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Abstract

A k-decision tree t (or k-tree) is a recursive partition of a matrix (2D-signal) into
k ≥ 1 block matrices (axis-parallel rectangles, leaves) where each rectangle is
assigned a real label. Its regression or classification loss to a given matrix D of
N entries (labels) is the sum of squared differences over every label in D and its
assigned label by t. Given an error parameter ε ∈ (0, 1), a (k, ε)-coreset C of D
is a small summarization that provably approximates this loss to every such tree,
up to a multiplicative factor of 1 ± ε. In particular, the optimal k-tree of C is a
(1 + ε)-approximation to the optimal k-tree of D.
We provide the first algorithm that outputs such a (k, ε)-coreset for every such
matrix D. The size |C| of the coreset is polynomial in k log(N)/ε, and its con-
struction takes O(Nk) time. This is by forging a link between decision trees from
machine learning – to partition trees in computational geometry.
Experimental results on sklearn and lightGBM show that applying our coresets
on real-world data-sets boosts the computation time of random forests and their
parameter tuning by up to x10, while keeping similar accuracy. Full open source
code is provided.

1 Introduction

Decision trees are one of the most common algorithms used in machine learning today, both in
the academy and industry, for classification and regression problems [52]. Informally, a decision
tree is a recursive binary partition of the input feature space into hyper-rectangles, where each such
hyper-rectangle is assigned a label. If the labels are given from a discrete set, the trees are usually
called classification trees, and otherwise they are usually called regression trees. Variants include
non-binary partitions and forests [29].

Why decision trees? Advantages of decision trees, especially compared to deep learning, include:
(i) Interpretability. They are among the most popular algorithms for interpretable (transparent)
machine learning [31]. (ii) Usually require small memory space, which also implies fast classification
time. (iii) Accuracy. Decision trees are considered as one of the few competitors of deep networks. In
competitions, such as the ones in Kaggle [36], they are one of the favorite classifiers [10], especially
on small or traditional tabular data. (iv) May learn from small training data.

The goal is usually to compute the optimal k-tree t∗ for a given dataset D and a given number k of
leaves, according to some given loss function. In practice, researchers usually use ensemble of trees
called forests, e.g., a Random Forest [12], which are usually learned from different subsets of the
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Figure 1: (Left): A one dimensional signal (orange points) and its segmentation into 25 “smooth”
segments / leaves (green lines). Image taken from Section 1.10 (“Decision Trees”) of the sklearn’s
User Guide [56]. The vector v on top represents a subset of the signal’s values. The bottom vectors
represent a 4-segmentation of v, similar to the horizontal green line segments. Each segment contains
the average value of its corresponding segment from v. (Middle): A matrix that represents the 4× 5
signal D = {((1, 1), 3), ((1, 2), 4), ((1, 3), 5), · · · } (in black) and a 3 × 2 matrix that represents a
3 × 2 sub-signal B = {((1, 2), 4), ((1, 3), 4), ((2, 2), 3), · · · } (in purple). (Right): A matrix that
represents a 5-segmentation s of A = [4] × [5]; see Definition 1. Since s is a 5-segmentation, it
partitions the [4] × [5] matrix into 5 distinct block matrices B1 (red), B2 (blue), B3 (yellow), B4

(green), and B5 (black) such that s assigns the same number for all the entries in the same block. The
SSE fitting loss `(D, s) is the sum of squared differences over every entry in the left matrix to its
corresponding entry on the right matrix. Also, there is no k-tree that can obtain the same partition.

training set. The final classification is then based on a combination rule, such as majority or average
vote. Since both the training and classification of each tree are computed independently and possibly
in parallel, we focus on the construction of a single tree.

A dataset D in this paper is a set D = {(x1, y1), · · · , (xN , yN )} ⊆ A× R of pairs, where A is the
feature space. Each pair (x, y) ∈ D consists of a database record (vector / sample) x ∈ A and its
real label y ∈ R. As common, we assume that non-real features, such as categorical features, are
converted to real numbers; see e.g. [27]. For example, in common classification problems A = Rd
for some d ≥ 1 and y ∈ {0, 1} is a binary number. The resulting model may be used for prediction
on another test dataset, completion of missing values, or efficient storage of the original dataset by
replacing the label y of each pair (x, y) ∈ D with the label t(x) that was assigned to it by the tree
t. The last technique is used e.g. in the MPEG4 encoder [46], where decision trees of a specific
structure (quad-trees) are used to compress an image D that consists of pixel-grayscale pairs (x, y).

