
Appendix of Joint Data-Task Generation for Auxiliary
Learning

Hong Chen1, Xin Wang1,2∗, Yuwei Zhou1, Yijian Qin1, Chaoyu Guan1, Wenwu Zhu1,2∗
1Department of Computer Science and Technology, Tsinghua University

2Beijing National Research Center for Information Science and Technology, Tsinghua
{h-chen20,zhou-yw21,qinyj19,guancy19}@mails.tsinghua.edu.cn

{xin_wang,wwzhu}@tsinghua.edu.cn

1 Derivation of the Upper Implicit Gradient.

We provide the derivation of the upper implicit gradient in eq. (12). Since we want to obtain
∇ϕLp(θ

∗(ϕ)), and Lp directly relies on θ∗, it is natural to use the chain rule to obtain ∇ϕLp(θ
∗(ϕ)) =

∇θLp(θ
∗(ϕ))∇ϕθ

∗(ϕ). The key problem is how to obtain ∇ϕθ
∗(ϕ). Assuming that ∇2

θLt(θ
∗(ϕ), ϕ)

is positive-definite, we have the following derivations. Since θ∗(ϕ) is a local-minima point of
Lt(θ, ϕ), its partial gradient w.r.t. θ naturally equals to 0, i.e.,

∇θLt(θ
∗(ϕ), ϕ) = 0. (A1)

We further calculate the gradient of ϕ on both sides of eq. (A1), we obtain:

∇ϕ∇θLt(θ
∗(ϕ), ϕ) +∇2

θLt(θ
∗(ϕ), ϕ)∇ϕθ

∗(ϕ) = 0. (A2)

Since we assume that ∇2
θLt(θ

∗(ϕ), ϕ) is positive-definite, it has its inverse matrix. Then we can
multiply its inverse matrix (∇2

θLt(θ
∗(ϕ), ϕ))−1 on both sides of eq. (A2) and obtain the following

results:
(∇2

θLt(θ
∗(ϕ), ϕ))−1∇ϕ∇θLt(θ

∗(ϕ), ϕ) +∇ϕθ
∗(ϕ) = 0. (A3)

Therefore, we have:

∇ϕθ
∗(ϕ) = −(∇2

θLt(θ
∗(ϕ), ϕ))−1∇ϕ∇θLt(θ

∗(ϕ), ϕ), (A4)

and the target gradient ∇ϕLp(θ
∗(ϕ)) can be obtained using the chain rule:

∇ϕLp(θ
∗(ϕ)) = −∇θLp(θ

∗(ϕ))(∇2
θLt(θ

∗(ϕ), ϕ))−1∇ϕ∇θLt(θ
∗(ϕ), ϕ), (A5)

which is the result in eq. (12).

2 DTG-AuxL Algorithm

We summarize the whole DTG-AuxL algorithm in Algorithm 1, where the lower and upper opti-
mization updates are conducted alternatingly. We use the batch stochastic gradient optimization
for both the lower and upper update. After each N steps of lower updates, we conduct one step of
upper update. Note that when calculating the upper objective, we use the D′

p, which is a dataset
by reordering the training primary dataset Dp, to replace the validation dataset Dv. The reorder
operation can make the used primary data batches in the lower update and upper update different,
which fits the idea of generalization where we update the model on a batch of data and expect it to
perform well on another batch of data. This strategy makes us free of an additional validation dataset
Dv during training and it has also been used by [1].

∗Corresponding Authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Algorithm 1 DTG-AuxL Algorithm
Input: Dataset {Dp, Da1, · · · , DaK}, interval between two upper updates N ;
Initialize: task learning model parameters θ, joint generator parameters ϕ, τ = 0, D′

p = reorder(Dp);
while not converged do

// lower optimization
bp,τ , · · · , baK,τ = next({Dp, · · · , DaK}), // fetch batch
use bp,τ , · · · , baK,τ to generate bg,τ (ϕ),
calculate training loss Lt(θ, ϕ) on the batches of the used and generated tasks,
update θ using gradient ∇θLt(θ, ϕ)
if (τ + 1)%N == 0 then

