0.630 ± 0.008MCP 0.626 ± 0.018 0.626 ± 0.013 0.623± 0.031 - 0.623 ± 0.012 0.623 ± 0.003 0.624 ± 0.010 -
BALCJSD - - - 0.634 ± 0.024 - - - 0.648 ± 0.023
BALCKLD - - - 0.625 ± 0.015 - - - 0.632 ± 0.028

0.9

MCD 0.651 ± 0.008 0.666 ± 0.011 0.666 ± 0.017 - 0.670 ± 0.007 0.653 ± 0.025 0.677 ± 0.009 -

0.660 ± 0.013MCP 0.655 ± 0.027 0.673 ± 0.009 0.672 ± 0.017 - 0.663 ± 0.006 0.662± 0.005 0.670± 0.009 -
BALCJSD - - - 0.656 ± 0.015 - - - 0.656 ± 0.019
BALCKLD - - - 0.666 ± 0.025 - - - 0.663 ± 0.013
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H.5 CIFAR10, D5

Table 11: Test Set Accuracy on D5. Bolded elements represent the best performing method and
acquisition function α for each fraction β. No AL represents training without an active learning
strategy. Results are averaged across 5 seeds.

Fraction β Method
Acquisition Metric

Non-temporal Temporal
Var Ratio Entropy BALD - Var Ratio Entropy BALD - No AL

0.5

MCD 0.566 ± 0.012 0.565 ± 0.010 0.558 ± 0.008 - 0.565 ± 0.008 0.559 ± 0.010 0.562 ± 0.007 -

0.576 ± 0.008MCP 0.553 ± 0.009 0.562 ± 0.009 0.561 ± 0.004 - 0.569 ± 0.004 0.562 ± 0.012 0.554 ± 0.009 -
BALCJSD - - - 0.552 ± 0.009 - - - 0.565 ± 0.012
BALCKLD - - - 0.564 ± 0.010 - - - 0.566 ± 0.008

0.7

MCD 0.586 ± 0.009 0.590 ± 0.009 0.597 ± 0.009 - 0.588 ± 0.006 0.593 ± 0.008 0.594 ± 0.003 -

0.593 ± 0.011MCP 0.600 ± 0.002 0.589 ± 0.010 0.585 ± 0.005 - 0.595 ± 0.010 0.592 ± 0.009 0.599 ± 0.002 -
BALCJSD - - - 0.600 ± 0.006 - - - 0.589 ± 0.008
BALCKLD - - - 0.594 ± 0.007 - - - 0.596 ± 0.013

0.9

MCD 0.618 ± 0.004 0.612 ± 0.007 0.618 ± 0.008 - 0.610 ± 0.004 0.616± 0.004 0.615 ± 0.007 -

0.608 ± 0.012MCP 0.610 ± 0.002 0.612 ± 0.007 0.610 ± 0.011 - 0.612 ± 0.010 0.621 ± 0.004 0.608 ± 0.015 -
BALCJSD - - - 0.613 ± 0.006 - - - 0.609 ± 0.006
BALCKLD - - - 0.618 ± 0.010 - - - 0.612 ± 0.007
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I BASELINE VALIDATION PERFORMANCE AS A FUNCTION OF FRACTION
LEVEL, β

The availability of labelled training data is known to affect network performance. To quantify
this effect, we illustrate, in Fig. 7, the validation AUC (Accuracy for D5) for a range of fractions
β = (0.1, 0.3, 0.5, 0.7, 0.9). As expected, we observe a graded response where the larger the amount
of labelled training data, the better the generalization performance of the network. This can be seen
by the higher AUC achieved when using β = 0.9 compared to when using β = 0.1.

(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

Figure 7: Baseline validation AUC for D1 - D4 and Accuracy for D5 at different fraction levels β.
These represent the performance curves for the training procedure without active learning. As β
increases, performance typically improves.
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J VALIDATION SET AUC WITH NON-TEMPORAL ACQUISITION FUNCTIONS IN
THE ABSENCE OF ORACLE

In the main manuscript, we presented a subset of results for experiments in which oracles are absent
and thus unavailable to provide annotations. Instead, unlabelled instances are pseudo-labelled based
on network-generated predictions. In this section, we include an exhaustive set of results for all those
experiments. More specifically, we illustrate in Figs. 8 - 12 the validation AUC of the various AL
methods for datasets D1 - D5. At a high level and across datasets, we find that the cold-start problem
is likely to occur at low fraction values (β = 0.1). We include more details in the respective sections.