Challenges. The motivation for this paper originated from the following challenges:
(i) Sub-optimality. Hardness of decision tree optimization is both a theoretical and practical obsta-
cle [31]. It is NP-hard to compute the optimal k-tree, or its approximation, when the number k is
not fixed [14, 39]. There were several attempts to improve the optimality of decision tree algorithms,
from binary-split decision trees as in [6, 8], in a line of work of e.g. [9, 61]. Nevertheless, greedy
implementations e.g., CART [40] and C4.5 [51] have remained the dominant methods in practice.
(ii) Computation time. Due to this lack of optimality, finding a decision tree that provides a good
accuracy usually requires many runs, since each of them returns only a local minimum that might
be arbitrarily far from the global optimum. The final model usually consists of a forest containing
many trees. Popular forest implementations include the famous Sklearn, XGBoost, LightGBM, and
CatBoost libraries [49, 15, 37, 19], which all utilize (as default) an ensemble of at least 100 trees.
Moreover, there is a list of dozen parameters to calibrate including: number of trees, depth of each
tree, pruning/splitting strategies on each tree and between them, and many others. To this end, the
running time for obtaining reasonable results even on moderate size datasets might be impractical.
(iii) Scalability. Existing techniques tend not to scale to realistically-sized problems unless simplified
to trees of a specific form as stated in [31].
(iv) Streaming, parallel, and dynamic updates. The common algorithms mentioned above do not
support continuous learning or updating of the modeled tree when an input sample is either added
or removed from the dataset, e.g., when the dataset does not fit into memory or arrives on-the-fly.
Similarly, we do not know techniques to train a single tree in parallel on multiple machines.

1.1 Coresets

“Coresets are one of the central methods to facilitate the analysis of large data sets.” [47]. Informally,
for an input dataset D, a set T of models, an approximation error ε ∈ (0, 1), and a loss function
`, a coreset C is a data structure that approximates the loss `(D, t) for every model t ∈ T , up to
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a multiplicative factor of 1 ± ε, in time that depends only on |C|. Hence, ideally, C is also much
smaller than ther original input D.

Why coresets? The main motivation for constructing a coreset is to compute the optimal model
or its approximation, much faster, while sacrificing little accuracy. Furthermore, a coreset for a
family of classifiers is many times a “silver bullet” that provides a unified solution to all Challenges
(i)-(iv) above. Combining the two main coreset properties: merge and reduce [32, 7, 26, 1], which
are usually satisfied, with the fact that a coreset approximates every model, and not just the optimal
model, enables it to support streaming and distributed data [11, 41], parallel computation [21], handle
constrained versions of the problem [25], model compression [20], parameter tuning [43] and more.

Coreset construction techniques. There are many different techniques for coreset construction,
ranging from loss-less to lossy, from deterministic to randomized, and from greedy to non-greedy con-
structions. Examples include accurate coresets [33] and non-accurate coresets [23] via computational
geometry, random sampling-based coresets [22, 17, 44], and greedy deterministic coresets via the
Frank-Wolfe algorithm [16]. Recently, many works focus on developing frameworks for general fam-
ilies of loss functions, e.g., [22, 57]. We refer the interested reader to the surveys [2, 1, 50, 11, 4, 21]
with references therein.

Practical usage. Since a coreset is not just another solver that competes with existing solutions, but a
data structure for approximating any given model in the family, we can apply existing approximation
algorithms or heuristics on the coreset to obtain similar results compared to the original (full) data.
Since the coreset is small, we may run these heuristics multiple times, or apply the hyperparameter
tuning using the coreset [43], thus reducing the computational burden by orders of magnitude.

Main challenges: (i) No coreset. Unfortunately, it is not clear at all that a small coreset exists for
a given family of models. In fact, we can conclude from [54] that a coreset for decision trees does
not exist in general; see details below. In this case, we can either give up on the coreset paradigm
and develop a new solver, or add assumption on the input dataset, instead of targeting every possible
dataset that may be very artificial and unrealistic, as the counter example in [54]. In this paper, we
choose the latter option. (ii) Unlike, say, uniform sampling, every problem formulation requires a
different coreset construction, which may take years of research to design.

