
Under review as submission to TMLR

Sparser, Better, Faster, Stronger:
Sparsity Detection for Efficient Automatic Differentiation

Anonymous authors
Paper under double-blind review

Abstract

From implicit differentiation to probabilistic modeling, Jacobian and Hessian matrices have
many potential use cases in Machine Learning (ML), but they are viewed as computationally
prohibitive. Fortunately, these matrices often exhibit sparsity, which can be leveraged to
speed up the process of Automatic Differentiation (AD). This paper presents advances in
sparsity detection, previously the performance bottleneck of Automatic Sparse Differentia-
tion (ASD). Our implementation of sparsity detection is based on operator overloading, able
to detect both local and global sparsity patterns, and supports flexible index set representa-
tions. It is fully automatic and requires no modification of user code, making it compatible
with existing ML codebases. Most importantly, it is highly performant, unlocking Jacobians
and Hessians at scales where they were considered too expensive to compute. On real-world
problems from scientific ML, graph neural networks and optimization, we show significant
speed-ups of up to three orders of magnitude. Notably, using our sparsity detection system,
ASD outperforms standard AD for one-off computations, without amortization of either
sparsity detection or matrix coloring.

1 Introduction

1.1 Motivation

Machine Learning (ML) has witnessed incredible progress in the last decade, a lot of which was driven by
Automatic Differentiation (AD) (Griewank and Walther, 2008; Baydin et al., 2018; Blondel and Roulet,
2024). Thanks to AD, working out gradients by hand is no longer a requirement for training differentiable
models. User-friendly software packages like TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al.,
2019) and JAX (Bradbury et al., 2018) allow practitioners to quickly experiment with different models and
architectures, resting assured that gradients will be computed efficiently and correctly1 without human
intervention

However, while gradient-based optimization has become ubiquitous within ML, the practical use of Jacobians
and Hessians remains scarce. Conventional wisdom tells us that for realistic applications, these matrices are
too large to handle, since we cannot afford to store n2 coefficients in memory when the number of parameters
n reaches millions. A common workaround is to manipulate matrices in form of so-called lazy linear operators
(Blondel and Roulet, 2024), which are defined only by their action on vectors.

Luckily, in numerous applications within ML, most notably in the sciences, Jacobians and Hessians exhibit
sparsity — a characteristic that has remained largely ignored by current ML software. By automatically
detecting and leveraging the sparsity of Jacobians and Hessians (see Figure 1), their automatic computation
can be sped up by orders of magnitude in high-dimensional settings. Furthermore, when we materialize
these matrices instead of representing them as lazy linear operators, computational advantages such as
factorizations and direct linear solves are suddenly unlocked.

1While this generally holds true, AD has several pitfalls. Refer to Hückelheim et al. (2024) for a taxonomy.

1

Under review as submission to TMLR

(a) AD code transformation (b) Standard AD Jacobian computation

(c) ASD Jacobian computation

① Sparsity detection ② Coloring ③ Matrix-vector products ④ Decompression

Figure 1: Comparison of reverse-mode AD and ASD
(a) Given a function f , reverse-mode AD return a function (x, v) 7→ v⊤∂f(x) computing vector-Jacobian products
(VJPs). (b) AD computes Jacobians row-by-row by evaluating VJPs with all basis vectors. (c) ASD reduces the

number of VJP evaluations by first detecting a sparsity pattern of non-zero values, then coloring orthogonal rows in
the pattern, and simultaneously evaluating VJPs of orthogonal rows. The first step of sparsity detection is the
performance bottleneck of ASD and the focal point of this paper. The concepts shown in this figure directly

translate to forward-mode, which computes Jacobians column-by-column instead of row-by-row.

1.2 Applications

We enumerate concrete scenarios where Jacobians or Hessians appear naturally.

Newton’s method (Nocedal and Wright, 2006, Chapter 3) is a fast root-finding and optimization algorithm,
which is easier to implement with AD. To find a zero of the vector-to-vector function f : Rn → Rm, Newton’s
method performs the following iteration:

x(t + 1) = x(t) − ∂f (x (t))−1
f (x (t)) .

To minimize the vector-to-scalar function f : Rn → R without constraints, which amounts to finding a zero
of the gradient ∇f(x), Newton’s method turns into:

x(t + 1) = x(t) − ∇2f (x (t))−1 ∇f (x (t)) .

In both cases, we need to solve a linear system of equations, involving either a Jacobian matrix ∂f(x) or
a Hessian matrix ∇2f(x) (which is the Jacobian of the gradient). Specifically for optimization, a lot of
research effort went into quasi-Newton methods and their limited-memory variants (Nocedal and Wright,
2006, Chapters 6 and 7), which leverage cheap approximations of the inverse Hessian. Still, evaluating
the exact Hessian can prove beneficial, for instance to study its spectral properties. In deep learning, the
maximum eigenvalue of the training loss Hessian provides insights into the dynamics and stability of gradient
descent (Cohen et al., 2020).

Implicit differentiation has become more prevalent in ML with the rise of implicit layers (Kolter et al.,
2020). When a vector-to-vector function f(x) is defined implicitly by conditions of the form g(f(θ), θ) =
0, the implicit function theorem lets us recover the Jacobian of f by solving yet another linear system,
this time with partial Jacobians: ∂f(θ) = −∂1g(f(θ), θ)−1∂2g(f(θ), θ). For unconstrained optimization
f(θ) = arg miny c(y, θ), the optimality criterion is g(f(θ), θ) = ∇1c(f(θ), θ) = 0, and so we obtain a partial
Hessian to invert. The recent survey by Blondel et al. (2022) gives more insights and examples on implicit
differentiation and its connection to AD.

2

Under review as submission to TMLR

Further applications to probabilistic modeling are discussed in Appendix A. In all of the scenarios mentioned
above, we observe that (1) Jacobians and Hessians are useful objects, (2) they are often large and computed
with AD, and (3) exact computation is deemed intractable, which seemingly justifies approximations or lazy
operators. When the matrices in question exhibit sparsity, we claim that the last item should be examined
more closely, and possibly refuted.

1.3 Contributions

Despite it being a well-researched area (Griewank and Walther, 2008), sparse differentiation is not widely
used in the ML community. We identify two likely reasons for this situation. First, the lack of tooling
for automatic sparsity detection, which forces potential users to work out the sparsity pattern by hand (a
tedious and error-prone process). Second and most importantly, the separation between the AD and ML
scientific communities (in terms of research groups, publication venues and programming languages), which
means that AD advances do not percolate easily into ML circles. For instance, many of the existing sparse
differentiation libraries are written in compiled languages like C or Fortran. While powerful, these languages
lack the flexibility and iteration speed required by modern ML workflows, which favor dynamic alternatives
like Python, R and Julia.

Our contributions are meant to fill these gaps. On the theoretical side, we present operator overloading for
sparsity detection in a new light, reformulating existing techniques from the AD literature as a binarization
of the chain rule. The algorithms we describe have been known for at least two decades, but we hope our new
presentation will be more natural for people unfamiliar with the AD literature. Our perspective abstracts
away implementation details like computational graphs and the data structures used for bookkeeping. On
the practical side, we introduce SparseConnectivityTracer.jl (SCT), a highly performant sparsity
detection code written in the open-source Julia programming language (Bezanson et al., 2017). SCT allows
users to detect both local and global sparsity patterns, naturally handles dead ends which can occur in
traditional graph-based approaches, allows for a flexible selection of data structures for sparsity pattern
representations, and enables novel tensor-level overloads that can drastically reduce the amount of operations
required to compute sparsity patterns. Drawing on Julia’s multiple dispatch paradigm allows it to generate
highly performant machine code for each overloaded operator.

We also provide in-depth benchmarks of SCT as part of a full Automatic Sparse Differentiation (ASD)
system in Julia for the computation of Jacobians and Hessians. Thanks to sparsity detection, ASD can
automatically leverage complicated Jacobian and Hessian sparsity patterns without any human involvement.
Our benchmarks demonstrate that this ASD implementation outperforms AD at scales previously considered
impractical. Notably, it is performant enough to enable speed-ups in one-off computations of Jacobians and
Hessians. Thus, while amortizing the computational cost of sparsity detection over several Jacobian and
Hessian computations can help, it is not always necessary.

The approach we present does not require any rewriting of user functions, making it compatible with main-
stream packages in the Julia ecosystem (such as those for deep learning and scientific ML). We hope that
it will provide a blueprint for adaptation in other languages and frameworks, especially in Python which
currently lacks sparsity detection and ASD tooling2.

1.4 Notations

Scalar quantities are denoted by lowercase letters x, vectors by boldface lowercase letters x, and matrices
by boldface uppercase letters A. Given a vector x, its coefficients are written xi. Given a matrix A, its
columns are written A:,j , its rows are written Ai,: and its coefficients are written Ai,j . We use the word
“tensor” when we want to refer to either vectors or matrices. The centered dot · stands for a product between
two scalars, or the product between a scalar and a tensor. Integer ranges are denoted by {1, . . . , n}. For a
vector-to-scalar function f : Rn → R, we write ∇f(x) ∈ Rn for its gradient vector and ∇2f(x) ∈ Rn×n for
its Hessian matrix. For a vector-to-vector function f : Rn → Rm, we write ∂f(x) ∈ Rm×n for its Jacobian
matrix. The partial derivative (or partial Jacobian) of a function with respect to its k-th argument is denoted

2Refer to Appendix B for an overview of ASD implementations in other high-level programming languages.

3

Under review as submission to TMLR

by ∂k, while the total derivative with respect to a variable v is denoted by dv. Unless otherwise specified,
all functions considered here are sufficiently differentiable at the point of interest. We will also be interested
in the sparsity patterns of gradients, Jacobians and Hessians. The “one” function is defined on numbers as
1[x] = 1 if x ̸= 0 and 1[x] = 0 otherwise. Since the sparsity pattern of a generic tensor T is just the one
function applied to every element, we write it as 1[T]. We use ∨ to denote the binary OR operation a ∨ b.
Note that multiplication has priority over the OR operation.

1.5 Outline

Section 2 gives a summary of AD and ASD techniques as well as the role of sparsity detection in ASD.
Section 3 contains our updated formulation of sparsity detection. Section 4 describes the software imple-
mentation of our sparsity detection code SCT. Section 5 showcases numerical experiments for Jacobian and
Hessian sparsity detection, as well as resulting ASD benchmarks. Section 6 concludes with future research
perspectives.

2 Background

2.1 Automatic differentiation

As highlighted in the survey by Baydin et al. (2018), AD is a method for computing derivatives that is
neither numeric (based on finite difference approximations) nor symbolic (based on algebraic manipulations
of expressions). Instead, AD works with non-standard interpretation of the source code, allowing it to carry
derivatives along with primal values. The reference textbook on the subject is the one by Griewank and
Walther (2008), while a more recent treatment is given by Blondel and Roulet (2024). Here we briefly recap
the complexities of the main AD modes: forward, reverse, and forward-over-reverse.

Let us consider a vector-to-vector function f : Rn → Rm and an input x ∈ Rn. We also fix a perturbation
along the input u ∈ Rn (tangent) and a perturbation along the output v ∈ Rm (cotangent). We call τ
the unit time complexity of evaluating f(x) (which may scale with the input size n or output size m).
Forward mode AD can compute (x, u) 7→ ∂f(x)u, called the Jacobian-Vector Product (JVP), in time O(τ).
Symmetrically, reverse mode AD can compute (x, v) 7→ v⊤∂f(x), called the Vector-Jacobian Product (VJP),
in the same order of time O(τ). In particular, the case m = 1 implies that gradients are cheap to compute
in reverse mode, as observed by Baur and Strassen (1983).

Now let us consider a vector-to-scalar function f : Rn → R, still with input x and unit time complexity τ .
The gradient g = ∇f(x) can be computed by reverse mode AD. Forward mode AD can then be applied
to the computation of g. Thus, forward-over-reverse mode AD can compute (x, u) 7→ ∇2f(x)u, called the
Hessian-Vector Product (HVP), in time O(τ). This observation was first made by Pearlmutter (1994) and
revisited by LeCun et al. (2012) and Dagréou et al. (2024). Note that some AD systems support batched
evaluation3, that is, the joint application of JVPs, VJPs or HVPs to a vector (or batch) of seeds (u1, . . . , uk)
all at once.

2.2 Lazy products are not always enough

The routines mentioned above compute matrix-vector products Au involving Jacobians or Hessians, for a
cost that is a small multiple of the cost of f . But often enough, we need more complex quantities like
matrix-matrix products AU or solutions of linear systems A−1b. In such cases, a solution based purely on
matrix-vector products may be suboptimal, and having access to the full matrix A can yield accelerations.

A matrix-matrix product AU can be computed from n lazy matrix-vector products AU:,j , possibly batched.
But given the materialized matrix A, more efficient procedures exist, for instance in implementations of BLAS
Level III (Lawson et al., 1979; Blackford et al., 2002). Similarly, a linear system Au = b can be solved using
only matrix-vector products if we resort to iterative methods like the Conjugate Gradient (CG) (Hestenes

3This variant is also commonly called vector mode. Given that the seeds themselves can also be vectors, and that the word
“mode” already refers to forward or reverse, we hope that our choice of terminology will be less confusing.

4

Under review as submission to TMLR

and Stiefel, 1952) or GMRES (Saad and Schultz, 1986). The precision of these methods is tied to the number
of iterations, each of which costs around the same as one function call. On the other hand, given access
to A, we can use a direct factorization-based solver such as those in LAPACK (Anderson et al., 1999).