J.1 PHYSIONET 2015 PPG, D1

(a) β = 0.1 (b) β = 0.3 (c) β = 0.5

(d) β = 0.7 (e) β = 0.9

Figure 8: Mean validation set AUC for the various methodologies and acquisition functions on D1 at
increasing fraction levels β = (0.1, 0.3, 0.5, 0.7, 0.9). The no-oracle cold-start problem is observed
at β = 0.1 where active learning approaches fail due to few available labelled training instances.
Clear benefits of our methods can be seen at β = 0.5, 0.7. Results are averaged across 5 seeds.
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J.2 PHYSIONET 2015 ECG, D2

(a) β = 0.1 (b) β = 0.3 (c) β = 0.5

(d) β = 0.7 (e) β = 0.9

Figure 9: Mean validation set AUC for the various methodologies and acquisition functions on D2

at increasing fraction levels β = (0.1, 0.3, 0.5, 0.7, 0.9). Our methods include MCP and BALC
methods. The no-oracle cold-start problem is observed at β = 0.1 where active learning approaches
fail due to few available labelled training instances. However, our approaches outperform all others
at β = 0.3, 0.5, 0.7, 0.9. Results are averaged across 5 seeds.
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J.3 PHYSIONET 2017 ECG, D3

(a) β = 0.1 (b) β = 0.3 (c) β = 0.5

(d) β = 0.7 (e) β = 0.9

Figure 10: Mean validation set AUC for the various methodologies and acquisition functions on
D3 at increasing fraction levels β = (0.1, 0.3, 0.5, 0.7, 0.9). Our methods include MCP and BALC
methods. The no-oracle cold-start problem is observed at β = 0.1 where active learning approaches
fail due to few available labelled training instances. Most methods perform on par with the no active
learning strategy for this particular dataset. Results are averaged across 5 seeds.
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J.4 CARDIOLOGY ECG, D4

(a) β = 0.1 (b) β = 0.3 (c) β = 0.5

(d) β = 0.7 (e) β = 0.9

Figure 11: Mean validation set AUC for the various methodologies and acquisition functions on
D4 at increasing fraction levels β = (0.1, 0.3, 0.5, 0.7, 0.9). Our methods include MCP and BALC
methods. The no-oracle cold-start problem is not observed for this dataset. Most methods perform
comparably to one another at high values of β. Results are averaged across 5 seeds.

J.5 CIFAR10, D5

(a) β = 0.5 (b) β = 0.7 (c) β = 0.9

Figure 12: Mean validation set AUC for the various methodologies and acquisition functions on D5

at increasing fraction levels β = (0.5, 0.7, 0.9). Our methods include MCP and BALC methods. At
all fractions, we show that MCP methods outperform their MCD counterparts. Results are averaged
across 5 seeds.
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K EFFECT OF MCP WITH TRACKED ACQUISITION FUNCTIONS ON
PERFORMANCE

In this section, we are interested in quantifying the effect of implementing a temporal acquisition
function in conjunction with MCP on performance. In Fig. 13, we illustrate two columns of matrices.
The first column reflects the percent change in generalization performance between implementing
MCP and MCD with static temporal functions (i.e., without tracking) for three different datasets. We
find that there are mixed results. For example, on mathcalD2 at β = 0.5, BALDMCP outperforms
BALDMCD by 6.5%. However, on mathcalD4 at β = 0.5, EntropyMCP performs worse than
EntropyMCD by 6.7%. Furthermore, upon applying tracked acquisition functions, we also obtain
mixed results. In many cases, there are notable improvements. For example, on mathcalD3 at
β = 0.5, Temporal EntropyMCP improves performance by an additional 0.3 + 2.3 = 2.6%. On
the other hand, at β = 0.7, Temporal EntropyMCP worsens performance by 2.1%. Based on these
findings, we would recommend that the utility of temporal acquisition functions be determined on a
case-by-case basis.

(a) D2 (b) D3

(c) D4

Figure 13: Mean percent change in test AUC when comparing MCP with static and tracked acquisition
functions to MCD with their static counterparts on (a) D2 and (b) D3 and (c) D4 . We show results
for Var Ratio, Entropy, and BALD, at all fractions, β ∈ [0.1, 0.3, 0.5, 0.7, 0.9].
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L DEGREE OF DEPENDENCE OF SOQAL ON ORACLE

A naive argument could claim that SoQal’s superiority is simply due to high oracle dependence. To
test this hypothesis, we set out to quantify SoQal’s dependence on an oracle using the oracle ask-rate:
the proportion of all instances acquired whose labels are requested from an oracle. In Fig. 14a, we
illustrate this oracle ask-rate for different label noise scenarios.