1.2 First coreset for decision trees and their generalization

In this paper, we tackle a generalized and more complex set of models than decision trees, where,
rather than a recursive binary partition, we allow the input feature space Rd to be partitioned into any
k disjoint axis-parallel hyper-rectangles; see Fig. 1. This generalization is essential in order to support
future non-recursive and not necessarily binary classification models, e.g., ID3 and C4.5 [30, 51]. To
our knowledge, this is the first coreset with provable guarantees for constructing decision trees.
Definition 1 (k-segmentation). For an integer d ≥ 1 that denotes the dimension of the feature space
A = Rd, and an integer k ≥ 1 that denotes the size of the partition (number of leaves), a function
s : A → R is a k-segmentation if there is a partition B = {B1, · · · , Bk} of A into k disjoint
axis-parallel hyper-rectangles (blocks), such that | {s(b) | b ∈ B} | = 1 for every block B ∈ B, i.e.,
s assigns a unique value for all the entries in each of its k rectangles; see Fig. 1. We define the union
over all possible such k-segmentations by SEG(k,d).

We now define our loss function, and an optimal k-segmentation model over some set A ⊆ Rd.
Definition 2 (Loss function). For a dataset D = {(x1, y1), · · · , (xN , yN )} ⊆ A × R, an integer
k ≥ 1, and a k-segmentation s ∈ SEG(k,d), we define the sum of squared error (SSE) loss

`(D, s) :=
∑

(x,y)∈D

(s(x)− y)
2

as the loss of fitting s to D. A k-segmentation s∗ is an optimal k-segmentation of D if it minimizes
`(D, s) over every k-segmentation s ∈ SEG(k,d) i.e., s∗ ∈ arg mins∈SEG(k,d)

`(D, s). The optimal
SSE loss is denoted by optk(D) := `(D, s∗).

For example, the optimal 1-segmentation s∗ of D is the constant function s∗ ≡ 1
|D|
∑

(x,y)∈D y since
the mean of a set of numbers minimizes the sum of squared distances to the elements of the set. Also,
opt|D|(D) = 0 for every dataset D.
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We are now ready to formally define a coreset for the k-segmentation problem (and k-decision trees
of at most k leaves, in particular).
Definition 3 (Coreset). Let D = {(x1, y1), · · · , (xn, yn)} ⊆ A× R be an input dataset. Let k ≥ 1
be an integer and ε ∈ (0, 1) be the desired approximation error. A (k, ε)-coreset for D is a data
structure (C, u) where C ⊆ A × R is an ordered set, and u : C → [0,∞) is called a weight
function, such that (C, u) suffices to approximate the loss `(D, s) of the original dataset D, up to a
multiplicative factor of 1± ε, in time that depends only on |C| and k, for any k-segmentation s.

Practical usage. As defined above and discussed in Section 1.1, a coreset approximates every model
in our set of models SEG(k,d). Hence, a coreset for decision trees is clearly also a coreset for forests
with an appropriate tuning for k, since every tree in the forest is approximated independently by the
coreset. We expect that applying existing heuristics (not necessarily with provable guarantees) such
as sklearn [49] or LightGBM [37] on the coreset, would yield similar results compared to the original
data. Indeed, our experimental results in Section 5 validate those claims.

No coreset for general datasets. Unfortunately, even for the case of k = 4 and A ⊆ R, i.e., when
the input is simply a one dimensional dataset D = {(x1, y1), · · · , (xn, yn)} where x1, · · · , xn are
real numbers, and the labels y1, · · · , yn ∈ {0, 1} have only binary values, it is easy to construct
datasets which have provably no k-segmentation (or even k-tree) coreset of size smaller than n; see
e.g. [54]. Hence, there is no non-trivial decision tree coreset for general datasets of n vectors in any
dimension. However, as we prove in the rest of the paper, a coreset does exist for datasets where
the input is a matrix, i.e., a discrite signal where every coordinate in the domain is assigned a label
(value), rather than a random set of n vectors.