When the materialized matrix A is encoded in a sparse format, like Compressed Sparse Column (CSC),
Compressed Sparse Row (CSR) or COOrdinate (COO), these conclusions still hold. In particular, complex
linear algebra operations can be executed even faster thanks to dedicated libraries. A prominent example is
the SuiteSparse ecosystem4 (Davis, 2024), which includes sparse matrix factorizations and direct linear
solvers. Since many high-dimensional Jacobians and Hessians are naturally sparse, we can leverage this
property to speed up computations if we are able to reconstruct them efficiently.

Numerical linear algebra is not only faster when working on materialized matrices (dense or sparse), it
can also be more robust. Iterative solvers shine most when the matrix A is well-conditioned, or when a
good preconditioner is known (Stewart, 2022). Outside of these conditions, the gain with respect to direct
solvers is less obvious. Finally, it is worth noting that some nonlinear optimization libraries only accept
Jacobian/Hessian matrices (usually in sparse formats) for their linear system subroutines, and cannot work
with lazy matrix-vector products. Examples include the popular Ipopt (Wächter and Biegler, 2006) and
Knitro (Byrd et al., 2006). All of this suggests that it may be worth paying an initial fee to materialize
the matrix, which we recoup as subsequent operations are sped up. This is supported by our experiments
in Appendix F and Appendix G.

2.3 Reconstructing (sparse) matrices from products

One can reconstruct a dense matrix A by taking its products A:,j = Ae(j) (resp. Ai,: = (e(i))⊤A) with
all the basis vectors of the input (resp. output) space. For a function f : Rn → Rm, the Jacobian is either
built column-by-column with n JVPs, or row-by-row with m VJPs, as shown in Figure 1b. For the Hessian,
both options are equivalent due to symmetry. With batched AD, several seeds can be provided at once for
the products. In the extreme case where e(1), . . . , e(n) are all supplied together, batched AD amounts to a
matrix-matrix product with the identity AIn. The complexity of this operation scales with the number of
basis vectors.

When the matrix A is known to be sparse, this painstaking reconstruction can be greatly accelerated. One
option is to perform sparse batched AD (Griewank and Walther, 2008, Chapter 7), essentially computing
AI in one pass while dynamically exploiting sparsity inside the function. This approach only applies to
a few AD systems because it requires sparsity-aware differentiation of each elementary operation, which is
not always implemented. On the other hand, matrix-vector products are always available as the lowest-level
primitive of any AD system. To leverage these products generically, we thus focus on compressed evaluation
of the matrix (Griewank and Walther, 2008, Chapter 8), which is the standard method for ASD because it
can be implemented on top of any existing AD backend.

The core idea behind ASD is that, if columns A:,j1 and A:,j2 are structurally orthogonal (they do not share
a non-zero coefficient), we can evaluate them together with a single matrix-vector product A(e(j1) + e(j2))
and then decompress the sum in a unique fashion. An illustration of this procedure is shown in Figure 1c.
Finding large sets of structurally independent columns or rows helps lower the number of products necessary
to recover A. As shown in the review by Gebremedhin et al. (2005), this matrix partitioning problem is
equivalent to a graph coloring problem, where the graph is constructed based on the rows and columns of
A. Overlapping columns or rows must get different colors, and the goal is to find an assignment which
minimizes the total number of colors used. Denoting by cn the number of colors in the columns and by cm

the number of colors in the rows, we see that only cn (resp. cm) products are needed to build the matrix
column-by-column (resp. row-by-row). For typical sparse matrices, cn ≪ n and cm ≪ m, which makes ASD
a huge improvement in complexity. For instance, a forward-mode sparse Jacobian can be computed with
cost O(cnτ) instead of O(nτ).

Crucially, ASD through compressed evaluation requires a priori knowledge of the sparsity pattern (where
the structural zeros are located). In some special cases, this pattern can be described manually: diagonal

4https://people.engr.tamu.edu/davis/suitesparse.html

5

https://people.engr.tamu.edu/davis/suitesparse.html

Under review as submission to TMLR

and banded matrices are common examples. However, more sophisticated sparsity patterns can emerge from
complex code, which makes sparsity detection a key component of ASD5. If the sparsity pattern does not
depend on the input x, it can be reused across several AD calls at different points. The same goes for the
result of coloring. Therefore, runtime measurements usually do not include the cost of this “preparation”
step, which is amortized in the long run.

Finally, note that ASD remains accurate even when the sparsity pattern is overestimated. If we predict that
a coefficient can sometimes be non-zero, but it is in fact always zero, the result will still be correct. Of
course, if the coloring involves more colors than strictly necessary, this overestimation makes differentiation
slower. Still, this tradeoff might be interesting to save time on sparsity detection.

2.4 Related work

The literature on sparse differentiation dates back 50 years. Curtis et al. (1974) first notice that, when
computing sparse Jacobians, one can save time by evaluating fewer matrix-vector products. Powell and
Toint (1979) extend that insight to sparse Hessians. In the following years, the connection to graph coloring
is discovered and several heuristic algorithms are proposed, see Gebremedhin et al. (2005) and references
therein. While early works expect the user to provide the sparsity pattern, automated sparsity detection
quickly becomes a topic of research. Approaches to sparsity detection can be either dynamic (run-time) or
static (compile-time), like for AD itself. In a way, sparsity detection is equivalent to boolean AD.

Dixon et al. (1990) propose an operator overloading method based on “doublets” and “triplets” that encode
sparse gradients or Hessians. Griewank and Reese (1991) offer an alternative point of view by describing
elimination of intermediate vertices in the linearized computational graph. Instead of derivative values, prop-
agating only the sparsity patterns is often more efficient, given that binary information can be encoded into
bit vectors (Geitner et al., 1995). Bischof et al. (1996) show that depending on the problem at hand, differ-
ent sparse storage techniques may be preferred. Griewank and Mitev (2002) suggest a Bayesian criterion to
select clever basis combinations and reduce the number of function calls even further. Giering and Kaminski
(2006) describe a static transformation of the source code, with rules that echo the aforementioned operator
overloading, the bit vector encoding being present as well. Lohoff and Neftci (2024) propose an alternative
approach to Jacobian accumulation that is based on reinforcement learning and cross-country elimination
(Griewank and Walther, 2008, Chapter 9) and falls outside of forward and reverse mode. Their method
leverages sparsity, but lacks support for dynamic control flow, needs to be retrained for each computational
graph and is tailored to highly vectorizable functions. Specifically for Hessian sparsity patterns, Walther
(2008) extends the operator overloading approach to recognize nonlinear interactions. Walther (2012) dis-
cusses a faster variant of their initial algorithm, as well as the choice of the underlying sparse data structures.
Meanwhile, Gower and Mello (2012) introduce the edge-pushing algorithm which directly computes a sparse
Hessian with its values, bypassing the need for detection, coloring and compressed differentiation. While
Walther (2008) requires only forward propagation, Gower and Mello (2012) leverage a reverse pass to increase
efficiency: a comparison can be found in Gower and Mello (2014). The edge pushing algorithm is further
improved by Wang et al. (2016a); Petra et al. (2018), and shown to be equivalent to the vertex elimination
rule of Griewank and Reese (1991) by Wang et al. (2016b).

In terms of software, most existing sparse differentiation systems are implemented in a low-level language
like Fortran or C/C++. Prominent examples include ADIFOR (Bischof et al., 1992) and ADOL-C (Griewank
et al., 1996; Walther, 2009), along with the ColPack package for coloring (Gebremedhin et al., 2013).
The closed-source MATLAB language also boasts a couple of implementations (Coleman and Verma, 2000;
Forth, 2006; Weinstein and Rao, 2017). Furthermore, several algebraic modeling languages for mathematical
programming and optimization include some form of sparse differentiation. It is the case at least for AMPL
(Fourer et al., 1990), CasADi (Andersson et al., 2019) and JuMP.jl (Dunning et al., 2017), as well as the
more recent and GPU-compatible ExaModels.jl (Shin et al., 2024).

Nonetheless, a lot of scientific and statistical code is developed directly in open-source, high-level languages
like Python, R or Julia. Thus, there is a clear need for fully automatic sparse differentiation libraries which
can differentiate user code without the translation layer of a modeling language. In Julia, the current state

5Even when sparsity patterns can be worked out by hand, it helps to compare the result with automated sparsity detection.

6

Under review as submission to TMLR

of the art for sparsity detection relies on a package called Symbolics.jl for sparsity detection (Gowda
et al., 2019; 2022). As section 5 demonstrates, our contributions inside SCT give rise to a much faster ASD
pipeline. A survey of ASD implementation efforts in other high-level programming languages is given in
appendix B.

3 Detecting sparsity via operator overloading

We now present a revised viewpoint on sparsity detection, exposing the principles behind first-order tracing.
In contrast to standard literature (Griewank and Walther, 2008; Walther, 2008), we propose an exposition
that does not rely on the notion of computational graph and exploits local sparsity. It also provides a
blueprint for easy implementation using a classification of operators, such as the one described in section 4.
For second-order tracing, refer to Appendix C.

3.1 Principle

Let f : Rn → Rm be a vector-to-vector function, and x ∈ Rn. The Jacobian matrix ∂f(x) ∈ Rm×n is
obtained by stacking m gradient vectors, since its i-th row is the gradient ∇fi(x) ∈ Rn of the scalar output
component fi(x). Thus, we can recover the Jacobian sparsity pattern 1[∂f(x)] ∈ {0, 1}m×n if we know the
gradient sparsity pattern 1[∇fi(x)] ∈ {0, 1}n of each component.

To achieve this, we use a tracer, a number type which contains both a primal value y(x) ∈ R (the actual
number) and its gradient sparsity pattern 1[∇y(x)] ∈ {0, 1}n (a binary vector). Importantly, the gradient
in question is taken with respect to the input vector x. We initialize the procedure by turning every xj in
the input into (xj , ej), where ej is the j-th basis vector. Using operator overloading, every intermediate
scalar quantity involved in our function f is replaced with a tracer. Thus, at the end of the computation,
we recover a tracer (fi(x), 1[∇fi(x)]) containing both the primal output and the desired gradient sparsity
pattern. All we have left to do is write down the rules on how two such numbers are combined, defining how
gradient sparsity patterns propagate.
Remark 1. The tracer type is related to dual numbers, which are a classic ingredient of forward-mode AD.
More precisely, it encodes the sparsity pattern of a batched dual number, containing one directional derivative
for each input xj. Such batched dual numbers are a way to implement batched forward-mode AD (Revels
et al., 2016). One can also see it as the binary version of the sparse doublet in Dixon et al. (1990).

3.2 Propagation rules

Let α(x) and β(x) be two intermediate scalar quantities in the computational graph of the function f(x).
We compute a new scalar γ(x) = φ(α(x), β(x)) by applying a two-argument operator φ to α(x) and β(x).
Our goal is to express the gradient sparsity pattern 1[∇γ(x)] as a function of the intermediate sparsity
patterns 1[∇α(x)] and 1[∇β(x)]. By the chain rule, for any input index j ∈ {1, . . . , n}, the derivative with
respect to input xj can be expressed as follows:

∂jγ(x) = dxj
φ(α(x), β(x)) = ∂1φ(α(x), β(x)) · ∂jα(x) + ∂2φ(α(x), β(x)) · ∂jβ(x)

From now on, we omit the dependence on the input to lighten notations, but we keep in mind that everything
is evaluated at point x:

∂jγ = dxj
φ = ∂1φ · ∂jα + ∂2φ · ∂jβ (1)

Bringing the indices together shows us that ∇γ = ∂1φ · ∇α + ∂2φ · ∇β. From there, the sparsity pattern
emerges, if we extend ∨ to represent the elementwise OR.

1[∇γ] ≤ 1[∂1φ] · 1[∇α] ∨ 1[∂2φ] · 1[∇β] (2)

In other words, the propagation of gradient sparsity patterns through the operator φ only depends on two
binary values: 1[∂1φ] and 1[∂2φ]. These binary values tell us whether the operator φ depends on each of its
arguments at the first order.

7

Under review as submission to TMLR

Remark 2. Note the use of ≤ instead of = in Equation 2. It is necessary because 1[∇α] and 1[∇β] forget
about actual values, and thus remain blind to accidental cancellations. For instance, this method will always
overestimate the sparsity pattern of φ(α, β) = α−β whenever α(x) = β(x). Fortunately, as discussed above,
these overestimates still give rise to correct derivatives inside ASD.

3.3 First-order operator classification

To implement Equation 2, we need to classify every elementary operator φ in our programming language
depending on whether its partial derivative with respect to each argument is zero. There are two ways to
perform this classification: local (accurate) or global (conservative). Local classification takes into account
the current value of α and β, while global classification considers every possible value. In the global case,
we effectively replace 1[∂1φ(α, β)] with maxα,β 1[∂1φ(α, β)] in Equation 2.

Table 1 gives some examples. The max operator is especially interesting since it comes up in neural networks
with activation function ReLU(x) = max(x, 0). It is well-known that max (and therefore ReLU) induces
local sparsity because it only depends on one of its two arguments: the first one whenever α ≥ β, and the
second one whenever β ≥ α. Global sparsity will overlook this subtlety, because there exists a part of the
space where α ≥ β and there exists a part of the space where β ≥ α, so that both arguments can influence
the output at the first order. Local sparsity allows us to figure out that only one of them will. As far as
we are aware, local sparsity has rarely been considered in previous works. An example of global and local
sparsity patterns on a convolutional layer can be found in Figures 4a and 4b in the appendix.