(a) Oracle ask-rate for different label noise scenarios (b) Correlation between oracle ask-rate and
generalization performance

Figure 14: (a) SoQal’s average oracle ask-rate and (b) correlation between oracle ask-rate and average
test AUC. Results are averaged across five seeds and all datasets, D1 −D5, and are shown for each
acquisition function and label noise scenario.

The oracle ask-rate varies based on the acquisition function used. In Fig. 14a, we show that with 20%
random noise, BALDMCP requests labels 65% of the time whereas the remaining acquisition functions
do so approximately 77% of the time. We hypothesize that this variability in the oracle ask-rate is
due to the variability in the difficulty of the instances acquired by the acquisition functions. In other
words, decreased dependence by BALDMCP could be indicative of the acquisition of instances that
are relatively farther away from the hyperplane. Thus, they are easier to classify and require less
oracle guidance.

In the presence of label noise, decreased oracle dependence is actually associated with improved
generalization performance. In Fig. 14b, this is shown by the negative correlation between the oracle
ask-rate and the test AUC. Networks are requesting fewer labels and are performing better. Such a
finding dispels the original claim and reaffirms the conclusion that SoQal knows when to request a
label from an oracle.
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M EFFECT OF DATA AVAILABILITY ON ORACLE ASK-RATE

As we performed all experiments on small, labelled datasets, we wanted to investigate the role of
data availability on the amount of independence an algorithm can withstand. We hypothesize that
access to large, labelled datasets would allow SoQal to decrease its overall dependence on an oracle
while maintaining its generalization performance. In Table 12, we illustrate the effect of increasing
the amount of labelled training data N -Fold, where N = [3, 5, 7, 9], on the oracle ask-rate (OAR)
and the generalization performance of a network.

Increasing the amount of labelled training data can drastically decrease oracle dependence without
significantly affecting generalization performance. In Table 12, we show that a 5-fold increase in
sample-size results in OAR = 100% −→ 59%, a 41% reduction in dependence while maintaining the
test AUC ≈ 0.59. In other words, 41% of a physician’s time can be reliably saved.

Table 12: Mean test AUC and oracle ask rate of a 100% oracle strategy and SoQal in response to
more labelled training data. Results are shown for D4 and BALDMCD at S = 0.15 across five seeds.
Original represents the small sample size used for all previous experiments.

Oracle Questioning Method 100% Oracle SoQal
Sample Size Factor Original Original 3-Fold 5-Fold 7-Fold 9-Fold

Average OAR % 100 48 56 59 68 67
AUC 0.585 0.468 0.507 0.594 0.659 0.657
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N CONTROLLING ORACLE DEPENDENCE VIA HELLINGER THRESHOLD, S

In this section, we set out to investigate the degree to which the Hellinger threshold, S, acts as a knob
that controls the oracle ask-rate (OAR). We expect this behaviour to arise from our design that when
DH < S, all label requests are sent to the oracle. In Table 13, we show how different values of S
affect the oracle ask-rate and the test AUC.

There exists a positive relationship between S and the oracle ask-rate. As S = 0.100 −→ 0.400,
the OAR = 86% −→ 100%. In the presence of a noise-free oracle, we would expect this increased
dependence to be associated with improved generalization performance. We observe such behaviour
as OAR = 86% −→ 94% and AUC = 0.716 −→ 0.768. However, increased dependence beyond this
point is a detriment to performance. This finding reaffirms our previous hypothesis that the original
labels in the dataset may be noisy. Therefore, a sub-100% OAR scenario in which these particular
noisy labels are not requested from the oracle would be advantageous.

Table 13: Mean test AUC of SoQal and oracle ask rate in response to various threshold values,
S. Results are shown for D3 and BALDMCD across five seeds. Experiments are performed with a
noise-free oracle.

Threshold, S 0.100 0.125 0.150 0.175 0.200 0.300 0.400
Average OAR % 86 85 89 90 94 100 100

AUC 0.716 0.744 0.721 0.753 0.768 0.743 0.755
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O PERFORMANCE OF ORACLE SELECTION STRATEGIES WITH NOISY ORACLE

Over-reliance on an oracle could be detrimental for an active learning algorithm if that oracle is
unable to label instances accurately. In the case of physicians, this inability could arise due to poor
training, fatigue, or the difficulty of a particular case being diagnosed. We simulate these scenarios
by injecting label noise of various magnitude into the datasets. In this section, we illustrate the
performance of three oracle selection strategies, SoQal, Epsilon Greedy, and Entropy Response, in
response to label noise. The results are shown for random and nearest neighbour noise in Secs. O.1
and O.2, respectively.

