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Quantitative comparison to SPSR [3] in ShapeNet [2]

Table 1: Comparison to PCA normals + SPSR.

IoU+ CD;/ NCt FSt

SPSR  0.65 128 0.84 0.74
Ours 090 035 095 098

Table 1 shows a numerical comparison to Screened Poisson Surface Reconstruction (SPSR) [3] on
classes Tables, Lamps and Chairs of ShapeNet [2]. Input point clouds are of size 10k with 0.005
standard deviation Gaussian noise. We remind that our method builds on Poco [1].

Additional Qualitative Results for ShapeNet [2] Reconstructions
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Figure 1: Additional qualitative comparison of ShapeNet reconstructions.
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Figure 1 shows additional reconstruction examples from our method, Poco [1], SAC [6] and Conv
[5]. Input point clouds are of size 10k with 0.005 standard deviation Gaussian noise. While test-time
finetuning (SAC) can improve on its baseline (Conv), it can also lead to worse final reconstructions.
Notice how our approach can reliably improve on its beseline (Poco).

Recovering from baseline failures

Figure 2: Comparison to our baseline in ShapeNet [2]. Ours / Baseline.

Figure 2 shows cases where we can recover from failures of our baseline (Poco [1]). Input point
clouds are of size 10k plus a 0.005 standard deviation Gaussian noise. We improve chamfer error
from 0.85 (baseline) to 0.27 (Ours) for the table example on the left, and from 1.22 (baseline) to
0.86 (Ours) for the chandelier on the right. As part of our limitations, and despite improving on
the reconstruction of the network baseline, it is still challenging for our method to recover the finest
structures and intricate details of a complex shape such as the chandelier example.

Evaluation Metrics

Following the definitions from [ 1], we present here the formal definitions for the metrics that we use
for evaluation in the main submission. We denote by S and S the ground truth and predicted mesh
respectively. All metrics are approximated with 100k samples from S and S.

Intersection over Union (IoU) The volumetric Intersection over Union is the ratio of the intersec-
tion of the inside volumes of the meshes to their union:

|[{zeQ: :cmmdeSandS}\
| {x € Q:zinside Sor S} |’

where |.| represents the sets cardinality, which is approximately determined by sampling 100k points
from the bounding volume €2 of S.

IoU =

Chamfer Distance (CD;) The L; Chamfer distance is based on the two-ways nearest neighbor
distance:
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F-Score (FS) For a given threshold 7, the F-score between the meshes S and S is defined as:

2 Recall - Precision

P (.8.8) =
S(7.6.8 Recall + Precision ’

where R
Recall (T,S,S) = {ves, st ming g |lv—70l2(7} ],

Precision (7’78,3) =] {f) € 8, s.t. minyes v — ®||2<T} | .
Following [4] and [5], we set 7 to 0.01.

Normal consistency (NC) We denote here by n, the normal at a point v in S. The normal
consistency between two meshes S and S is defined as:

NC = v v closest (v
2|3| Z” Nelosest(v,8) T 2|S| Zn “ Nelosest (9,S) »
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where

closest(v,S) = argming g [|[v — 9||2.
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