// upper optimization
b′p = next(D′

p), calculate the upper objective Lp(θ(ϕ); b
′
p)

//implicit gradient with n-truncated Neumann series.
v = p = ∇θLp(θ(ϕ); b

′
p);

for i = 1 to n do
v = v − v · ∇2

θLt(θ;ϕ)
p = p+ v

end for
∇ϕLp(θ(ϕ), b

′
p) = −p∇ϕ∇θLt(θ;ϕ)

calculate explicit regularization gradient ∇ϕLreg(ϕ; bg,τ ),
update ϕ using ∇ϕLp(θ(ϕ), b

′
p) +∇ϕLreg(ϕ; bg,τ )

end if
τ = τ + 1;

end while
Return θ, ϕ

Table A1: Training time and memory cost of different methods on the CUB dataset with ResNet50 as
the backbone.

Method STL Equal Uncert GCS AuxL JTDS MAXL ours
Time cost 5h33min 5h35min 5h32min 6h55min 7h17min 7h5min 7h40min 7h35min
Memory cost 7059M 7059M 7059M 7213M 13051M 13045M 13999M 13557M

3 Discussion and Limitation

We first compare our method with the current methods in detail, and then, we discuss the limitations
in our work.

3.1 Discussion

The compared methods in this work can be summarized as follows:

Multi-task weighting methods. STL: It is a natural baseline where we only train on the primary task.
Equal: It is a multi-task learning method, where we assign an equal weight of 1.0 to the loss of each
task. Uncert [2]: This method utilizes the uncertainty of each task to weigh the loss, where a higher
uncertainty results in a lower weight. The multi-task weighting methods are not specifically designed
for auxiliary learning, so the performance of the primary task is not guaranteed to be improved.

Auxiliary weighting methods. GCS [3]: It is an auxiliary gradient reweighing method, which utilizes
the gradient similarity between each auxiliary loss and the primary loss to reweigh the auxiliary
gradient on the shared parameters. AuxL [4]: It combines the auxiliary losses with a nonlinear neural
network, and utilizes bi-level optimization to optimize the nonlinear neural network. JTDS [5]: It
designs a joint scheduler to predict a weight for each data sample within each auxiliary task, and
utilizes bi-level optimization to optimize the joint scheduler. The auxiliary weighting methods only
reweigh the losses, and cannot generate new data and tasks, which will easily fail to improve the
primary task performance when the auxiliary tasks are not properly chosen.

Auxiliary task generation method. MAXL [4, 6]: It utilizes bi-level optimization to generate a
fine-grained classification auxiliary task for the primary classification task. This method is only

2



constrained to classification label generation and does not generate new data. It does not learn the
task weightings, either.

Then we compare our method with current methods in terms of training cost, generality of design,
and network inference cost as follows.

• training cost: We report the training time and memory cost of different methods with
ResNet50 on the CUB dataset in table A1. Our method has a similar training cost to
previous bi-level optimization auxiliary learning methods(AuxL, JTDS, MAXL).

• generality of design: JTDS can only be applied where different tasks have the same input.
MAXL can be only applied to the classification problem. Other methods can be applied to
general auxiliary learning settings.

• network inference cost: All these methods only change the way of training, and have the
same primary task model for inference. Therefore, they have the same inference cost.

3.2 Limitation

Although our proposed method can jointly generate auxiliary data and tasks in an effective way,
there are still some limitations. Our optimization strategy is based on the gradient-based bi-level
optimization method [7]. Although it shows empirical effectiveness in both previous works [4, 5]
and our work, it still lacks provable convergence. Naturally, our method has the common limitation
of the bi-level optimization method, which has a higher computational cost than the single-level
optimization method. Detailed comparison is presented in table A1, where our proposed method has
a similar cost with current bi-level auxiliary learning methods like AuxL and JTDS.

4 Experimental Details

We conduct experiments on different scenarios and we provide the detailed dataset information and
training details.