Global sparsity is still relevant, since it does not require propagating primal values through the computational
graph, making it much cheaper to compute. Additionally, it yields a sparsity pattern that is valid over the
entire input domain. The cost of the sparsity detection can therefore be amortized over the computation of
multiple Jacobians and Hessians at different input points.

Local Global
Operator φ(α, β) 1[∂1φ] 1[∂2φ] 1[∂1φ] 1[∂2φ]

exp, log 1 – 1 –
sin, cos 1 a.e. – 1 –

round, floor, ceil 0 a.e. – 0 –
+, -, *, / 1 1 1 1

max α ≥ β β ≥ α 1 1
min α ≤ β β ≤ α 1 1

Table 1: First-order classification of operators
Unary operators have no second argument. “a.e.” means “almost everywhere” for the Lebesgue measure

4 Software implementation

We implement the tracer number types described in the previous section in an open-source software package
called SparseConnectivityTracer.jl (SCT). For global sparsity detection, SCT implements two types
of tracers: gradient tracers, which hold a gradient sparsity pattern 1[∇y(x)], and hessian tracers, which
additionally hold a hessian sparsity pattern 1[∇2y(x)]. As outlined in subsection 3.3, local sparsity detection
requires an additional wrapper type that holds and propagates the value of the primal computation. The
choice of data structures used to represent sparsity patterns 1[∇y(x)] and 1[∇2y(x)] is flexible and can be
altered to fit the problem at hand, as we will discuss in subsection 4.1.

To add an operator overload, a given operator must be classified according to Table 1. SCT then automat-
ically generates performant code that implements Equation 2, as well as correctness tests that check the
classification against the forward mode AD system ForwardDiff.jl (Revels et al., 2016)6 . The gener-

6The same holds for second-order tracing using Table 3 for classification, generating code according to Equation 4.

8

Under review as submission to TMLR

ated operator overloads work on generic Julia code that supports Real numbers. By making use of Julia’s
multiple dispatch paradigm, external software packages automatically call SCT’s overloads when they are
evaluated with our tracer types, requiring no code modification. As a result, it is already used by the SciML
ecosystem7 (Julia’s equivalent of SciPy), e.g. for nonlinear root-finding (Pal et al., 2024) and constrained
optimization (Dixit and Rackauckas, 2023). Furthermore, we make SCT’s code generation utilities available
for third party packages, enabling custom operator overloads.

4.1 Sparsity pattern representations

For the purpose of mathematical exposition, it was convenient to define gradient and Hessian sparsity patterns
as sparse binary tensors 1[∇y(x)] ∈ {0, 1}n and 1[∇2y(x)] ∈ {0, 1}n×n. In SCT, multiple data structures
can be flexibly used to represent these sparsity patterns. One approach is to represent sparsity patterns as
the sets of (pairs of) indices of non-zero entries: 1set[∇y(x)] := {i ∈ {1, . . . , n} such that ∂iy(x) ̸= 0} and
1set[∇2y(x)] := {(i, j) ∈ {1, . . . , n}2 such that ∂2

ijf(x) ̸= 0}. Every operation on sparse binary tensors has
an equivalent on index sets. The elementwise OR 1[∇α] ∨ 1[∇β] is a union 1set[∇α] ∪ 1set[∇β]. Meanwhile,
the outer product OR 1[∇α] ∨ 1[∇β]⊤ is a Cartesian product 1set[∇α] × 1set[∇β]. We can thus translate
Equation 2 as 1set[∇γ] = 1[∂1φ] · 1set[∇α] ∪ 1[∂2φ] · 1set[∇β].

To implement it, various data structures for sets, such as hash tables or bit vectors, can be used. In the end,
the right choice of set data structure will depend on the performance of unions and iteration, as remarked by
Walther (2012). For small problems up to a few hundreds of inputs, bit vectors tend to be the most efficient,
as each index requires only one bit of memory. Additionally, unions are fast, amounting to an OR operation
on bits. The downside of bit vectors is that their memory requirement is constant, regardless of sparsity, and
grows with the number of inputs. For sparse computations with very large inputs, hash tables that store
indices as integers can therefore be more efficient. Going beyond sets, vectors of indices can be used that allow
for duplicated storage. The upside is that unions are just a vector concatenation, which makes them very
fast, but a final de-duplication step is always needed. The optimal sparsity pattern representation depends
on the dimensions of the problem, the sparsity level, and more generally the structure of the computational
graph. Since there is no universal right answer, our generic implementation of tracer types allows users to
select the sparsity pattern representation that best suits their task. All sparsity pattern representations,
including data structures for set types, can additionally be extended by users through multiple dispatch.

4.2 Tensor-level overloads

For the detection of global sparsity patterns, overloads are not exclusively implemented on a scalar level,
but also on tensors of tracers. This allows us to bypass the original scalar computational graph for increased
computational performance without any loss of precision. For example, when multiplying two matrices of
tracers, instead of falling back to elementwise multiplication and addition using scalar overloads, we can
make use of the fact that both multiplication and addition have an identical first-order classification (see
Table 1). This allows us to reorder operations, first computing elementwise OR operations along rows and
columns of both matrices respectively. For two matrices of size (n × p) and (p × m), this reduces the amount
of OR operations from n ·m ·(2p−1) to (n+m)(p−1)+n ·m, leading to a significant increase in performance.
An in-depth derivation of this is given in appendix D.

Similar overloads are implemented for common matrix operators like matrix norms and determinants. For
functions that depend non-trivially on all inputs, like the determinant, a conservative sparsity pattern can
be computed by returning the union of all input sparsity patterns, thus bypassing expensive operations.

4.3 Limitations

While our local tracer types fully support control flow statements, our global tracer types only support a very
limited subset8 due to their lack of a primal value. Common boolean functions (e.g. iszero, isfinite)
also aren’t supported. This is by design: if a global tracer were to enter a branch in code, the returned pattern

7https://sciml.ai/
8For example, Julia’s ifelse function is supported, since SCT overloads it, but regular if-else blocks aren’t.

9

https://sciml.ai/

Under review as submission to TMLR

wouldn’t be guaranteed to be correct, as a conservative pattern requires the evaluation of all branches. While
overestimates of sparsity patterns are acceptable (as described in subsection 2.3), underestimates can lead to
an erroneous coloring of orthogonal rows or columns and subsequently wrong ASD computations. Therefore,
it is preferable to have global tracers throw an error rather than have them silently return incorrect sparsity
patterns. Fortunately, this issue is easily circumvented by leveraging operator overloads. Building on the
example from subsection 3.3, the function ReLU(x) = max(x, 0) normally requires a comparison of primal
values, branching to return either the tracer x or 0. By classifying the first-order derivative of ReLU as not
globally sparse, SCT is able to generate code for global tracers that circumvents this comparison, directly
returning x which yields the most conservative pattern estimate.

The second limitation of SCT is its current lack of GPU support. As described in subsection 4.1, sparsity
pattern representations of large inputs currently make use of hash tables or bit vectors, which dynamically
allocate memory. While statically sized index sets should in theory be able to run on GPUs, this work
is still pending. On top of this issue, GPU parallelized computations in deep learning typically make use
of vectorized code, which often results in block-wise sparsity patterns. Such patterns can benefit from a
specialized implementation of sparsity detection that does not work on the scalar level. Still, scalar-level
implementations such as ours are very relevant for scientific ML, which can involve a lot of fine control flow
and individual indexing.

5 Numerical experiments

To benchmark SCT’s performance in sparsity detection, we compare it to the previous state-of-the-art in
Julia9, which relies on Symbolics.jl. When measuring the benefits of SCT in the broader computation
of Jacobians and Hessians, we make use of two additional open-source Julia packages inside a single ASD
pipeline. The first is SparseMatrixColorings.jl (Dalle and Montoison, 2025), which implements
coloring algorithms from Gebremedhin et al. (2005). The second is DifferentiationInterface.jl
(Dalle and Hill, 2025), a common interface for AD and ASD, which allows users to switch the sparsity
detection method between SCT and Symbolics.jl in one line of code. A demonstration of the API and
its usage is given in Appendix E.

In some benchmarks, we distinguish between prepared and unprepared AD or ASD. Preparation refers to the
parts of the pipeline that can be amortized across several computations. For AD it is often negligible, but for
ASD preparation includes the costly sparsity detection and coloring, whose results can only be reused if they
are input-agnostic. Prepared benchmarks are representative for applications which require the computation
of multiple Jacobians of the same function, unprepared benchmarks correspond to one-off computations or
cases where the sparsity pattern could conceivably change between runs.

All experiments and benchmarks were run using Julia 1.11 on an Apple M3 Pro CPU with 36 GB of
RAM. The plots are rendered using Makie.jl (Danisch and Krumbiegel, 2021). While the benchmarks
in the main body of this paper focus on sparse Jacobians, further experiments on sparse Jacobians with
linear solves, sparse Hessians, and implicit differentiation on Graph Neural Networks can be found in
appendices F, H and G respectively. To ensure reproducibility, we provide the complete source code
and matching Julia environments in our public repository https://anonymous.4open.science/r/
sparse-differentiation-paper/.

5.1 Jacobian sparsity detection

To compare the performance of SCT with Symbolics.jl, we benchmark on the same example as Gowda
et al. (2019), the Brusselator semilinear partial differential equation (PDE), which describes the spatial
evolution of an autocatalytic chemical reaction (Prigogine and Lefever, 1968). The PDE is discretized to
N × N × 2 coupled ordinary differential equations using finite differences. Selected sparsity patterns are
shown in appendix F.1. The Brusselator benchmark is representative for the application of ASD to the
field of scientific machine learning, where it can be used to accelerate the computation of Jacobians in
hybrid Neural ODEs (Chen et al., 2018). Instead of training neural networks to learn the full dynamics of a

9Since sparsity detection is language-specific, benchmarking across languages is difficult.

10

https://anonymous.4open.science/r/sparse-differentiation-paper/
https://anonymous.4open.science/r/sparse-differentiation-paper/

Under review as submission to TMLR

dynamical system from data, Rackauckas et al. (2021) study the incorporation of mechanistic priors, which
in turn exhibit sparsity in the resulting Jacobian.

Table 2 measures the wall time of Jacobian sparsity detection depending on the dimensionality N of the
discretized Brusselator PDE. SCT outperforms the state of the art by one order of magnitude on large
problems and two orders of magnitude on small problems.

Problem Sparsity Sparsity detection1

N Inputs Outputs Zeros Colors2 Symbolics SCT3

6 72 72 91.67% 9 5.07 · 10−3 2.10 · 10−5 (241.5)
12 288 288 97.92% 10 2.12 · 10−2 8.85 · 10−5 (240.0)
24 1152 1152 99.48% 10 7.48 · 10−2 3.92 · 10−4 (190.8)
48 4608 4608 99.87% 10 3.08 · 10−1 1.96 · 10−3 (157.2)
96 18432 18432 99.97% 10 1.45 · 100 1.71 · 10−2 (84.5)
192 73728 73728 99.99% 10 7.19 · 100 2.44 · 10−1 (29.5)
1 Wall time in seconds.
2 Number of colors resulting from greedy column coloring.
3 In parentheses: Wall time ratio compared to Symbolics.jl’s sparsity detection (higher is
better).

Table 2: Performance comparison of Jacobian sparsity detection on the Brusselator PDE.

5.2 Jacobian computation

We now benchmark the full computation of dense and sparse Jacobians on the same Brusselator PDE. For
both AD and ASD, the forward-mode backend ForwardDiff.jl (Revels et al., 2016) is used to evaluate
JVPs. The wall time breakdown of Figure 2 shows that sparsity detection previously was a significant
performance bottleneck. For small to medium problems, sparsity detection using Symbolics.jl takes
up more wall time than the full AD Jacobian computation, which is no longer true for SCT. The same

0.000 0.002 0.004

ASD (SCT)
ASD (Sym.)

AD
N=6

0.000 0.005 0.010 0.015 0.020

ASD (SCT)
ASD (Sym.)

AD
N=12

0.00 0.02 0.04 0.06

ASD (SCT)
ASD (Sym.)

AD
N=24

0.0 0.1 0.2 0.3

ASD (SCT)
ASD (Sym.)

AD
N=48

0.0 0.5 1.0 1.5

ASD (SCT)
ASD (Sym.)

AD
N=96

Walltime [s]

Sparsity detection Memory allocation & coloring Jacobian-vector products

Figure 2: Performance decomposition of unprepared AD and ASD Jacobian computations on small
discretizations of the Brusselator PDE. Using Symbolics.jl (Sym.), sparsity detection is the

performance bottleneck of ASD

measurements give rise to the comparison in Figure 3. For large problems, prepared ASD using SCT

11

Under review as submission to TMLR

accelerates the computation of Jacobians by more than three orders of magnitude compared to classical AD.
More surprisingly, on all but the smallest Brusselator problem (N = 6), one-off unprepared ASD using SCT
also outperforms prepared AD. The performance of SCT therefore opens performance gains via one-off ASD
to more settings. Detailed benchmark timings are given in appendix F.2.

N
6 12 24 48 96 192

W
al

l
ti

m
e

[s
]

10−5.0

10−2.5

100.0 AD, prepared

ASD, prepared

ASD, unprepared using SCT

ASD, unprepared using Symbolics

Figure 3: Performance comparison of AD and ASD Jacobian computations on the Brusselator PDE.

6 Conclusion

ASD is an essential part of the scientific computing toolkit. While its core ideas have been known for decades,
its adoption in high-level ML frameworks is still lagging. We presented a refreshed formulation of sparsity
detection using operator overloading, and described an efficient software implementation which is already
used at scale. Our hope is that such advances can spark renewed interest in sparse differentiation in the
ML community and enable the practical use of Jacobian and Hessian matrices in domains where they were
previously considered too expensive to compute.