O.1 LABEL NOISE - RANDOM

Although random noise can be considered an extreme case, it is nonetheless plausible in certain
scenarios where labellers are poorly trained or the task at hand is too difficult. In this section, we
illustrate, in Tables 14a - 14c, the degree to which the test AUC is affected by the introduction of
random label noise during the active learning procedure.

As expected, extreme levels of noise negatively affect performance. For instance, this can be seen in
Table 14a at D2 using BALDMCD where increasing the level of random noise from 5% −→ 80% leads
to a reduction of AUC = 0.679 −→ 0.556. Across most noise levels, SoQal continues to outperform
Epsilon Greedy and Entropy Response. This finding is consistent with that presented in the main
manuscript and illustrates the relative robustness of SoQal to label noise.

Table 14: Mean test AUC of oracle questioning strategies as a function of increasing levels of random
label noise by the oracle. Results are shown for datasets D1−D5 and all acquisition functions. Mean
and standard deviation values are shown across five seeds.

(a) SoQal

Dataset Ac. Function α Random Noise Level
0.05 0.10 0.20 0.40 0.80

D1

BALDMCD 0.595 ± 0.053 0.554 ± 0.028 0.558 ± 0.042 0.600 ± 0.029 0.511 ± 0.055
BALDMCP 0.659 ± 0.014 0.650 ± 0.027 0.636 ± 0.029 0.549 ± 0.058 0.528 ± 0.029
BALCKLD 0.564 ± 0.058 0.570 ± 0.045 0.562 ± 0.067 0.498 ± 0.038 0.477 ± 0.011

Temporal BALCKLD 0.634 ± 0.026 0.597 ± 0.035 0.611 ± 0.040 0.494 ± 0.034 0.490 ± 0.026

D2

BALDMCD 0.679 ± 0.017 0.659 ± 0.042 0.646 ± 0.044 0.602 ± 0.047 0.556 ± 0.065
BALDMCP 0.643 ± 0.020 0.677 ± 0.053 0.637 ± 0.042 0.619 ± 0.033 0.602 ± 0.041
BALCKLD 0.652 ± 0.037 0.659 ± 0.056 0.649 ± 0.054 0.614 ± 0.016 0.522 ± 0.032

Temporal BALCKLD 0.655 ± 0.048 0.701 ± 0.029 0.628 ± 0.074 0.594 ± 0.041 0.581 ± 0.032

D3

BALDMCD 0.750 ± 0.017 0.742 ± 0.031 0.718 ± 0.037 0.646 ± 0.023 0.584 ± 0.017
BALDMCP 0.724 ± 0.022 0.707 ± 0.021 0.682 ± 0.038 0.629 ± 0.029 0.537 ± 0.025
BALCKLD 0.724 ± 0.032 0.725 ± 0.028 0.702 ± 0.024 0.651 ± 0.046 0.564 ± 0.040

Temporal BALCKLD 0.725 ± 0.031 0.738 ± 0.013 0.705 ± 0.017 0.596 ± 0.071 0.546 ± 0.041

D4

BALDMCD 0.506 ± 0.019 0.479 ± 0.022 0.496 ± 0.023 0.490 ± 0.010 0.518 ± 0.029
BALDMCP 0.499 ± 0.037 0.508 ± 0.022 0.523 ± 0.027 0.495 ± 0.023 0.503 ± 0.021
BALCKLD 0.491 ± 0.026 0.481 ± 0.023 0.496 ± 0.031 0.518 ± 0.012 0.525 ± 0.011

Temporal BALCKLD 0.522 ± 0.016 0.505 ± 0.027 0.501 ± 0.021 0.511 ± 0.025 0.515 ± 0.031
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(b) Epsilon Greedy

Dataset Ac. Function α Random Noise Level
0.05 0.10 0.20 0.40 0.80

D1

BALDMCD 0.496± 0.058 0.494 ± 0.029 0.476 ± 0.030 0.507 ± 0.044 0.501 ± 0.056
BALDMCP 0.557 ± 0.018 0.549 ± 0.036 0.508 ± 0.032 0.511 ± 0.033 0.497 ± 0.057
BALCKLD 0.517 ± 0.014 0.518 ± 0.035 0.504 ± 0.028 0.506 ± 0.034 0.498 ± 0.017