All the experiments are implemented using PyTorch 1.10.0 and python 3.10.6 and are conducted on a
NVIDIA GeForce RTX 3090 GPU with 24GB of memory. In all the experiments, the generator in
our proposed method has the embedding dimension mn randomly searched from {32,64}, and the
MLP layer number is searched from {2,3,4}.

4.1 CUB Experiment

Task and dataset. There are totally 11788 images of 200 species of birds in the CUB dataset. Each
image has labels for the attributes of the bird, like “whether the bird has the red wing ”. We regard
the bird classification as the primary task, and “whether the bird has white belly” as the auxiliary
task. The primary task is a 200 classification problem and the auxiliary task is a binary classification.
As officially recommended, we use 5994 images for training, 2897 images for validation and the
rest 2897 for test. We follow the literature to crop all the images to size 256 [5, 4]. In the training
process, the images will be randomly cropped to 224× 224 followed by horizontally flip and Z-score
normalization. In the test process, the 256-size images are center-cropped to 224 followed by Z-score
normalization.

Training details. We adopt the pretrained ResNet18 and ResNet50 [8] and finetune them as previous
works [4, 5, 9]. The hyper-parameters are randomly searched for both our method and the baselines.
Specifically, the layer number of the MLP task heads is searched from {1, 2}. The batch size is
searched from {32, 64}. To train the model, we adopt Adam [10] optimizer with learning rate
searched from {1e-3,1e-4,1e-5}, and we totally train 100 epochs. The cosine annealing scheduler is
applied for all the methods. In the upper optimization, we use Adam optimizer with learning rate
1e-2. The interval N between two upper updates is searched from {20, 30}. The truncated number
of Neumann series is fixed to 3 as previous works [9, 4]. In the few shot setting, we respectively
sample 10/5 data samples for each specie of birds from the training dataset, the interval N between
two upper updates is searched from {4, 5}.

3



4.2 CIFAR100 Experiment

Task and dataset. The CIFAR100 dataset contains 60,000 images and totally 100 categories. Each
image also has a coarse category, for example, if an image belongs to the “car” category, it also
has a coarse label “vehicles 1”. There are totally 20 meta categories. The primary task is a 100
classification problem and the auxiliary task is a 20 classification problem. We use 25,000 samples
for training, 25,000 samples for validation and 10,000 samples for test. During the training process,
the images are randomly cropped to size 32 with padding 4, and then are normalized with the Z-score.
During test process, the images are directly normalized with the Z-score.

Training details. We respectively adopt the ResNet18 and ConvNet as the backbone and train them
from scratch. The ConvNet contains 4 layers, each layer is composed of Convolution with channel
32, kernel size 3, stride 1, followed by Batch Normalization and ReLU. The hyper-parameters are
randomly searched for both our method and the baselines. Specifically, the layer number of the
MLP task heads is searched from {1, 2}. The batch size is searched from {256, 512}. To train the
model, we adopt SGD optimizer with learning rate searched from {0.1, 0.01}, and we totally train
200 epochs and use multisteplr scheduler with decay factor 0.1 at the 60/120/160 epoch. In the upper
optimization, we use Adam optimizer with learning rate 1e-3. The interval N between two upper
updates is searched from {20, 30}. The truncated number of Neumann series is fixed to 3.

4.3 Amazon Toys & Movies Experiment

Task and dataset. The Amazon Toys and Movies are recommendation dataset from Amazon product,
where each user has its rating towards the item they purchased, from 0 to 5. Our primary task is
the rating prediction. The auxiliary task is the CTR prediction, where we regard the rating larger
than 3 as click as previous works [9, 5]. That is to say, our primary task is a regression problem, and
the auxiliary task is a binary classification problem. We split the dataset into training, validation,
test chronologically with ratio 0.8/0.1/0.1. In the Toys dataset, we have 134,044 training samples,
16963 validation samples and 16590 test samples. In the Movies dataset, we have 1,357,893 training
samples, 170,221 validation samples and 169,419 test samples.