Still, there are numerous research avenues to pursue. On the theoretical side, sparsity detection could be
generalized to encompass various kinds of structures and symmetries, for instance block structure. This in
turn could lead to efficient decomposition techniques for large-scale problems in a variety of domains. On
the practical side, our operator overloading implementation only supports a limited amount of control flow
when computing global sparsity patterns, for which some amount of program transformation is needed. The
packages we developed were designed for CPUs, but deep learning applications will require GPU support and
allocation-free routines, leveraging hardware-specific primitives. Finally, we plan to explore interoperability
or adaptation for the Python language, which is the default choice in modern ML workflows.

References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK users’ guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 3 edition, 1999. ISBN 0-89871-447-8 (paperback).

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi: a software framework
for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1):1–36,
Mar. 2019. ISSN 1867-2957. doi: 10.1007/s12532-018-0139-4. URL https://doi.org/10.1007/
s12532-018-0139-4.

12

https://www.tensorflow.org/
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4

Under review as submission to TMLR

S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin, C. DeMarco, R. Diao, M. Ferris, S. Flis-
counakis, S. Greene, R. Huang, C. Josz, R. Korab, B. Lesieutre, J. Maeght, T. W. K. Mak, D. K.
Molzahn, T. J. Overbye, P. Panciatici, B. Park, J. Snodgrass, A. Tbaileh, P. V. Hentenryck, and R. Zim-
merman. The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms, Jan. 2021.
URL http://arxiv.org/abs/1908.02788.

W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Computer Science, 22
(3):317–330, Feb. 1983. ISSN 0304-3975. doi: 10.1016/0304-3975(83)90110-X. URL https://www.
sciencedirect.com/science/article/pii/030439758390110X.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic Differentiation in Machine
Learning: a Survey. Journal of Machine Learning Research, 18(153):1–43, 2018. ISSN 1533-7928. URL
http://jmlr.org/papers/v18/17-468.html.

M. Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo, July 2018. URL http://arxiv.
org/abs/1701.02434.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 59(1):65–98, Jan. 2017. ISSN 0036-1445, 1095-7200. doi: 10.1137/141000671. URL https:
//epubs.siam.org/doi/10.1137/141000671.

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR–Generating Derivative Codes
from Fortran Programs. Scientific Programming, 1(1):717832, 1992. ISSN 1875-919X. doi: 10.1155/1992/
717832. URL https://onlinelibrary.wiley.com/doi/abs/10.1155/1992/717832.

C. H. Bischof, P. M. Khademi, A. Buaricha, and C. Alan. Efficient computation of gradients and Jacobians
by dynamic exploitation of sparsity in automatic differentiation. Optimization Methods and Software, 7
(1):1–39, Jan. 1996. ISSN 1055-6788. doi: 10.1080/10556789608805642. URL https://doi.org/10.
1080/10556789608805642.

L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, and G. Henry. An updated set of basic linear algebra subprograms (BLAS). ACM
Transactions on Mathematical Software, 28(2):135–151, June 2002. ISSN 0098-3500. doi: 10.1145/567806.
567807.

M. Blondel and V. Roulet. The Elements of Differentiable Programming, July 2024. URL http://arxiv.
org/abs/2403.14606.

M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-Lopez, F. Pedregosa, and J.-P. Vert.
Efficient and Modular Implicit Differentiation. In Advances in Neural Information Processing Systems,
volume 35, pages 5230–5242, Dec. 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/jax.

M. Braun. sparseHessianFD: An R Package for Estimating Sparse Hessian Matrices. Journal of Statistical
Software, 82(10), 2017. ISSN 1548-7660. doi: 10.18637/jss.v082.i10. URL http://www.jstatsoft.
org/v82/i10/.

R. H. Byrd, J. Nocedal, and R. A. Waltz. Knitro: An Integrated Package for Nonlinear Optimization.
In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, pages 35–59. Springer US,
Boston, MA, 2006. ISBN 978-0-387-30065-8. doi: 10.1007/0-387-30065-1_4. URL https://doi.org/
10.1007/0-387-30065-1_4.

M. B. Cain, R. P. O’Neill, and A. Castillo. History of Optimal Power Flow and Formula-
tions. Technical report, 2012. URL https://www.ferc.gov/sites/default/files/2020-04/
acopf-1-history-formulation-testing.pdf.

13

http://arxiv.org/abs/1908.02788
https://www.sciencedirect.com/science/article/pii/030439758390110X
https://www.sciencedirect.com/science/article/pii/030439758390110X
http://jmlr.org/papers/v18/17-468.html
http://arxiv.org/abs/1701.02434
http://arxiv.org/abs/1701.02434
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://onlinelibrary.wiley.com/doi/abs/10.1155/1992/717832
https://doi.org/10.1080/10556789608805642
https://doi.org/10.1080/10556789608805642
http://arxiv.org/abs/2403.14606
http://arxiv.org/abs/2403.14606
https://proceedings.neurips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
http://github.com/google/jax
http://www.jstatsoft.org/v82/i10/
http://www.jstatsoft.org/v82/i10/
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1007/0-387-30065-1_4
https://www.ferc.gov/sites/default/files/2020-04/acopf-1-history-formulation-testing.pdf
https://www.ferc.gov/sites/default/files/2020-04/acopf-1-history-formulation-testing.pdf

Under review as submission to TMLR

J. Chen, H. Stoppels, H. Ranocha, and J. López. IterativeSolvers.jl: Iterative algorithms for solving linear
systems, eigensystems, and singular value problems. JuliaLinearAlgebra, 2013. URL https://github.
com/JuliaLinearAlgebra/IterativeSolvers.jl.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural Ordinary Dif-
ferential Equations. In Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
69386f6bb1dfed68692a24c8686939b9-Abstract.html.

C. Coffrin and O. Dowson. rosetta-opf: AC-OPF Implementations in Various NLP Modeling Frameworks.
advanced network science initiative, 2022. URL https://github.com/lanl-ansi/rosetta-opf.

J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient Descent on Neural Networks Typically
Occurs at the Edge of Stability. In International Conference on Learning Representations, Oct. 2020.
URL https://openreview.net/forum?id=jh-rTtvkGeM.

T. F. Coleman and A. Verma. ADMAT: An automatic differentiation toolbox for MATLAB. In Proceedings of
the SIAM Workshop on Object Oriented Methods for Inter-Operable Scientific and Engineering Computing,
SIAM, Philadelphia, PA, volume 2, 1998.

T. F. Coleman and A. Verma. ADMIT-1: automatic differentiation and MATLAB interface toolbox. ACM
Trans. Math. Softw., 26(1):150–175, Mar. 2000. ISSN 0098-3500. doi: 10.1145/347837.347879. URL
https://dl.acm.org/doi/10.1145/347837.347879.

A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the Estimation of Sparse Jacobian Matrices. IMA Journal
of Applied Mathematics, 13(1):117–119, Feb. 1974. ISSN 0272-4960. doi: 10.1093/imamat/13.1.117. URL
https://doi.org/10.1093/imamat/13.1.117.

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. How to compute Hessian-vector products? In The Third
Blogpost Track at ICLR 2024, Feb. 2024. URL https://openreview.net/forum?id=rTgjQtGP3O.

G. Dalle. Machine learning and combinatorial optimization algorithms, with applications to railway plan-
ning. PhD thesis, École des Ponts ParisTech, Dec. 2022. URL https://pastel.hal.science/
tel-04053322.

G. Dalle and A. Hill. DifferentiationInterface.jl. Zenodo, Mar. 2025. URL https://zenodo.org/
records/15061531.

G. Dalle and A. Montoison. SparseMatrixColorings.jl. Zenodo, Mar. 2025. URL https://zenodo.org/
records/14984424.

S. Danisch and J. Krumbiegel. Makie.jl: Flexible high-performance data visualization for Julia. Journal of
Open Source Software, 6(65):3349, Sept. 2021. ISSN 2475-9066. doi: 10.21105/joss.03349. URL https:
//joss.theoj.org/papers/10.21105/joss.03349.

T. Davis. DrTimothyAldenDavis/SuiteSparse, May 2024. URL https://github.com/
DrTimothyAldenDavis/SuiteSparse.

V. K. Dixit and C. Rackauckas. Optimization.jl: A Unified Optimization Package. Zenodo, Mar. 2023. URL
https://zenodo.org/records/7738525.

L. C. W. Dixon, Z. Maany, and M. Mohseninia. Automatic differentiation of large sparse systems.
Journal of Economic Dynamics and Control, 14(2):299–311, May 1990. ISSN 0165-1889. doi: 10.
1016/0165-1889(90)90023-A. URL https://www.sciencedirect.com/science/article/pii/
016518899090023A.

I. Dunning, J. Huchette, and M. Lubin. JuMP: A Modeling Language for Mathematical Optimization. SIAM
Review, 59(2):295–320, Jan. 2017. ISSN 0036-1445. doi: 10/gftshn. URL https://epubs.siam.org/
doi/abs/10.1137/15M1020575.

14

https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://github.com/lanl-ansi/rosetta-opf
https://openreview.net/forum?id=jh-rTtvkGeM
https://dl.acm.org/doi/10.1145/347837.347879
https://doi.org/10.1093/imamat/13.1.117
https://openreview.net/forum?id=rTgjQtGP3O
https://pastel.hal.science/tel-04053322
https://pastel.hal.science/tel-04053322
https://zenodo.org/records/15061531
https://zenodo.org/records/15061531
https://zenodo.org/records/14984424
https://zenodo.org/records/14984424
https://joss.theoj.org/papers/10.21105/joss.03349
https://joss.theoj.org/papers/10.21105/joss.03349
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://zenodo.org/records/7738525
https://www.sciencedirect.com/science/article/pii/016518899090023A
https://www.sciencedirect.com/science/article/pii/016518899090023A
https://epubs.siam.org/doi/abs/10.1137/15M1020575
https://epubs.siam.org/doi/abs/10.1137/15M1020575

Under review as submission to TMLR

J. A. Fike and J. J. Alonso. Automatic Differentiation Through the Use of Hyper-Dual Numbers for Second
Derivatives. In S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, editors, Recent Advances in
Algorithmic Differentiation, pages 163–173, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-30023-3.
doi: 10.1007/978-3-642-30023-3_15.

R. A. Fisher. Theory of Statistical Estimation. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 22(5):700–725, July 1925. ISSN 1469-8064, 0305-0041. doi:
10.1017/S0305004100009580. URL https://www.cambridge.org/core/journals/
mathematical-proceedings-of-the-cambridge-philosophical-society/article/
abs/theory-of-statistical-estimation/7A05FB68C83B36C0E91D42C76AB177D4.

S. A. Forth. An efficient overloaded implementation of forward mode automatic differentiation in MATLAB.
ACM Transactions on Mathematical Software, 32(2):195–222, June 2006. ISSN 0098-3500. doi: 10.1145/
1141885.1141888. URL https://dl.acm.org/doi/10.1145/1141885.1141888.

R. Fourer, D. M. Gay, and B. W. Kernighan. A Modeling Language for Mathematical Programming.
Management Science, 36(5):519–554, May 1990. ISSN 0025-1909. doi: 10.1287/mnsc.36.5.519. URL
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.36.5.519.

A. H. Gebremedhin, F. Manne, and A. Pothen. What Color Is Your Jacobian? Graph Coloring for Computing
Derivatives. SIAM Review, 47(4):629–705, Jan. 2005. ISSN 0036-1445. doi: 10/cmwds4. URL https:
//epubs.siam.org/doi/abs/10.1137/S0036144504444711.

A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. ColPack: Software for graph coloring
and related problems in scientific computing. ACM Transactions on Mathematical Software, 40(1):1:1–
1:31, Oct. 2013. ISSN 0098-3500. doi: 10.1145/2513109.2513110. URL https://dl.acm.org/doi/
10.1145/2513109.2513110.

U. Geitner, J. Utke, and A. Griewank. Automatic Computation of Sparse Jacobians by Applying
the Method of Newsam and Ramsdell. 1995. URL https://www.semanticscholar.org/
paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/
1ed218348fff39e9642d7b7ac38cf0dd66aea47b.

R. Giering and T. Kaminski. Automatic Sparsity Detection Implemented as a Source-to-Source Transfor-
mation. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors, Computational
Science – ICCS 2006, pages 591–598, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-34386-8. doi:
10.1007/11758549_81.

M. Girolami and B. Calderhead. Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods. Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–214, Mar. 2011. ISSN 1369-
7412. doi: 10.1111/j.1467-9868.2010.00765.x. URL https://doi.org/10.1111/j.1467-9868.
2010.00765.x.

S. Gowda, Y. Ma, V. Churavy, A. Edelman, and C. Rackauckas. Sparsity Programming: Automated Sparsity-
Aware Optimizations in Differentiable Programming. In Program Transformations for ML Workshop at
NeurIPS 2019, Sept. 2019. URL https://openreview.net/forum?id=rJlPdcY38B.

S. Gowda, Y. Ma, A. Cheli, M. Gwóźzdź, V. B. Shah, A. Edelman, and C. Rackauckas. High-performance
symbolic-numerics via multiple dispatch. ACM Commun. Comput. Algebra, 55(3):92–96, Jan. 2022. ISSN
1932-2232. doi: 10.1145/3511528.3511535. URL https://dl.acm.org/doi/10.1145/3511528.
3511535.

R. M. Gower and M. P. Mello. A new framework for the computation of Hessians. Optimization Methods
and Software, 27(2):251–273, Apr. 2012. ISSN 1055-6788. doi: 10.1080/10556788.2011.580098. URL
https://doi.org/10.1080/10556788.2011.580098.