Temporal BALCKLD 0.525 ± 0.037 0.512 ± 0.040 0.501 ± 0.025 0.493 ± 0.019 0.497 ± 0.039

D2

BALDMCD 0.600± 0.053 0.628 ± 0.053 0.589 ± 0.037 0.612 ± 0.022 0.555 ± 0.041
BALDMCP 0.629 ± 0.023 0.614 ± 0.048 0.536 ± 0.081 0.575 ± 0.029 0.588 ± 0.050
BALCKLD 0.619 ± 0.038 0.586 ± 0.054 0.629 ± 0.061 0.613 ± 0.045 0.582 ± 0.067

Temporal BALCKLD 0.630 ± 0.041 0.652 ± 0.029 0.579 ± 0.034 0.610 ± 0.036 0.564 ± 0.035

D3

BALDMCD 0.663 ± 0.018 0.661 ± 0.011 0.632 ± 0.021 0.626± 0.012 0.588 ± 0.017
BALDMCP 0.671 ± 0.017 0.670 ± 0.016 0.639 ± 0.024 0.623 ± 0.019 0.574 ± 0.041
BALCKLD 0.665 ± 0.022 0.650 ± 0.014 0.664 ± 0.013 0.618 ± 0.034 0.595 ± 0.031

Temporal BALCKLD 0.661 ± 0.012 0.651 ± 0.018 0.651 ± 0.016 0.629 ± 0.019 0.612 ± 0.049

D4

BALDMCD 0.473 ± 0.030 0.480 ± 0.033 0.469 ± 0.024 0.468± 0.018 0.493 ± 0.015
BALDMCP 0.508 ± 0.016 0.495 ± 0.019 0.498 ± 0.043 0.494 ± 0.032 0.497 ± 0.015
BALCKLD 0.492 ± 0.026 0.496 ± 0.021 0.481 ± 0.025 0.491 ± 0.020 0.498 ± 0.021

Temporal BALCKLD 0.514 ± 0.017 0.528 ± 0.017 0.500 ± 0.008 0.498 ± 0.033 0.504 ± 0.037

(c) Entropy Response

Dataset Ac. Function α Random Noise Level
0.05 0.10 0.20 0.40 0.80

D1

BALDMCD 0.495 ± 0.038 0.497 ± 0.057 0.498 ± 0.057 0.486 ± 0.044 0.512 ± 0.057
BALDMCP 0.534 ± 0.018 0.584 ± 0.073 0.565 ± 0.033 0.619 ± 0.022 0.518 ± 0.028
BALCKLD 0.535 ± 0.038 0.521 ± 0.042 0.514 ± 0.053 0.511 ± 0.027 0.525 ± 0.037

Temporal BALCKLD 0.526 ± 0.040 0.538 ± 0.036 0.504 ± 0.028 0.501 ± 0.036 0.500 ± 0.004

D2

BALDMCD 0.587 ± 0.044 0.564 ± 0.058 0.586 ± 0.047 0.613 ± 0.083 0.551 ± 0.031
BALDMCP 0.624 ± 0.044 0.598 ± 0.057 0.573 ± 0.053 0.560 ± 0.081 0.530 ± 0.015
BALCKLD 0.616 ± 0.043 0.653 ± 0.049 0.624 ± 0.051 0.565 ± 0.055 0.579 ± 0.019

Temporal BALCKLD 0.635 ± 0.045 0.603 ± 0.050 0.590 ± 0.042 0.602 ± 0.046 0.579 ± 0.041

D3

BALDMCD 0.592 ± 0.015 0.604 ± 0.017 0.603 ± 0.016 0.603 ± 0.016 0.605 ± 0.018
BALDMCP 0.694 ± 0.047 0.730 ± 0.029 0.666 ± 0.034 0.639 ± 0.031 0.599 ± 0.035
BALCKLD 0.631 ± 0.006 0.631 ± 0.009 0.622 ± 0.011 0.631 ± 0.025 0.564 ± 0.046

Temporal BALCKLD 0.602 ± 0.011 0.622 ± 0.018 0.630 ± 0.014 0.618 ± 0.040 0.565 ± 0.050

D4

BALDMCD 0.472 ± 0.029 0.472 ± 0.030 0.486 ± 0.008 0.476 ± 0.038 0.481 ± 0.038
BALDMCP 0.511 ± 0.021 0.510 ± 0.023 0.525 ± 0.033 0.498 ± 0.041 0.497 ± 0.017
BALCKLD 0.468 ± 0.022 0.472 ± 0.029 0.477 ± 0.029 0.483 ± 0.018 0.475 ± 0.032