Training details. We adopt the AutoINT [11] as the backbone and train it from scratch. The input
contains the user ID, item ID and item category. The hyper-parameters are randomly searched for
both our method and the baselines. Specifically, the layer number of the MLP task heads is searched
from {1, 2}. The batch size is searched from {256, 512}. To train the model, we adopt Adam
optimizer with learning rate searched from {1e-2, 1e-3, 1e-4}, and we totally train 20 epochs. In the
upper optimization, we use Adam optimizer with learning rate 1e-2. The interval N between two
upper updates is searched from {30, 50, 100}. The truncated number of Neumann series is fixed to 3.

Note that in the previously mentioned scenarios, we focus on the share input setting, where the
auxiliary tasks share the same input with the primary task. This scenario is the most widely studied
setting in previous works [3–5]. During feature generation, we will randomly shuffle the training
batch to obtain an auxiliary sample for the original sample, so that we can conduct the feature
generation and label generation as discussed in Sec 3.2.3. The next two scenarios we focus on the
different input setting.

4.4 CIFAR10-100 Experiment

Task and dataset. The dataset for the primary task is CIFAR10, which contains 60,000 images
with 10 categories. We split the dataset into 25,000/25,000/10,000 for training/validation/test. The
auxiliary dataset is CIFAR100 which is used before. The primary task is a 10 classification problem,
and the auxiliary task is a 100 classification problem. During the training process, the images are
randomly cropped to size 32 with padding 4, and then are normalized with the Z-score. During test
process, the images are directly normalized with the Z-score.

Training details. We use the same ConvNet as in the CIFAR100 experiment as the backbone. The
hyper-parameters are randomly searched for both our method and the baselines. Specifically, the
layer number of the MLP task heads is searched from {1, 2}. The batch size is searched from {256,
512}. To train the model, we adopt SGD optimizer with learning rate searched from {0.1, 0.01}, and
we totally train 200 epochs and use multisteplr scheduler with decay factor 0.1 at the 60/120/160
epoch. In the upper optimization, we use SGD optimizer with learning rate 1e-2. The interval N

4



between two upper updates is searched from {20, 30}. The truncated number of Neumann series is
fixed to 3.

4.5 Pet-CUB Experiment

Task and dataset. The dataset for the primary task is Oxford-IIIT Pet„ which contains 7,349
images with 37 categories of cats and dogs. We split the dataset into 3680/1835/1834 for train-
ing/validation/test. The auxiliary dataset is CUB which is used before. The primary task is a 37
classification problem, and the auxiliary task is a 200 classification problem. We crop all the images to
size 256. In the training process, the images will be randomly cropped to 224× 224 followed by hor-
izontally flip and Z-score normalization. In the test process, the 256-size images are center-cropped
to 224 followed by Z-score normalization.

Training details. We use the ResNet18 as the backbone and train from scratch. The hyper-parameters
are randomly searched for both our method and the baselines. Specifically, the layer number of
the MLP task heads is searched from {1, 2}. The batchsize is searched from {32, 64}. To train
the model, we adopt Adam optimizer with learning rate searched from {1e-3, 1e-4, 1e-5}, and we
totally train 200 epochs. The cosine annealing scheduler is applied for all the methods. In the upper
optimization, we use Adam optimizer with learning rate 1e-3. The interval N between two upper
updates is searched from {20, 30}. The truncated number of Neumann series is fixed to 3.

5 More Ablation Studies

5.1 The architecture choice for nonlinear interactions

We try to use MLP and Transformer architecture to capture the nonlinear interaction in the joint
generator. In our method, we finally choose the MLP as the architecture because in the CUB dataset
we observe MLP achieves higher accuracy than Transformer as the nonlinear interaction architecture
as shown in table A2.

Table A2: Comparison of different nonlinear interaction architecture.