The first coreset for n×m-signals. To overcome the above problem, while still obtaining a small
coreset, we assume a discretization of the dataset so that every coordinate has a label. We also assume,
mainly for simplicity and lack of space, that the input feature space is A = [n]× [m] ⊆ R2. That is,
the input can be represented by an n×m matrix. The output coreset may contain fraction of entries,
as in Fig. 3, which is called an n ×m signal; see Section 1.5. Our assumption on the input data
seems to be the weakest assumption that can enable us to have a provably small coreset for any input.
Furthermore, it seems natural for e.g. images, matrices, or any input data from sensors (such as GPS)
that has a value in every cell or continuous in some other sense.

Previous work. The prior works [54, 24, 62], which only handle the case of segmenting a 1-
dimensional signal, use relaxations similar to our relaxation above to obtain a coreset of size O(k/ε2).
However, our results apply easily for the case of vectors (1-dimensional signals) as in [54] and
generalize for tensors if d ≥ 3. We also give further applications, and provide extensive experiments
with popular state of the art software.

A special case for d = 2 includes image compression, where quadtrees are usually used in e.g.
MPEG4 to replace the image by smooth blocks of different sizes [55], or for completion of missing
values [58] Using dynamic programming, it is easy to compute the optimal tree of a 2D-signal D in
O(k2n5) time [5], which is impractical even for small datasets, unless applied on a small coreset ofD.
However we do not know of any such coreset construction, for d ≥ 2, with provable guarantees on its
size. To this end, the following questions are the motivation for this paper: (i): Is there a small coreset
for any n×m signal (e.g. of sub-linear size)? (ii): If so, can it be computed efficiently? (iii): Can it
be used on real-world datasets to boost the performance of existing random forest implementations?

Extensions. For simplicity, we focus on the classic sum of squared distances (SSE) or the risk
minimization model [59]. However, our suggested techniques mainly assume that a coreset for
the case k = 1 is known, which is trivial for SSE, but exists for many other loss functions e.g.,
non-squared distances; see Section 6.

1.3 Our Contribution

For any given error parameter ε ∈ (0, 1), and an integer k ≥ 1, this paper answers affirmatively the
above three questions. More formally, in this paper we provide:
(i): A proof that every n × m signal D has a (k, ε)-coreset (C, u) of size |C| polynomial in
k log(nm)/ε. To our knowledge, this is the first coreset for decision trees whose size is smaller than
the input; see Theorem 8. Due to lack of space, our full proofs are given in the appendix.
(ii): A novel coreset construction algorithm that outputs such a coreset (C, u) with the above
guarantees, for every given input signal D. Its running time is O(nmk), i.e., linear in the input size
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|D|. Unlike common coreset constructions, our algorithm is deterministic; see Algorithm 3.
(iii): AutoML for decision trees: since the suggested coreset approximates every tree of at most k
leaves, we may use the same coreset for hyperparameter tuning. We demonstrate this in Section 5, by
calibrating the parameter k using only the coreset, as compared to using the original (big) data.
(iv): Experimental results that apply modern solvers, such as the sklearn and LightGBM libraries, on
this coreset for real-world public datasets. We show that our coreset can help boost the computation
time of the above forest implementations and their parameter tuning by up to x10, while keeping
similar accuracy; see Section 5.
(v): Open source code for our algorithms [35]. We expect that it will be used by both the academic
and industry communities, not only to improve the running time of existing projects, but also to
extend the algorithms and experimental results to other libraries and cost functions; see Section 6.

1.4 Novel technique: partition trees meet decision trees

In a seminal paper [28] during the 80’s of the previous century, Haussler and Welz introduced the
importance of VC-dimension by Vapnik–Chervonenkis [60]. Their main application was partition
trees for answering range queries.

Informally, a partition tree of a given set of points on the plane is the result of computing recursively
a simplicial partition which is defined as follows. For a set D of N points on the plane, a (1/ε)-
simplicial partition is the partition of D into O(1/ε) subsets, such that: (i) each subset has at
most 2εN points, and (ii) Every line in the plane intersects the convex hull of at most

√
1/ε sets.

Answering range queries of the form “how many points in D are in a given rectangular” in sub-linear
time, using partition trees, is straightforward: We can sum in O(1/ε) time the number of points in
the subsets of the above simplicial partition that are not intersected by the query rectangular. We then
continue recursively to count the points on each of the

√
1/ε intersected sets.