Temporal BALCKLD 0.482 ± 0.023 0.491 ± 0.013 0.490 ± 0.021 0.487 ± 0.031 0.515 ± 0.022
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O.2 LABEL NOISE - NEAREST NEIGHBOUR

Nearest neighbour noise is more realistic than that which is random as it may simulate uncertainty
in diagnoses made by physicians. In this section, we illustrate, in Tables 15a - 15c, the degree to
which the test AUC is affected by the introduction of nearest neighbour label noise during the active
learning procedure.

As expected, extreme levels of noise negatively affect performance. For instance, this can be seen
in Table 15a at D3 using BALDMCD where increasing the level of nearest neighbour noise from
5% −→ 80% leads to a reduction of the AUC = 0.744 −→ 0.694. SoQal continues to outperform
Epsilon Greedy and Entropy Response across most of the noise levels. Building on the previous
example, with 80% nearest neighbour noise, SoQal achieves an AUC = 0.694 whereas Epsilon
Greedy and Entropy Response achieve an AUC = 0.632 and 0.587, respectively. Such a finding is
similar to that arrived at with Random Noise and implies that SoQal is relatively more robust to noisy
oracles than these other methods.

Table 15: Mean test AUC of oracle questioning strategies as a function of increasing levels of nearest
neighbour label noise by the oracle. Results are shown for datasets D1 − D5 and all acquisition
functions. Mean and standard deviation values are shown across five seeds.

(a) SoQal

Dataset Ac. Function α Nearest Neighbour Noise Level
0.05 0.10 0.20 0.40 0.80

D1

BALDMCD 0.614 ± 0.043 0.571 ± 0.037 0.618 ± 0.015 0.557 ± 0.042 0.540 ± 0.052
BALDMCP 0.633 ± 0.011 0.617 ± 0.095 0.641 ± 0.023 0.632 ± 0.026 0.591 ± 0.047
BALCKLD 0.628 ± 0.049 0.586 ± 0.032 0.616 ± 0.024 0.604 ± 0.022 0.558 ± 0.069

Temporal BALCKLD 0.557 ± 0.045 0.647 ± 0.060 0.620 ± 0.036 0.625 ± 0.038 0.577 ± 0.039

D2

BALDMCD 0.694 ± 0.022 0.631 ± 0.020 0.682 ± 0.036 0.658 ± 0.038 0.647 ± 0.039
BALDMCP 0.605 ± 0.054 0.660 ± 0.067 0.656 ± 0.029 0.618 ± 0.058 0.605 ± 0.081
BALCKLD 0.655 ± 0.015 0.660 ± 0.037 0.671 ± 0.078 0.649 ± 0.024 0.678 ± 0.023

Temporal BALCKLD 0.702 ± 0.044 0.654 ± 0.024 0.686 ± 0.038 0.638 ± 0.042 0.631 ± 0.020

D3

BALDMCD 0.744 ± 0.023 0.745 ± 0.021 0.709 ± 0.028 0.700 ± 0.026 0.694 ± 0.014
BALDMCP 0.706 ± 0.029 0.736 ± 0.036 0.727 ± 0.023 0.712 ± 0.018 0.682 ± 0.017
BALCKLD 0.718 ± 0.029 0.729 ± 0.028 0.735 ± 0.021 0.680 ± 0.050 0.688 ± 0.009

Temporal BALCKLD 0.727 ± 0.033 0.725 ± 0.033 0.724 ± 0.018 0.700 ± 0.022 0.645 ± 0.062

D4

BALDMCD 0.517 ± 0.034 0.477 ± 0.027 0.493 ± 0.034 0.498 ± 0.036 0.459 ± 0.035
BALDMCP 0.492 ± 0.027 0.491 ± 0.027 0.502 ± 0.036 0.532 ± 0.040 0.507 ± 0.042
BALCKLD 0.494 ± 0.024 0.494 ± 0.016 0.504 ± 0.026 0.506 ± 0.031 0.503 ± 0.021

Temporal BALCKLD 0.504 ± 0.018 0.515 ± 0.013 0.529 ± 0.027 0.507 ± 0.014 0.508 ± 0.026
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(b) Epsilon Greedy