Dataset CUB CUB
Metric Acc(%)↑ Acc(%)↑
Backbone ResNet50 ResNet18
MLP 81.730.20 77.750.27

Transformer 80.700.30 76.730.33

5.2 Convert harmful auxiliary labels into beneficial ones.

When generating the new auxiliary labels, we not only use the label of the primary task as input, but
also use the labels of auxiliary tasks. Whether the auxiliary information is efficiently utilized is one
key problem in auxiliary learning. We conduct experiments that remove the auxiliary labels from
the input of the label generator and the results are given in Table A3. w/o aux means the variant
that removes the auxiliary label information. We choose CUB(ResNet50) and Movies to conduct
experiments where the original auxiliary tasks are harmful to the primary task. We find that the
complete method outperforms the w/o aux variant. This means the generator that has the auxiliary
label information as input is better than that without the auxiliary labels. Although the original
auxiliary labels are harmful, our method can convert the auxiliary label information into the beneficial
form and brings further improvement. That is to say, our method fully utilizes the additional auxiliary
information, which is quite promising.

5.3 Importance of generating new data.

One advantage of our proposed method is that we can also generate new data. In previous experiments,
we have validated the superiority of our method under different scenarios. Here we want to particularly
explore the influence of the data generator. We conduct experiments on the previous CUB, CUB-10

5



Table A3: Utilization of auxiliary labels.

Dataset CUB(ResNet50) Movies
Metric Acc(%)↑ RMSE↓
STL 80.460.42 1.04560.0008
w/o aux 80.840.69 1.04420.0003
complete 81.730.20 1.04260.0009

shot and CUB-5 shot settings with ResNet50 as backbone and results are shown in Table A4. w/o
data is the variant where we remove the data generator, only using the labels of the primary image to
feed the label generator to generate the new label for the primary image. We can see that generating
new data is important for improving the performance of the primary task, especially when the data of
the primary task are inadequate, which fits one of the motivations of this work.

Table A4: Effectiveness of data generation.

ResNet50 CUB CUB-10shot CUB-5shot
w/o data 80.720.43 63.620.42 47.500.43

complete 81.730.20 67.680.33 52.331.36

5.4 Mode Collapse without Instance Regularization.

We visualize the generation process of the variant without instance regularization in CUB and the
results are shown in Table A5. We can see that there are always 3 large peaks in the generated label.
Besides the original largest peaks provided by the label bias term, there is always a fixed largest
peak and the image from the maximum probability category always keeps in the same category “37”
whatever the primary and auxiliary images are. We call this phenomenon mode collapse, i.e., the sum
of the learnable linear and nonlinear terms in the label generator degenerates to a fixed peak whatever
the input is, which is unreasonable and less informative as an auxiliary task. Instead, our proposed
the instance regularization, is effective to make the generated label semantically reasonable as shown
in Table 3 and improve the primary task performance as shown in Table 4.

5.5 The effectiveness of the linear term design

We conduct ablation studies to show the effectiveness of the linear term in the joint generator. We
consider two variants of our model, one is that we remove the linear term (which we denote as “w/o
linear”), and the other is we replace the linear term with a nonlinear term (which we denote as “two
nonlinear”). The results in table A6 show that our original design with the linear term is more effective.
Additionally, as we mentioned in the main manuscript, we design the linear term and nonlinear term
for feature interaction inspired by the classic recommendation model [12], where the linear term
is described to have good “memorization” ability and the nonlinear term has good “generalization”
ability, whose effectiveness has been validated in many recommendation scenarios. An interesting
and reasonable view for the two parts is to regard them as a form of “mixture of experts”, where
the linear term and the nonlinear term can be seen as two different experts. The results show that
mixture of experts with different abilities (linear “memorization” + nonlinear “generalization”) is
more effective than mixture of experts with similar abilities (two nonlinear).

6



Table A5: Generated labels of w/o instance reg in CUB. The columns have the same meaning as
Table 3, except for plotting the image from the maximum probability in the fourth column.

#Image-P #Image-Aux #G-Label Max-Prob Image

Table A6: The effectiveness of linear term design in joint generator.