R. M. Gower and M. P. Mello. Computing the sparsity pattern of Hessians using automatic differentiation.
ACM Transactions on Mathematical Software, 40(2):10:1–10:15, Mar. 2014. ISSN 0098-3500. doi: 10.
1145/2490254. URL https://dl.acm.org/doi/10.1145/2490254.

15

https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/theory-of-statistical-estimation/7A05FB68C83B36C0E91D42C76AB177D4
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/theory-of-statistical-estimation/7A05FB68C83B36C0E91D42C76AB177D4
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/theory-of-statistical-estimation/7A05FB68C83B36C0E91D42C76AB177D4
https://dl.acm.org/doi/10.1145/1141885.1141888
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.36.5.519
https://epubs.siam.org/doi/abs/10.1137/S0036144504444711
https://epubs.siam.org/doi/abs/10.1137/S0036144504444711
https://dl.acm.org/doi/10.1145/2513109.2513110
https://dl.acm.org/doi/10.1145/2513109.2513110
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://openreview.net/forum?id=rJlPdcY38B
https://dl.acm.org/doi/10.1145/3511528.3511535
https://dl.acm.org/doi/10.1145/3511528.3511535
https://doi.org/10.1080/10556788.2011.580098
https://dl.acm.org/doi/10.1145/2490254

Under review as submission to TMLR

A. Griewank and C. Mitev. Detecting Jacobian sparsity patterns by Bayesian probing. Mathematical
Programming, 93(1):1–25, June 2002. ISSN 1436-4646. doi: 10.1007/s101070100281. URL https:
//doi.org/10.1007/s101070100281.

A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markowitz rule. Technical
Report ANL/CP-75176; CONF-910189-4, Argonne National Lab., IL (United States), Dec. 1991. URL
https://www.osti.gov/biblio/10118065.

A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd ed edition, 2008. ISBN 978-0-89871-
659-7. URL https://epubs.siam.org/doi/book/10.1137/1.9780898717761.

A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: a package for the automatic differentiation
of algorithms written in C/C++. ACM Transactions on Mathematical Software, 22(2):131–167, June 1996.
ISSN 0098-3500. doi: 10.1145/229473.229474. URL https://dl.acm.org/doi/10.1145/229473.
229474.

F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui. Implicit graph neural networks. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in neural information processing
systems, volume 33, pages 11984–11995. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf.

M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research
of the National Bureau of Standards, 49(6):409, Dec. 1952. ISSN 0091-0635. doi: 10.6028/jres.049.044.
URL https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf.

J. Hückelheim, H. Menon, W. Moses, B. Christianson, P. Hovland, and L. Hascoët. A taxonomy of automatic
differentiation pitfalls. WIREs Data Mining and Knowledge Discovery, 14(6):e1555, 2024. ISSN 1942-4795.
doi: 10.1002/widm.1555. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.
1555.

M. Innes. Flux: Elegant machine learning with Julia. Journal of Open Source Software, 3(25):602, May 2018.
ISSN 2475-9066. doi: 10.21105/joss.00602. URL http://joss.theoj.org/papers/10.21105/
joss.00602.

M. Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs, Mar. 2019. URL http://arxiv.
org/abs/1810.07951.

M. Innes, E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal, and V. Shah.
Fashionable Modelling with Flux, Nov. 2018. URL http://arxiv.org/abs/1811.01457.

M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and W. Tebbutt. A Differentiable
Programming System to Bridge Machine Learning and Scientific Computing, July 2019. URL http:
//arxiv.org/abs/1907.07587.

JuliaDiff contributors. JuliaDiff/SparseDiffTools.jl, Oct. 2024. URL https://github.com/JuliaDiff/
SparseDiffTools.jl.

R. V. Kharche and S. A. Forth. Source Transformation for MATLAB Automatic Differentiation. In V. N.
Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors, Computational Science – ICCS
2006, pages 558–565, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-34386-8. doi: 10.1007/11758549_
77.

J. Z. Kolter, D. Duvenaud, and M. Johnson. Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models,
and Beyond, 2020. URL http://implicit-layers-tutorial.org/.

K. Kristensen, A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell. TMB: Automatic Differentiation and
Laplace Approximation. Journal of Statistical Software, 70:1–21, Apr. 2016. ISSN 1548-7660. doi: 10.
18637/jss.v070.i05. URL https://doi.org/10.18637/jss.v070.i05.

16

https://doi.org/10.1007/s101070100281
https://doi.org/10.1007/s101070100281
https://www.osti.gov/biblio/10118065
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://dl.acm.org/doi/10.1145/229473.229474
https://dl.acm.org/doi/10.1145/229473.229474
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1555
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1555
http://joss.theoj.org/papers/10.21105/joss.00602
http://joss.theoj.org/papers/10.21105/joss.00602
http://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1811.01457
http://arxiv.org/abs/1907.07587
http://arxiv.org/abs/1907.07587
https://github.com/JuliaDiff/SparseDiffTools.jl
https://github.com/JuliaDiff/SparseDiffTools.jl
http://implicit-layers-tutorial.org/
https://doi.org/10.18637/jss.v070.i05

Under review as submission to TMLR

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for Fortran
Usage. ACM Transactions on Mathematical Software, 5(3):308–323, Sept. 1979. ISSN 0098-3500. doi:
10.1145/355841.355847. URL https://dl.acm.org/doi/10.1145/355841.355847.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient BackProp. In G. Montavon, G. B. Orr,
and K.-R. Müller, editors, Neural Networks: Tricks of the Trade: Second Edition, pages 9–48. Springer,
Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_3. URL https:
//doi.org/10.1007/978-3-642-35289-8_3.

J. Lohoff and E. Neftci. Optimizing Automatic Differentiation with Deep Reinforcement Learning. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, Nov. 2024. URL https:
//openreview.net/forum?id=hVmi98a0ki.

W. Moses and V. Churavy. Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthe-
size Fast Gradients. In Advances in Neural Information Processing Systems, volume 33, pages 12472–
12485. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/9332c513ef44b682e9347822c2e457ac-Abstract.html.

W. S. Moses. Automated Derivative Sparsity via Dead Code Elimination, 2023. URL https://c.
wsmoses.com/presentations/weuroad23.pdf.

W. S. Moses, V. Churavy, L. Paehler, J. Hückelheim, S. H. K. Narayanan, M. Schanen, and J. Doerfert.
Reverse-mode automatic differentiation and optimization of GPU kernels via Enzyme. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21,
pages 1–16, New York, NY, USA, Nov. 2021. Association for Computing Machinery. ISBN 978-1-4503-
8442-1. doi: 10.1145/3458817.3476165. URL https://doi.org/10.1145/3458817.3476165.

P. Nobel. auto_diff: an automatic differentiation package for Python. In Proceedings of the 2020 Spring
Simulation Conference, SpringSim ’20, pages 1–12, San Diego, CA, USA, May 2020. Society for Computer
Simulation International. ISBN 978-1-7138-1288-3.

J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY, 2nd edition edition, July 2006.
ISBN 978-0-387-30303-1.

A. Pal, F. Holtorf, A. Larsson, T. Loman, Utkarsh, F. Schäefer, Q. Qu, A. Edelman, and C. Rackauckas.
NonlinearSolve.jl: High-Performance and Robust Solvers for Systems of Nonlinear Equations in Julia,
Mar. 2024. URL http://arxiv.org/abs/2403.16341.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

B. A. Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147–160, Jan. 1994.
ISSN 0899-7667. doi: 10.1162/neco.1994.6.1.147. URL https://ieeexplore.ieee.org/abstract/
document/6796137.

C. G. Petra, F. Qiang, M. Lubin, and J. Huchette. On efficient Hessian computation using the edge pushing al-
gorithm in Julia. Optimization Methods and Software, 33(4-6):1010–1029, Nov. 2018. ISSN 1055-6788. doi:
10.1080/10556788.2018.1480625. URL https://doi.org/10.1080/10556788.2018.1480625.

L. Piloto, S. Liguori, S. Madjiheurem, M. Zgubic, S. Lovett, H. Tomlinson, S. Elster, C. Apps, and S. With-
erspoon. CANOS: A Fast and Scalable Neural AC-OPF Solver Robust To N-1 Perturbations, Mar. 2024.
URL http://arxiv.org/abs/2403.17660.

17

https://dl.acm.org/doi/10.1145/355841.355847
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://openreview.net/forum?id=hVmi98a0ki
https://openreview.net/forum?id=hVmi98a0ki
https://proceedings.neurips.cc/paper/2020/hash/9332c513ef44b682e9347822c2e457ac-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9332c513ef44b682e9347822c2e457ac-Abstract.html
https://c.wsmoses.com/presentations/weuroad23.pdf
https://c.wsmoses.com/presentations/weuroad23.pdf
https://doi.org/10.1145/3458817.3476165
http://arxiv.org/abs/2403.16341
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://ieeexplore.ieee.org/abstract/document/6796137
https://ieeexplore.ieee.org/abstract/document/6796137
https://doi.org/10.1080/10556788.2018.1480625
http://arxiv.org/abs/2403.17660

Under review as submission to TMLR

M. J. D. Powell and Ph. L. Toint. On the Estimation of Sparse Hessian Matrices. SIAM Journal on
Numerical Analysis, 16(6):1060–1074, Dec. 1979. ISSN 0036-1429. doi: 10.1137/0716078. URL https:
//epubs.siam.org/doi/abs/10.1137/0716078.

I. Prigogine and R. Lefever. Symmetry Breaking Instabilities in Dissipative Systems. II. The Journal of
Chemical Physics, 48(4):1695–1700, Feb. 1968. ISSN 0021-9606. doi: 10.1063/1.1668896. URL https:
//doi.org/10.1063/1.1668896.

C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan, and
A. Edelman. Universal Differential Equations for Scientific Machine Learning, Nov. 2021. URL http:
//arxiv.org/abs/2001.04385.

J. Revels. ReverseDiff.jl: Reverse Mode Automatic Differentiation for Julia. JuliaDiff, 2016. URL https:
//github.com/JuliaDiff/ReverseDiff.jl.

J. Revels, M. Lubin, and T. Papamarkou. Forward-Mode Automatic Differentiation in Julia, July 2016.
URL http://arxiv.org/abs/1607.07892.

C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer New York, Aug. 2005. ISBN 978-0-
387-21239-5.

Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, July 1986. ISSN
0196-5204. doi: 10.1137/0907058. URL https://epubs.siam.org/doi/abs/10.1137/0907058.

M. Schubert. mfschubert/sparsejac, Sept. 2024. URL https://github.com/mfschubert/sparsejac.

S. Shin, F. Pacaud, and M. Anitescu. Accelerating Optimal Power Flow with GPUs: SIMD Abstraction
of Nonlinear Programs and Condensed-Space Interior-Point Methods, Feb. 2024. URL http://arxiv.
org/abs/2307.16830.

D. Simpson. Un garçon pas comme les autres (Bayes) - An unexpected detour into partially symbolic,
sparsity-expoiting autodiff; or Lord won’t you buy me a Laplace approximation, May 2024. URL https:
//dansblog.netlify.app/posts/2024-05-08-laplace/laplace.

D. E. Stewart. Numerical Analysis: A Graduate Course, volume 4 of CMS/CAIMS Books in Mathematics.
Springer International Publishing, Cham, 2022. ISBN 978-3-031-08120-0 978-3-031-08121-7. doi: 10.1007/
978-3-031-08121-7. URL https://link.springer.com/10.1007/978-3-031-08121-7.

J.-W. van de Meent, B. Paige, H. Yang, and F. Wood. An Introduction to Probabilistic Programming.
arXiv:1809.10756 [cs, stat], Oct. 2021. URL http://arxiv.org/abs/1809.10756.

A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, Mar. 2006. ISSN 1436-4646.
doi: 10.1007/s10107-004-0559-y. URL https://doi.org/10.1007/s10107-004-0559-y.

A. Walther. Computing sparse Hessians with automatic differentiation. ACM Transactions on Mathematical
Software, 34(1):3:1–3:15, Jan. 2008. ISSN 0098-3500. doi: 10.1145/1322436.1322439. URL https:
//dl.acm.org/doi/10.1145/1322436.1322439.

A. Walther. Getting Started with ADOL-C. DROPS-IDN/v2/document/10.4230/DagSemProc.09061.10,
2009. doi: 10.4230/DagSemProc.09061.10. URL https://drops.dagstuhl.de/entities/
document/10.4230/DagSemProc.09061.10.

A. Walther. On the Efficient Computation of Sparsity Patterns for Hessians. In S. Forth, P. Hovland,
E. Phipps, J. Utke, and A. Walther, editors, Recent Advances in Algorithmic Differentiation, pages 139–
149, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-30023-3. doi: 10.1007/978-3-642-30023-3_13.