Dataset Ac. Function α Nearest Neighbour Noise Level
0.05 0.10 0.20 0.40 0.80

D1

BALDMCD 0.503 ± 0.040 0.480 ± 0.023 0.514 ± 0.050 0.481 ± 0.038 0.456 ± 0.031
BALDMCP 0.501 ± 0.014 0.508 ± 0.036 0.522 ± 0.052 0.482 ± 0.023 0.496 ± 0.041
BALCKLD 0.541 ± 0.035 0.503 ± 0.033 0.486 ± 0.047 0.500 ± 0.041 0.473 ± 0.026

Temporal BALCKLD 0.516 ± 0.024 0.523 ± 0.044 0.495 ± 0.046 0.491 ± 0.013 0.483 ± 0.041

D2

BALDMCD 0.584 ± 0.066 0.610 ± 0.042 0.597 ± 0.036 0.616 ± 0.054 0.593 ± 0.054
BALDMCP 0.565 ± 0.031 0.589 ± 0.075 0.616 ± 0.059 0.605 ± 0.047 0.586 ± 0.047
BALCKLD 0.608 ± 0.031 0.607 ± 0.040 0.590 ± 0.055 0.538 ± 0.037 0.585 ± 0.053

Temporal BALCKLD 0.647 ± 0.044 0.591 ± 0.033 0.640 ± 0.044 0.576 ± 0.031 0.589 ± 0.030

D3

BALDMCD 0.656 ± 0.021 0.655 ± 0.014 0.665 ± 0.010 0.643 ± 0.021 0.632 ± 0.010
BALDMCP 0.660 ± 0.022 0.657 ± 0.023 0.659 ± 0.003 0.664 ± 0.023 0.634 ± 0.013
BALCKLD 0.608 ± 0.031 0.607 ± 0.040 0.590 ± 0.055 0.538 ± 0.037 0.585 ± 0.053

Temporal BALCKLD 0.644 ± 0.016 0.651 ± 0.011 0.658 ± 0.013 0.634 ± 0.016 0.627 ± 0.014

D4

BALDMCD 0.438 ± 0.014 0.457 ± 0.022 0.442 ± 0.018 0.456 ± 0.028 0.428 ± 0.024
BALDMCP 0.489 ± 0.018 0.489 ± 0.021 0.474 ± 0.023 0.485 ± 0.019 0.486 ±0.015
BALCKLD 0.485 ± 0.029 0.487 ± 0.019 0.495 ± 0.023 0.488 ± 0.028 0.481 ± 0.021

Temporal BALCKLD 0.486 ± 0.018 0.500 ± 0.029 0.486 ± 0.027 0.468 ± 0.017 0.487 ± 0.028

(c) Entropy Response

Dataset Ac. Function α Nearest Neighbour Noise Level
0.05 0.10 0.20 0.40 0.80

D1

BALDMCD 0.494 ± 0.037 0.474 ± 0.027 0.492 ± 0.051 0.482 ± 0.033 0.444 ± 0.006
BALDMCP 0.511 ± 0.019 0.562 ± 0.052 0.509 ± 0.042 0.572 ± 0.060 0.495 ± 0.041
BALCKLD 0.513 ± 0.020 0.517 ± 0.035 0.504 ± 0.034 0.498 ± 0.023 0.487 ± 0.023

Temporal BALCKLD 0.500 ± 0.043 0.540 ± 0.025 0.503 ± 0.043 0.516 ± 0.024 0.490 ± 0.024

D2

BALDMCD 0.585 ± 0.045 0.630 ± 0.056 0.600 ± 0.045 0.585 ± 0.046 0.586 ± 0.063
BALDMCP 0.633 ± 0.060 0.626 ± 0.064 0.618 ± 0.055 0.647 ± 0.077 0.619 ± 0.055
BALCKLD 0.605 ± 0.049 0.572 ± 0.032 0.630 ± 0.081 0.581 ± 0.031 0.589 ± 0.061

Temporal BALCKLD 0.625 ± 0.030 0.599 ± 0.024 0.613 ± 0.050 0.614 ± 0.052 0.606 ± 0.054

D3

BALDMCD 0.604 ± 0.017 0.589 ± 0.013 0.592 ± 0.014 0.592 ± 0.014 0.587 ± 0.012
BALDMCP 0.636 ± 0.030 0.635 ± 0.030 0.640 ± 0.040 0.634 ± 0.039 0.623 ± 0.032
BALCKLD 0.632 ± 0.008 0.633 ± 0.008 0.630 ± 0.005 0.629 ± 0.004 0.625 ± 0.008