Dataset CUB CUB(5 shot) Toys
Metric Acc(%)↑ Acc(%)↑ RMSE↓
Backbone ResNet50 ResNet50 AutoINT
w/o linear 79.950.24 49.970.88 0.92010.0008

two nonlinear 80.440.12 50.260.76 0.91820.0011

ours 81.730.20 52.331.36 0.91530.0004

5.6 Experiments on segmentation task

We also extend our work to the segmentation task, where we follow [9] to use pretrained EfficientNet
as the backbone, and regard segmentation as the main task, normal and depth prediction as the
auxiliary tasks. The experiments are conducted on NYUv2 [13] dataset. The results are shown in
Table A7. The experiments show that our proposed method can also work well in the segmentation
task, demonstrating its generality.

NYUv2 STL MTL Uncert GCS AuxL MAOAL ours
m-IOU(%) 32.610.21 33.150.15 32.930.32 32.180.34 33.060.14 33.880.23 34.460.22
pixel-acc(%) 68.420.62 68.110.24 68.740.62 67.580.80 68.360.53 69.170.44 70.120.53

Table A7: Results on segmentation task on NYUv2.

Note that it is not hard to extend our method to NYUv2. First, NYUv2 belongs to the shared input
scenarios. Our framework can handle this scenario. Specifically, for each input image, we obtain
its feature, and use the input feature with another image’s feature to generate a new feature with the
feature generator, which is not hard. Additionally, for each image and another image, we have 3
labels for each of them, segmentation map with size (height, width, category_num), depth map with
size (height, width, 1) and normal label with size (height, width, 3), when generating new labels, only
the final dimension contains label information, therefore, the label generator can generate a (height,

7



width, category_num)-size new label which is the same size as that of the primary segmentation task.
That is to say, the label generator uses different labels in a pixel and uses their linear and nonlinear
relations to generate a new label for the same pixel.

References
[1] Shikun Liu, Stephen James, Andrew J Davison, and Edward Johns. Auto-lambda: Disentangling dynamic

task relationships. arXiv preprint arXiv:2202.03091, 2022.

[2] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages
7482–7491, 2018.

[3] Yunshu Du, Wojciech M. Czarnecki, Siddhant M. Jayakumar, Razvan Pascanu, and Balaji Lakshmi-
narayanan. Adapting auxiliary losses using gradient similarity. CoRR, 2018.

[4] Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, and Ethan Fetaya. Auxiliary learning by implicit
differentiation. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

[5] Hong Chen, Xin Wang, Chaoyu Guan, Yue Liu, and Wenwu Zhu. Auxiliary learning with joint task
and data scheduling. In International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, pages 3634–3647, 2022.

[6] Shikun Liu, Andrew J. Davison, and Edward Johns. Self-supervised generalisation with meta auxiliary
learning. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 1677–1687, 2019.

[7] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS
2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], Proceedings of Machine Learning Research,
pages 1540–1552. PMLR, 2020.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[9] Hong Chen, Xin Wang, Yue Liu, Yuwei Zhou, Chaoyu Guan, and Wenwu Zhu. Module-aware optimization
for auxiliary learning. In Advances in Neural Information Processing Systems, 2022.

[10] D. Kingma and J. Ba. Adam: A method for stochastic optimization. Computer Science, 2014.

[11] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. Autoint:
Automatic feature interaction learning via self-attentive neural networks. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China,
November 3-7, 2019, pages 1161–1170. ACM, 2019.

[12] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recommender systems.
In Proceedings of the 1st workshop on deep learning for recommender systems, pages 7–10, 2016.

[13] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12, pages 746–760. Springer, 2012.

8


	Derivation of the Upper Implicit Gradient.
	DTG-AuxL Algorithm
	Discussion and Limitation
	Discussion
	Limitation

	Experimental Details
	CUB Experiment
	CIFAR100 Experiment
	Amazon Toys & Movies Experiment
	CIFAR10-100 Experiment
	Pet-CUB Experiment

	More Ablation Studies
	The architecture choice for nonlinear interactions
	Convert harmful auxiliary labels into beneficial ones.
	Importance of generating new data.
	Mode Collapse without Instance Regularization.
	The effectiveness of the linear term design
	Experiments on segmentation task