18

https://epubs.siam.org/doi/abs/10.1137/0716078
https://epubs.siam.org/doi/abs/10.1137/0716078
https://doi.org/10.1063/1.1668896
https://doi.org/10.1063/1.1668896
http://arxiv.org/abs/2001.04385
http://arxiv.org/abs/2001.04385
https://github.com/JuliaDiff/ReverseDiff.jl
https://github.com/JuliaDiff/ReverseDiff.jl
http://arxiv.org/abs/1607.07892
https://epubs.siam.org/doi/abs/10.1137/0907058
https://github.com/mfschubert/sparsejac
http://arxiv.org/abs/2307.16830
http://arxiv.org/abs/2307.16830
https://dansblog.netlify.app/posts/2024-05-08-laplace/laplace
https://dansblog.netlify.app/posts/2024-05-08-laplace/laplace
https://link.springer.com/10.1007/978-3-031-08121-7
http://arxiv.org/abs/1809.10756
https://doi.org/10.1007/s10107-004-0559-y
https://dl.acm.org/doi/10.1145/1322436.1322439
https://dl.acm.org/doi/10.1145/1322436.1322439
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09061.10
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09061.10

Under review as submission to TMLR

M. Wang, A. Gebremedhin, and A. Pothen. Capitalizing on live variables: new algorithms for efficient
Hessian computation via automatic differentiation. Mathematical Programming Computation, 8(4):393–
433, Dec. 2016a. ISSN 1867-2957. doi: 10.1007/s12532-016-0100-3. URL https://doi.org/10.1007/
s12532-016-0100-3.

M. Wang, A. Pothen, and P. Hovland. Edge Pushing is Equivalent to Vertex Elimination for Computing
Hessians. In 2016 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing (CSC),
Proceedings, pages 102–111. Society for Industrial and Applied Mathematics, Jan. 2016b. doi: 10.1137/
1.9781611974690.ch11. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611974690.
ch11.

M. J. Weinstein and A. V. Rao. Algorithm 984: ADiGator, a Toolbox for the Algorithmic Differentiation
of Mathematical Functions in MATLAB Using Source Transformation via Operator Overloading. ACM
Transactions on Mathematical Software, 44(2):21:1–21:25, Aug. 2017. ISSN 0098-3500. doi: 10.1145/
3104990. URL https://dl.acm.org/doi/10.1145/3104990.

J. Willkomm, C. H. Bischof, and H. M. Bücker. A new user interface for ADiMat: toward accurate and
efficient derivatives of MATLAB programmes with ease of use. International Journal of Computational
Science and Engineering, 9(5-6):408–415, Jan. 2014. ISSN 1742-7185. doi: 10.1504/IJCSE.2014.064526.
URL https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2014.064526.

19

https://doi.org/10.1007/s12532-016-0100-3
https://doi.org/10.1007/s12532-016-0100-3
https://epubs.siam.org/doi/abs/10.1137/1.9781611974690.ch11
https://epubs.siam.org/doi/abs/10.1137/1.9781611974690.ch11
https://dl.acm.org/doi/10.1145/3104990
https://www.inderscienceonline.com/doi/abs/10.1504/IJCSE.2014.064526

Under review as submission to TMLR

A More applications

Probabilistic modeling makes frequent use of Hessian matrices. In frequentist statistics, the Fisher in-
formation matrix (Fisher, 1925) is defined as the expected Hessian of the negative log-likelihood: I(θ) =
−Ex∼p(·|θ)[∇2

θ log p(x|θ)]. Its inverse gives an estimate of the variance for asymptotically Gaussian estima-
tors. The Bayesian counterpart of this notion is Laplace approximation, whereby the posterior distribution
of an estimator is approximated with a Gaussian. The precision of that Gaussian distribution is taken as the
observed Fisher information. When the exact Hessian of the log-density is intractable to compute or invert,
diagonal approximations are a common workaround. As we witness a shift from simple models to full-fledged
probabilistic programs (van de Meent et al., 2021), AD becomes a key requirement to handle inscrutable
log-density functions. Moreover, Markov-Chain Monte-Carlo is a family of techniques that allow sampling
from high-dimensional, unnormalized densities (Robert and Casella, 2005). To better exploit the geometry
of a distribution, Hamiltonian Monte-Carlo (Betancourt, 2018) incorporates derivatives in the simulation,
and those derivatives can be computed with AD. Its Riemannian extension (Girolami and Calderhead, 2011)
gives a central role to the Fisher information matrix when defining the metric tensor.

B ASD implementations in high-level programming languages

Among scientific computing languages, ASD has percolated most prominently into the MATLAB ecosystem,
but the closed-source nature of the language hinders adoption in ML communities. As for Python and R,
their ASD libraries are currently less developed than their Julia counterparts.

MATLAB. The ADMIT package (Coleman and Verma, 2000) relies on an external (C or MATLAB) AD
tool to compute sparse Jacobians and Hessians, augmenting it with coloring and compression. However, the
chosen AD tool must also be able to detect Jacobian and Hessian sparsity patterns, as is the case for ADMAT
(Coleman and Verma, 1998) and ADOL-C (Griewank et al., 1996). ADiMAT (Willkomm et al., 2014) has
similar sparse functionality but requires user input for the sparsity pattern. The MAD (Forth, 2006) library
offers two options for sparse Jacobians and Hessians: either coloring and compression, or direct use of sparse
derivative storage inside elementary operations. MSAD (Kharche and Forth, 2006) enhances MAD by replacing
operator overloading with source transformation. Finally, ADiGator (Weinstein and Rao, 2017) moves as
much complexity as possible to compile time, in order to lessen the runtime impact of ASD.

Python. The main AD frameworks in Python are TensorFlow (Abadi et al., 2015), PyTorch (Paszke
et al., 2019) and JAX (Bradbury et al., 2018). We are not aware of any ASD libraries for Tensorflow
or PyTorch. In JAX, we mostly found sparsejac (Schubert, 2024), which is limited to Jacobians and
does not support sparsity detection. A blog post by Simpson (2024) describes potential avenues for sparsity
detection in JAX, but they are not fully implemented. The Graphax package (Lohoff and Neftci, 2024)
implements the cross-country elimination technique described in subsection 2.4. Since it can exploit sparsity
in Jacobian computations, it could potentially be used as an alternative to ASD when vectorized code is
involved. Finally, the library auto_diff (Nobel, 2020) computes sparse Jacobians of plain NumPy code.

R. Our search for ASD in R turned up two packages: sparseHessianFD Braun (2017), which asks the
user to provide a gradient, and TMB (Kristensen et al., 2016), which is focused on one statistical application
(Laplace approximation) and requires some of the code to be written in C++.

Julia. The state of the art for ASD used to involve a combination of Symbolics.jl (Gowda et al.,
2019; 2022) with SparseDiffTools.jl (JuliaDiff contributors, 2024). It was limited to a couple of
AD backends, not optimized to support Hessian matrices, and (as our experiments show) rather slow for
sparsity detection. As a result, the ecosystem is currently switching to a new, more modular pipeline based
on DifferentiationInterface.jl (Dalle and Hill, 2025) and SparseMatrixColorings.jl (Dalle
and Montoison, 2025).

Remark 3. During preparation of this paper, we became aware of ongoing work around Spadina (Moses,
2023), which relies on dead code removal during compilation to compute only nonzero matrix entries. It is
planned to interface with Enzyme (Moses and Churavy, 2020; Moses et al., 2021) and JAX.

20

Under review as submission to TMLR

C Hessian tracing

Here we extend the reasoning of section 3 to second-order cross-derivatives.

C.1 Principle

Let f : Rn → R be a vector-to-scalar function, and x ∈ Rn. This time, we want the sparsity pattern of the
Hessian matrix ∇2f(x) ∈ Rn×n. Extending what we did for gradients, we define a second-order tracer type
which contains a primal value y(x) ∈ R, its gradient sparsity pattern 1[∇y(x)] ∈ {0, 1}n and its Hessian
sparsity pattern 1[∇2y(x)] ∈ {0, 1}n×n. Again, the Hessian in question is taken with respect to the input x,
and we will replace every intermediate scalar quantity in F with a tracer. We start by turning every xj into
(xj , ej , 0) (where the third term is the initial empty Hessian sparsity pattern), and at the end we recover
(F (x), 1[∇F (x)], 1[∇2F (x)]). This time, we need to describe how Hessian sparsity patterns propagate.
Remark 4. Our second-order tracer is related to hyperdual numbers, which can be found in second-order
forward-mode AD (Fike and Alonso, 2012). More precisely, it describes the sparsity pattern of a batched
hyperdual number, which could be used to implement second-order batched forward-mode AD. One can also
see it as the binary version of the sparse triplet in Dixon et al. (1990).

C.2 Second-order propagation rules

We reuse the same framework as for Jacobian tracing in subsection 3.2, but this time we go one step further.
Differentiating Equation 1 once more with respect to xi gives us:

∂2
ijγ = ∂i∂jγ = dxi

[∂1φ · ∂jα] + dxi
[∂2φ · ∂jβ]

Now we apply the product rule:

∂2
ijγ = [dxi

∂1φ · ∂jα + ∂1φ · ∂i∂jα] + [dxi
∂2φ · ∂jβ + ∂2φ · ∂i∂jβ]

We recognize second-order derivatives in the second term of each bracket:

∂2
ijγ =

[
dxi

(∂1φ) · ∂jα + ∂1φ · ∂2
ijα

]
+

[
dxi

(∂2φ) · ∂jβ + ∂2φ · ∂2
ijβ

]
(3)

For the first term of each bracket, we can once again apply Equation 1 but with the differentiated operators
∂1φ and ∂2φ instead of φ, and with the total derivative dxi

instead of dxj
:

dxi (∂1φ) = ∂1 (∂1φ) · ∂iα + ∂2 (∂1φ) · ∂iβ

= ∂2
1φ · ∂iα + ∂2

12φ · ∂iβ

dxi
(∂2φ) = ∂1 (∂2φ) · ∂iα + ∂2 (∂2φ) · ∂iβ

= ∂2
12φ · ∂iα + ∂2

2φ · ∂iβ

Plugging these into Equation 3, we get:

∂2
ijγ =

[(
∂2

1φ · ∂iα + ∂2
12φ · ∂iβ

)
· ∂jα + ∂1φ · ∂2

ijα
]

+
[(

∂2
12φ · ∂iα + ∂2

2φ · ∂iβ
)

· ∂jβ + ∂2φ · ∂2
ijβ

]
And sorting by the operator derivatives involved, we conclude:

∂2
ijγ = ∂1φ · ∂2

ijα + ∂2φ · ∂2
ijβ (first derivatives)

+ ∂2
1φ · ∂iα · ∂jα + ∂2

2φ · ∂iβ · ∂jβ (second derivatives)
+ ∂2

12φ · ∂iα · ∂jβ + ∂2
12φ · ∂iβ · ∂jα (cross derivatives)

Bringing the indices together with vector and matrix notation shows us:

∇2γ = ∂1φ · ∇2α + ∂2φ · ∇2β

+ ∂2
1φ · (∇α)(∇α)⊤ + ∂2

2φ · (∇β)(∇β)⊤

+ ∂2
12φ · (∇α)(∇β)⊤ + ∂2

12φ · (∇β)(∇α)⊤

21

Under review as submission to TMLR

And once again, the sparsity pattern emerges, using ∨ for elementwise OR between two matrices. Like before,
we use ≤ to emphasize the fact that the resulting sparsity patterns are overestimates, which may be too
conservative.

1[∇2γ] ≤

∣∣∣∣∣∣
1[∂1φ] · 1[∇2α] ∨ 1[∂2φ] · 1[∇2β]

∨ 1[∂2
1φ] · 1[(∇α)(∇α)⊤] ∨ 1[∂2

2φ] · 1[(∇β)(∇β)⊤]
∨ 1[∂2

12φ] · 1[(∇α)(∇β)⊤] ∨ 1[∂2
12φ] · 1[(∇β)(∇α)⊤]

Let us generalize ∨ to also represent the outer product OR between two vectors, so that 1[ab⊤] = 1[a]∨1[b]⊤.
This gives our final expression:

1[∇2γ] ≤

∣∣∣∣∣∣
1[∂1φ] · 1[∇2α] ∨ 1[∂2φ] · 1[∇2β]

∨ 1[∂2
1φ] · (1[∇α] ∨ 1[∇α]⊤) ∨ 1[∂2

2φ] · (1[∇β] ∨ 1[∇β]⊤)
∨ 1[∂2

12φ] · (1[∇α] ∨ 1[∇β]⊤) ∨ 1[∂2
12φ] · (1[∇β] ∨ 1[∇α]⊤)

(4)

As we can see, the propagation of Hessian sparsity patterns through the operator φ only depends on five
values:

1[∂1φ], 1[∂2φ], 1[∂2
1φ], 1[∂2

2φ] and 1[∂2
12φ]

These binary values tell us whether the operator φ locally depends on each of its arguments at the first and
second order.

Thanks to operator overloading at the scalar level, if the control flow reaches a dead end (a value which is not
reused for the function output), the corresponding dependencies will not appear in the computed sparsity
pattern. This contrasts with the method of (Walther, 2008), where all intermediate values contribute to the
final result, leading to potential overestimation of the Hessian sparsity pattern.

C.3 Second-order operator classification

To implement Equation 4, we need to refine the classification from Table 1 by considering second derivatives.
Once again, the distinction between local and global sparsity plays a key role. Some examples are given in
Table 3.

Local Global
Operator φ(α, β) 1[∂2

1φ] 1[∂2
2φ] 1[∂2

12φ] 1[∂2
1φ] 1[∂2

2φ] 1[∂2
12φ]

exp, log 1 – – 1 – –
+, -, max, min 0 0 0 0 0 0

* 0 0 1 a.e. 0 0 1
/ 0 1 a.e. 1 a.e. 0 1 1

Table 3: Second-order classification of operators
Unary operators have no second argument. “a.e.” means “almost everywhere” for the Lebesgue measure

D Tensor-level overload example

Using the standard matrix multiplication algorithm, propagating tracers through the matrix multiplication
C = AB with A ∈ Rn×p and B ∈ Rp×m requires n · m · p multiplications and n · m · (p − 1) additions, since
for all n · m entries Ci,j ,

Ci,j =
p∑

k=1
Ai,kBk,j . (5)

Applying the first-order propagation rule from Equation 2 to the scalar multiplication operator

γ(x) = φ(x1, x2) = x1x2 ,

22

Under review as submission to TMLR

we obtain the global propagation rule

1[∇γ] = 1[∂1φ] · 1[∇x1] ∨ 1[∂2φ] · 1[∇x2] = 1[∇x1] ∨ 1[∇x2] .