Temporal BALCKLD 0.631 ± 0.013 0.630 ± 0.013 0.637 ± 0.013 0.630 ± 0.014 0.629 ± 0.009

D4

BALDMCD 0.475 ± 0.035 0.493 ± 0.025 0.471 ± 0.031 0.468 ± 0.027 0.481 ± 0.035
BALDMCP 0.508 ± 0.024 0.512 ± 0.020 0.513 ± 0.019 0.499 ± 0.012 0.492 ± 0.016
BALCKLD 0.483 ± 0.031 0.476 ± 0.033 0.473 ± 0.026 0.479 ± 0.021 0.479 ± 0.032

Temporal BALCKLD 0.490 ± 0.012 0.497 ± 0.030 0.466 ± 0.013 0.485 ± 0.016 0.500 ± 0.013
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P EFFECT OF NUMBER OF MONTE CARLO SAMPLES, T, ON PERFORMANCE

The number of MC samples, T, within an AL framework can be associated with an improved
approximation of the version space. This, in turn, should lead to improved AL results. To quantify
the effect of the number of MC samples on performance, we illustrate in Fig. 15, the validation AUC
for experiments conducted with T = (5, 20, 40, 100). We show that there does not exist a simple
proportional relationship between the number of MC samples and performance. This can be seen by
the relatively strong generalization performance of models when T = 100 in Figs. 15c, 15h, and 15i
and poorer performance when T = 100. This suggests that our family of methods can perform well
without being computationally expensive.

(a) Var Ratio (b) Temporal Var Ratio

(c) Entropy (d) Temporal Entropy

(e) BALD (f) Temporal BALD
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(g) BALCKLD (h) Temporal BALCKLD

(i) BALCJSD (j) Temporal BALCJSD

Figure 15: Mean validation AUC as a function of number of Monte Carlo samples T for the different
acquisition functions using the MCP method. The acquisition percentage and acquisition epochs
were fixed at b = 2% and τ = 5, respectively. These experiments are performed on D2 at a fraction
of β = 0.5. Results are averaged across 5 seeds.
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Q EFFECT OF ACQUISITION PERCENTAGE, b, ON PERFORMANCE

The number of unlabelled instances acquired during the AL procedure can have a strong effect on the
generalization performance of networks. We investigate the effect of this on our family of methods and
illustrate the results in Fig. 16 when conducting experiments for b = (1%, 2%, 5%, 20%). Contrary to
expectations that more acquisition is better, we show that acquiring large amounts of data is actually
detrimental. This can be seen by the poorer performance attributed to b = 20% in, for instance,
Figs. 16b, 16f, and 16g. We hypothesize that this is due to larger magnitude 1) distribution shifts and
2) label noise brought about by the absence of an oracle.

(a) Var Ratio (b) Temporal Var Ratio

(c) Entropy (d) Temporal Entropy

(e) BALD (f) Temporal BALD
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(g) BALCKLD (h) Temporal BALCKLD

(i) BALCJSD (j) Temporal BALCJSD

Figure 16: Mean AUC of the validation set as a function of acquisition percentage b for the different
acquisition functions using the MCP method. These experiments are performed on D2 at a fraction
β = 0.5. MC samples and acquisition epochs were fixed at T = 20 and τ = 5, respectively. Results
are averaged across 5 seeds.
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R EFFECT OF ACQUISITION EPOCHS, τ , ON PERFORMANCE

As outlined in the main manuscript, the control vs. shock trade-off must be balanced to ensure good
generalization performance of an AL procedure. Acquiring instances too early and frequently can
lead to instabilities in the training procedure. Conversely, inadequate sampling of unlabelled instances
starves the network of much needed data. To quantify this trade-off, we illustrate in Fig. 17, the
performance of our family of methods when τ = (5, 10, 15, 20). Although one value that guarantees
best performance for all experiments does not exist, τ = 10 or τ = 15 seem to outperform the others,
on average.

(a) Var Ratio (b) Temporal Var Ratio

(c) Entropy (d) Temporal Entropy

(e) BALD (f) Temporal BALD
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(g) BALCKLD (h) Temporal BALCKLD

(i) BALCJSD (j) Temporal BALCJSD

Figure 17: Mean AUC of the validation set as a function of acquisition epochs τ for the different
acquisition functions using the MCP method. MC samples and the acquistion percentage were fixed
at T = 20 and b = 2%, respectively. These experiments are performed on D2 at a fraction β = 0.5.
Results are averaged across 5 seeds.
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