An identical propagation rule can also be derived for addition. Inserting into Equation 5, we obtain

1[∇Ci,j] =
p∨

k=1
1[∇Ai,k] ∨ 1[∇Bk,j] ,

which, if naively implemented, requires a total of n · m · (2p − 1) elementwise OR operations to propagate
tracers through the entire matrix multiplication. Rewriting this as the equivalent

1[∇Ci,j] =
p∨

k=1
1[∇Ai,k]︸ ︷︷ ︸

=:1[∇Āi]

∨
p∨

k=1
1[∇Bk,j]︸ ︷︷ ︸

=:1[∇B̄j]

reveals that we can instead first compute intermediate quantities 1[∇Āi] and 1[∇B̄j] by taking n · (p − 1)
elementwise OR operations across rows of A and m · (p−1) operations across columns of B respectively. The
total amount of operations is therefore reduced to (n + m)(p − 1) + n · m, leading to a significant increase in
performance.

E Code demonstration

We now showcase the API of the ASD pipeline used in our experiments section 5.

E.1 Sparsity detection

To demonstrate the generality of SCT’s tracer-based approach to sparsity detection, we compute the global
Jacobian sparsity pattern of a convolutional layer provided by the deep learning framework Flux.jl (Innes
et al., 2018; Innes, 2018).� �

using SparseConnectivityTracer, Flux # import required packages

x = randn(Float32, 10, 10, 3, 1) # create input tensor
layer = Conv((5, 5), 3 => 1) # create convolutional layer

detector = TracerSparsityDetector() # specify global sparsity pattern
jacobian_sparsity(layer, x, detector) # compute pattern� �

Listing 1: Detecting the Jacobian sparsity pattern of a convolutional layer using
SparseConnectivityTracer.jl

The full code is shown in Listing 1. We import the two required packages and sample a random input tensor
x in the size of a 10 × 10 image with 3 color channels and a batch size of 1. We then create a convolutional
layer Conv with a kernel of size 5 × 5, mapping the 3 input channels to a single output channel. To
compute global sparsity patterns, TracerSparsityDetector is chosen10. The Jacobian sparsity pattern
is then computed by calling the jacobian_sparsity function. Note that SCT doesn’t implement custom
overloads for convolutional layers. Instead, Flux.jl’s generic implementation of a convolution falls back
to elementary operators like addition and multiplication, which are overloaded on SCT’s tracer types. This
is enabled by Julia’s multiple dispatch paradigm and doesn’t require writing any additional code.

The resulting sparsity pattern is shown in Figure 4a, with colors resulting from subsequent greedy column
coloring. The banded structure of the matrix results from the size of the convolutional kernel as well as the
number of input channels. Figure 4c shows the sparsity pattern that results from increasing the batch size

10For local sparsity detection, TracerLocalSparsityDetector is used instead of TracerSparsityDetector.

23

Under review as submission to TMLR

from 1 to 2. Since the convolutions of the two inputs in the batch are parallel and separable computations,
the resulting sparsity pattern is a block diagonal matrix. Since this is the case for all separable parallel
computations, sparsity detection can be used as a tool to debug the automatic parallelization of computer
programs. Figure 4d additionally increases the number of output channels from 1 to 2. Note that while the
size of the Jacobian sparsity pattern increases across all three figures, the number of of colors stays constant.

E.2 Computing Jacobians with AD and ASD

Listings 2 and 3 both show the computation of the Jacobian of a convolutional layer from Flux.jl, the
former using AD, the latter using ASD. Since ASD is fully automatic, the only difference in code between
the two computations lies in the package imports and the specification of the backend used to call to the
jacobian function. Possible choices include ForwardDiff.jl (Revels et al., 2016), ReverseDiff.jl
(Revels, 2016), Zygote.jl (Innes, 2019; Innes et al., 2019) and Enzyme.jl (Moses and Churavy, 2020;
Moses et al., 2021).� �

Import required packages
using DifferentiationInterface # common interface to AD backends
using ForwardDiff # forward-mode AD backend
using Flux # deep learning framework

Create input tensor and convolutional layer
x = randn(Float32, 10, 10, 3, 1)
layer = Conv((5, 5), 3 => 1)

Specify AD backend
ad_backend = AutoForwardDiff()

Compute Jacobian
jacobian(layer, ad_backend, x)� �

Listing 2: AD computation of the Jacobian of a convolutional layer using
DifferentiationInterface.jl

� �
Import required packages
using SparseConnectivityTracer # sparsity detection
using SparseMatrixColorings # sparsity pattern coloring
using DifferentiationInterface # common interface to AD backends
using ForwardDiff # forward-mode AD backend
using Flux # deep learning framework

Create input tensor and convolutional layer
x = randn(Float32, 10, 10, 3, 1)
layer = Conv((5, 5), 3 => 1)

Specify ASD backend
asd_backend = AutoSparse(

AutoForwardDiff();
sparsity_detector=TracerSparsityDetector(), # from SparseConnectivityTracer
coloring_algorithm=GreedyColoringAlgorithm(), # from SparseMatrixColorings

)

Compute Jacobian
jacobian(layer, asd_backend, x)� �
Listing 3: ASD computation of the Jacobian of a convolutional layer using

DifferentiationInterface.jl, SparseConnectivityTracer.jl and
SparseMatrixColorings.jl

24

Under review as submission to TMLR

(a) Global sparsity pattern of Conv((5, 5), 3 => 1) using batch size 1

(b) Local sparsity pattern of Conv((5, 5), 3 => 1) using batch size 1

(c) Global sparsity pattern of Conv((5, 5), 3 => 1) using batch size 2

(d) Global sparsity pattern of Conv((5, 5), 3 => 2) using batch size 2

Figure 4: Jacobian sparsity patterns of small convolutional layers from Flux.jl applied to a 10 × 10
image with three color channels. Squares correspond to non-zero entries in the Jacobian, with colors

resulting from greedy column coloring.

25

Under review as submission to TMLR

F More Jacobian experiments: Brusselator

F.1 Sparsity detection

In Figure 5, we display the colored sparsity patterns of the Brusselator PDE (see section 5) for various
discretization levels. Writing explicit formulas for this kind of intricate structure is fairly tiresome and
subject to human error, which justifies automated sparsity detection approaches.

(a) N = 3 (b) N = 4

(c) N = 5 (d) N = 6

Figure 5: Jacobian sparsity patterns of the discretized Brusselator PDE of size N × N × 2. Squares
correspond to non-zero entries in the Jacobian, with colors resulting from greedy column coloring.

26

Under review as submission to TMLR

F.2 Jacobian computation and linear solves

In Table 4, we present two sets of results:

1. A comparison between AD and ASD for Jacobian computation, already discussed in section 5.

2. A comparison between various methods for solving a Jacobian linear system, which we now focus
on. Solving linear systems involving Jacobian matrices is typically useful as part of a Newton root-
finding step. This can happen within a larger iteration, like a backward Euler method for differential
equations.

We distinguish between three different techniques for the Newton step. First, one needs to choose between
direct solvers (which factorize the matrix) and iterative solvers. Second, if one picks an iterative solver,
there is still a choice between precomputing the matrix or using the lazy JVP operator. Our specific
implementation uses Julia’s standard library SparseArrays.jl for the direct solve, which in turn relies
on SuiteSparse. Meanwhile, the iterative solver is the default recommendation BiCGStab(l) from
IterativeSolvers.jl (Chen et al., 2013). In the rightmost part of Table 4, we observe that the lazy
version wins for small instances, but then the direct solver is actually faster for large enough matrices.

Problem Jacobian computation1 Newton step1

N AD
(prepared)

ASD
(prepared)

2 ASD
(unprepared)

2 JVP
(iterative)

Jacobian
(iterative)

Jacobian
(direct)

6 1.64 · 10−5 1.97 · 10−6 (8.3) 3.36 · 10−5 (0.5) 2.07 · 10−5 2.19 · 10−5 4.52 · 10−5

12 2.44 · 10−4 8.67 · 10−6 (28.1) 1.70 · 10−4 (1.4) 1.34 · 10−4 1.61 · 10−4 2.42 · 10−4

24 4.02 · 10−3 3.43 · 10−5 (117.2) 1.31 · 10−3 (3.1) 1.04 · 10−3 1.34 · 10−3 1.24 · 10−3

48 7.60 · 10−2 1.68 · 10−4 (451.4) 1.70 · 10−2 (4.5) 8.34 · 10−3 1.17 · 10−2 8.98 · 10−3

96 1.35 · 100 6.68 · 10−4 (2017.2) 2.16 · 10−1 (6.2) 7.56 · 10−2 1.11 · 10−1 4.07 · 10−2

192 2.25 · 101 3.09 · 10−3 (7293.5) 4.62 · 100 (4.9) 1.05 · 100 1.07 · 100 2.30 · 10−1

1 Wall time in seconds.
2 In parentheses: Wall time ratio compared to prepared AD (higher is better).

Table 4: Performance comparison of Jacobian computation & linear solves on the Brusselator PDE.

While this behavior might seem surprising, it is easily explained by the principles underlying ASD and
iterative solvers. Assuming that the function at hand is very expensive to compute, pure linear-algebraic
manipulations will be much cheaper in comparison, even sophisticated ones like SuiteSparse’s linear solve.
Thus, it all comes down to how many JVPs need to be performed. Iterative solvers require one JVP per
iteration, so the total complexity is dictated by the precision requirement and the conditioning number of
the Jacobian. Meanwhile, materializing a Jacobian with ASD requires one JVP per distinct color, so the
total complexity is dictated by the sparsity pattern only. Thus, in cases where high precision is required, the
matrix is ill-conditioned and the coloring number is low, ASD with a direct solver can prevail over its lazy
iterative counterpart.

G Implicit differentiation experiments: GNNs

As shown in subsection F.2, ASD unlocks the use of direct linear solvers instead of iterative ones. Among
other applications, this can speed up differentiation of implicitly-defined neural network layers. We demon-
strate it here with implicit Graph Neural Networks (GNNs), as introduced by Gu et al. (2020).

Consider a graph A represented by its adjacency matrix, and a matrix of vertex features U . To compute
vertex embeddings and perform predictions, standard GNNs apply the following update a fixed number of
times:

X(t+1) = ϕ(W (t)X(t)A + Ω(t)U).

27

Under review as submission to TMLR

Here, ϕ is a nonlinear activation, while W (t) and Ω(t) denote layer-specific weights. Conversely, an implicit
GNN layer solves the fixed-point equation

X = ϕ(W XA + ΩU)

using an unbounded number of iterations. Instead of backpropagating gradients through these iterations,
which is very costly, Gu et al. (2020) suggest to use implicit differentiation for computing ∂W X and ∂ΩX.
They derive an efficient formula to solve the linear system inside the implicit function theorem, but in general
one could also use generic iterative or direct solvers. For direct solvers, leveraging sparsity is paramount even
in moderate dimensions, because most graphs have sparse adjacency structures. We implement and compare
both variants using the package ImplicitDifferentiation.jl (Dalle, 2022). This library allows the
use of iterative solvers (based on JVPs or VJPs) as well as direct solvers (based on dense or sparse matrices)
in the linear system of equations given by the implicit function theorem.

Our test case is a simplified versions of the chains dataset (Gu et al., 2020, Appendix E.1). We perform
node classification on a chain of l = 10 nodes with 100-dimensional features, where only the first feature of
the first node of the chain carries meaningful information (0 or 1 depending on the class to predict). The
architecture is an implicit GNN with 16 hidden neurons and ReLU activation, followed by dropout and a
linear prediction layer with cross-entropy loss. For the sake of simplicity, some implementation details differ
from Gu et al. (2020). The most important ones are listed below, we refer the reader to our experimental
code for the rest:

• We added some small noise to the 99 non-informative features, whereas they were uniformly zero in
the original paper.

• We replaced the orthogonal projection onto the ℓ1 ball with a simple scaling of the weights matrix
W based on the spectral radius of A. This also guarantees that the fixed-point iteration won’t
diverge.

• We build the training set using one positive and one negative chain, instead of drawing and masking
nodes at random from several chains.

We allow ourselves these approximations because our goal is not to compare accuracy values with the initial
experiment. Instead, we seek to measure training times for two variants of implicit differentiation on a
simple but representative toy example. The results are presented on Figure 6, where each dot corresponds
to one training epoch. As we can see, the orange and blue curves follow nearly identical trajectories, with
the exact same sequence of jumps and drops. This proves that for our setting, the direct method yields the
same training results as the iterative one, which is not surprising when the linear system is non-degenerate.
However, the orange curve is nearly two times faster in terms of time per epoch. Even though it starts with
a slight delay (due to the initial sparsity detection), the direct method based on sparse Jacobian matrices
quickly catches up with and overtakes the iterative method based on VJPs. Thus, sparse Jacobians yield a
sizeable training speedup.

In this specific instance, the sparsity pattern would have been straightforward to guess manually: it is a
block version of the chain graph’s adjacency matrix. However, realistic GNN architectures are much more
convoluted: they may involve various feature channels, skip connections, graph rewiring, etc. With ASD,
these complications are no longer a hurdle to the user, who can freely compute sparse Jacobians whenever
implicit differentiation benefits from them.

H Hessian experiments: ACOPF

H.1 Sparsity detection

At the core of power systems planning and power markets lies a nonlinear constrained optimization problem
called the alternating current optimal power flow (ACOPF) problem. As of today, the full ACOPF remains
unsolved. While approximate solution techniques exist, they result in unnecessary emissions and spending,

28

Under review as submission to TMLR

Figure 6: Training an implicit GNN with implicit differentiation, using either iterative solves (with AD) or
direct linear solves (with ASD)

with potential annual savings from an optimal solution estimated in the tens of billions of dollars (Cain et al.,
2012). The problem has also attracted the interest of the ML community with recent developments in neural
ACOPF solvers (Piloto et al., 2024). To validate algorithms for the OPF problem, a suite of benchmarks
called Power Grid Lib (PGLib) has been developed by Babaeinejadsarookolaee et al. (2021), which can be
run via the rosetta-opf (Coffrin and Dowson, 2022) implementation of the ACOPF.

We benchmark the sparsity detection of Symbolics.jl and SCT on the Hessian of the Lagrangian of several
PGLib optimization problems. The results are summarized in Table 5. SCT outperforms Symbolics.jl
on every problem, regardless of size and sparsity.

H.2 Hessian computation

We now benchmark the computation of dense and sparse Hessians for the Lagrangian of several PGLib
optimization problems. Our methodology with respect to prepared and unprepared computations mirrors
that used in subsection 5.2. In both AD and ASD benchmarks, ForwardDiff.jl is used over the reverse-
mode backend ReverseDiff.jl to evaluate HVPs.

The results are summarized in Table 6. For large problems, prepared ASD provides an increase in perfor-
mance of three orders of magnitude over AD. Even one-off unprepared ASD provides performance benefits
over AD in all PGLib cases. Once again, performance gains of one-off ASD on small problems are largely due
to the performance of SCT: timings of the 3_lmbd problem in Table 6 reveal that just the sparsity detection
of Symbolics.jl alone was previously less performant than the full computation of the Hessian with AD.

29

Under review as submission to TMLR

Problem Sparsity Sparsity detection1

Name Inputs Zeros Colors2 Symbolics SCT3

3_lmbd 24 91.15% 6 1.29 · 10−3 5.59 · 10−5 (23.1)
5_pjm 44 94.99% 8 2.49 · 10−3 1.19 · 10−4 (20.9)
14_ieee 118 97.84% 10 9.02 · 10−3 5.19 · 10−4 (17.4)
24_ieee_rts 266 99.22% 12 1.92 · 10−2 1.50 · 10−3 (12.8)
30_as 236 98.89% 12 2.04 · 10−2 1.60 · 10−3 (12.7)
30_ieee 236 98.89% 12 2.03 · 10−2 1.60 · 10−3 (12.7)
39_epri 282 99.10% 10 2.45 · 10−2 2.10 · 10−3 (11.7)
57_ieee 448 99.41% 14 4.68 · 10−2 4.91 · 10−3 (9.5)
60_c 518 99.56% 12 5.15 · 10−2 5.76 · 10−3 (8.9)
73_ieee_rts 824 99.74% 12 9.84 · 10−2 1.09 · 10−2 (9.0)
89_pegase 1042 99.74% 26 1.80 · 10−1 2.20 · 10−2 (8.2)
118_ieee 1088 99.77% 12 1.57 · 10−1 2.11 · 10−2 (7.5)
162_ieee_dtc 1484 99.82% 16 2.99 · 10−1 3.33 · 10−2 (9.0)
179_goc 1468 99.83% 14 2.59 · 10−1 3.09 · 10−2 (8.4)
197_snem 1608 99.85% 14 3.02 · 10−1 3.57 · 10−2 (8.5)
200_activ 1456 99.82% 12 2.59 · 10−1 2.92 · 10−2 (8.9)
240_pserc 2558 99.91% 16 6.72 · 10−1 7.32 · 10−2 (9.2)
300_ieee 2382 99.89% 14 6.20 · 10−1 6.95 · 10−2 (8.9)
500_goc 4254 99.94% 14 1.81 · 100 1.40 · 10−1 (12.9)
588_sdet 4110 99.94% 14 1.71 · 100 1.40 · 10−1 (12.2)
793_goc 5432 99.95% 14 2.96 · 100 2.65 · 10−1 (11.2)
1354_pegase 11192 99.98% 18 1.58 · 101 4.14 · 10−1 (38.1)
1803_snem 15246 99.98% 16 3.02 · 101 7.17 · 10−1 (42.1)
1888_rte 14480 99.98% 18 2.72 · 101 6.53 · 10−1 (41.7)
1951_rte 15018 99.98% 20 3.10 · 101 6.50 · 10−1 (47.7)
2000_goc 19008 99.99% 18 6.55 · 101 1.10 · 100 (59.5)
2312_goc 17128 99.98% 16 4.43 · 101 8.69 · 10−1 (51.0)
2383wp_k 17004 99.98% 16 4.39 · 101 8.48 · 10−1 (51.7)
2736sp_k 19088 99.99% 14 6.31 · 101 1.02 · 100 (62.1)
2737sop_k 18988 99.99% 16 5.62 · 101 1.02 · 100 (55.1)
2742_goc 24540 99.99% 14 1.37 · 102 1.11 · 100 (122.8)
2746wop_k 19582 99.99% 16 6.61 · 101 1.06 · 100 (62.5)
2746wp_k 19520 99.99% 14 6.35 · 101 1.04 · 100 (60.9)
2848_rte 21822 99.99% 20 8.57 · 101 1.23 · 100 (69.5)
2853_sdet 23028 99.99% 26 1.04 · 102 8.57 · 10−1 (121.2)
2868_rte 22090 99.99% 20 1.10 · 102 1.27 · 100 (86.7)
2869_pegase 25086 99.99% 28 1.44 · 102 1.06 · 100 (136.2)
3012wp_k 21082 99.99% 14 8.36 · 101 1.22 · 100 (68.4)
3022_goc 23238 99.99% 18 1.45 · 102 9.83 · 10−1 (147.8)
3120sp_k 21608 99.99% 18 9.46 · 101 1.31 · 100 (72.1)
3375wp_k 24350 99.99% 18 1.27 · 102 9.82 · 10−1 (128.9)
1 Wall time in seconds.
2 Number of colors resulting from greedy symmetric coloring.
3 In parentheses: Wall time ratio compared to Symbolics.jl’s sparsity detection (higher is
better).

Table 5: Performance comparison of Hessian sparsity detection on the Lagrangian of PGLib optimization
problems.

30

Under review as submission to TMLR

Problem Sparsity Hessian computation1

Name Inputs Zeros Colors2 AD (prepared) ASD (prepared)3 ASD (unprepared)3

3_lmbd 24 91.15% 6 1.82 · 10−4 8.29 · 10−5 (2.2) 1.45 · 10−4 (1.3)
5_pjm 44 94.99% 8 6.33 · 10−4 1.71 · 10−4 (3.7) 3.03 · 10−4 (2.1)
14_ieee 118 97.84% 10 5.38 · 10−3 4.84 · 10−4 (11.1) 1.12 · 10−3 (4.8)
24_ieee_rts 266 99.22% 12 2.56 · 10−2 1.04 · 10−3 (24.7) 2.74 · 10−3 (9.3)
30_as 236 98.89% 12 2.39 · 10−2 1.10 · 10−3 (21.8) 2.84 · 10−3 (8.4)
30_ieee 236 98.89% 12 2.37 · 10−2 1.09 · 10−3 (21.6) 2.87 · 10−3 (8.3)
39_epri 282 99.10% 10 3.28 · 10−2 1.21 · 10−3 (27.1) 3.43 · 10−3 (9.6)
57_ieee 448 99.41% 14 8.80 · 10−2 3.96 · 10−3 (22.2) 9.23 · 10−3 (9.5)
60_c 518 99.56% 12 1.15 · 10−1 2.36 · 10−3 (48.6) 8.61 · 10−3 (13.3)
73_ieee_rts 824 99.74% 12 2.75 · 10−1 3.47 · 10−3 (79.1) 1.54 · 10−2 (17.8)
89_pegase 1042 99.74% 26 5.61 · 10−1 1.61 · 10−2 (34.8) 4.28 · 10−2 (13.1)
118_ieee 1088 99.77% 12 5.55 · 10−1 5.25 · 10−3 (105.8) 3.13 · 10−2 (17.7)
162_ieee_dtc 1484 99.82% 16 1.16 · 100 1.53 · 10−2 (75.7) 5.53 · 10−2 (20.9)
179_goc 1468 99.83% 14 1.08 · 100 1.33 · 10−2 (81.3) 5.06 · 10−2 (21.4)
197_snem 1608 99.85% 14 1.34 · 100 1.46 · 10−2 (92.2) 5.84 · 10−2 (23.0)
200_activ 1456 99.82% 12 1.02 · 100 6.94 · 10−3 (146.6) 3.88 · 10−2 (26.3)
240_pserc 2558 99.91% 16 3.51 · 100 2.50 · 10−2 (140.2) 1.04 · 10−1 (33.6)
300_ieee 2382 99.89% 14 3.00 · 100 2.14 · 10−2 (140.3) 9.67 · 10−2 (31.1)
500_goc 4254 99.94% 14 1.18 · 101 3.85 · 10−2 (307.3) 2.20 · 10−1 (53.7)
588_sdet 4110 99.94% 14 1.14 · 101 3.60 · 10−2 (316.1) 2.14 · 10−1 (53.3)
793_goc 5432 99.95% 14 2.17 · 101 4.91 · 10−2 (443.1) 3.33 · 10−1 (65.3)
1354_pegase 11192 99.98% 18 1.36 · 102 1.21 · 10−1 (1128.4) 6.21 · 10−1 (219.6)
1803_snem 15246 99.98% 16 2.09 · 102 1.66 · 10−1 (1259.5) 1.07 · 100 (195.0)
1888_rte 14480 99.98% 18 8.15 · 102 1.43 · 10−1 (5706.7) 8.76 · 10−1 (930.4)
1951_rte 15018 99.98% 20 2.00 · 102 1.54 · 10−1 (1293.4) 1.00 · 100 (199.1)
2000_goc 19008 99.99% 18 3.58 · 102 2.15 · 10−1 (1669.5) 1.61 · 100 (222.7)
2312_goc 17128 99.98% 16 2.75 · 102 1.87 · 10−1 (1470.7) 1.35 · 100 (204.5)
2383wp_k 17004 99.98% 16 2.65 · 102 1.80 · 10−1 (1468.2) 1.14 · 100 (231.4)
2736sp_k 19088 99.99% 14 3.30 · 102 1.78 · 10−1 (1857.2) 1.40 · 100 (235.5)
2737sop_k 18988 99.99% 16 3.29 · 102 2.02 · 10−1 (1629.8) 1.47 · 100 (223.0)
2742_goc 24540 99.99% 14 6.50 · 102 2.41 · 10−1 (2694.1) 1.78 · 100 (366.3)
2746wop_k 19582 99.99% 16 3.64 · 102 2.07 · 10−1 (1755.7) 1.54 · 100 (235.6)
2746wp_k 19520 99.99% 14 3.53 · 102 1.77 · 10−1 (1991.4) 1.51 · 100 (234.5)
2848_rte 21822 99.99% 20 4.67 · 102 2.24 · 10−1 (2083.5) 1.80 · 100 (259.7)
2853_sdet 23028 99.99% 26 5.38 · 102 3.62 · 10−1 (1486.9) 1.68 · 100 (320.6)
2868_rte 22090 99.99% 20 5.02 · 102 2.35 · 10−1 (2137.9) 1.73 · 100 (290.0)
2869_pegase 25086 99.99% 28 5.08 · 102 4.07 · 10−1 (1249.0) 1.99 · 100 (255.5)
3012wp_k 21082 99.99% 14 4.33 · 102 1.96 · 10−1 (2208.3) 1.77 · 100 (245.1)
3022_goc 23238 99.99% 18 5.76 · 102 2.51 · 10−1 (2296.9) 1.48 · 100 (390.7)
3120sp_k 21608 99.99% 18 4.56 · 102 2.26 · 10−1 (2019.2) 1.90 · 100 (240.1)
3375wp_k 24350 99.99% 18 6.25 · 102 2.54 · 10−1 (2463.9) 1.71 · 100 (365.1)
1 Wall time in seconds.
2 Number of colors resulting from greedy symmetric coloring.
3 In parentheses: Wall time ratio compared to prepared AD (higher is better).

Table 6: Performance comparison of AD and ASD Hessian computation on the Lagrangian of PGLib
optimization problems.

31

	Introduction
	Motivation
	Applications
	Contributions
	Notations
	Outline

	Background
	Automatic differentiation
	Lazy products are not always enough
	Reconstructing (sparse) matrices from products
	Related work

	Detecting sparsity via operator overloading
	Principle
	Propagation rules
	First-order operator classification

	Software implementation
	Sparsity pattern representations
	Tensor-level overloads
	Limitations

	Numerical experiments
	Jacobian sparsity detection
	Jacobian computation

	Conclusion
	More applications
	ASD implementations in high-level programming languages
	Hessian tracing
	Principle
	Second-order propagation rules
	Second-order operator classification

	Tensor-level overload example
	Code demonstration
	Sparsity detection
	Computing Jacobians with AD and ASD

	More Jacobian experiments: Brusselator
	Sparsity detection
	Jacobian computation and linear solves

	Implicit differentiation experiments: GNNs
	Hessian experiments: ACOPF
	Sparsity detection
	Hessian computation