In other words, the main idea behind the above work is to partition the input into a (relatively small)
number of subsets, each containing a fraction of the input, such that each query (in this case, a
rectangular shape) might intersect only a small fraction of those subsets. Such a partition is termed
a simplicial partition. The number of points contained in non-intersected subsets can be easily
computed, while the sum of points in intersected subsets require a more involved solution. The
novelty in that work is how to achieve such a partition of the input.

Our paper closes a loop in the sense that it forges links between decision trees in machine learning
– to partition trees from computational geometry. We aim to generalize the above technique from
covering problems to regression and classification problems. This is by devising an algorithm which
achieves the above requirements, but where the query is a decision tree (and not a rectangular shape),
and the cost function is the sum of squared distances to the query and not the number of points.

More precisely, We partition the input dataset D into a relatively small number of subsets, such that
every possible decision tree (query) intersects at most few of these subsets. We then independently
compress every subset via another novel algorithm such that the cost (sum of squared distances,
in this case) of points contained in non-intersected subsets can be easily and accurately estimated,
while the cost of points in intersected subsets can be provably approximated via a more involved
calculation. This is very different from existing coreset techniques that are sampling-based [38], or
utilize convex optimization greedy algorithms [16]. Our main challenge was to define and design
such a “simplicial partition for sum of squared distances”, and the coreset to be computed for each
subset in this partition.

1.5 Preliminaries

In this section we define the notation that will be used in the next sections.

Let n ≥ 1 and denote [n] = {1, · · · , n}. An n-signal is a set {(x, f(x)) | x ∈ [n]} that is
defined by a function f : [n] → R (known as the graph of f ). For an additional integer m ≥ 1,
an n × m signal D = {(x, g(x)) | x ∈ [n] × [m]} is the set that corresponds to a function
g : [n] × [m] → R. That is, D represents an n × m real matrix whose size is |D| = N = nm.
For integers i1, i2, j1, j2 such that 1 ≤ i1 ≤ i2 ≤ n and 1 ≤ j1 ≤ j2 ≤ m, an n ×m sub-signal
is the set B =

{
(x, g(x)) | x ∈ {i1, · · · , i2} × {j1, · · · , j2}

}
⊆ D; see Fig. 1. A sub-signal B

is called a row (respectively, column) if i1 = i2 (respectively, j1 = j2). For a sub-signal B, we
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denote by BT = {((j, i), y) | ((i, j), y) ∈ B} the transposed sub-signal. A k-segmentation s is
said to intersect an n×m sub-signal B if s assigns at least two distinct values to the entries of B,
i.e., |{s(x) | (x, y) ∈ B}| ≥ 2. Furthermore, by definition, a k-segmentation s induces a partition
of an n × m sub-signal B into at most k n × m sub-signals. For two functions f, g : R → R
we use the big O notation f(x) ∈ O(g(x)), thinking of O(g(x)) as the class of all functions h(x)
such that |h(x)| ≤ c|g(x)| for every x > x0, for some constants c and x0. Lastly, we denote
SEGk := SEG(k,2) for brevity.

Paper organization. Section 2 provides a rough approximation to the k-segmentation problem.
Section 3 provides an algorithm for computing a simplicial partition for the k-segmentation problem.
Each region in this partition will be then compressed individually in Section 4 to obtain our desired
coreset. Experimental results and discussions are given in Section 5, and a conclusion in Section 6.

2 Bi-criteria Approximation

A coreset construction usually requires some rough approximation to the optimal solution as its input.
Unfortunately, we do not know how to efficiently compute even a constant factor approximation to
the optimal k-segmentation problem in Definition 2, as explained in Section 1. Instead, we provide
an (α, β)k or bi-criteria approximation [22], where the approximation is with respect to a pair of
parameters: the number of segments in the partition may be up to βk instead of k, and the loss may
be up to α · optk(D) instead of optk(D).
Definition 4 ((α, β)k-approximation.). Let D be an n ×m sub-signal, k ≥ 1 be an integer and
let α, β > 1. A function s : [n] × [m] → R is an (α, β)k-approximation of D, if s is a βk-
segmentation whose fitting loss to D is at most α times the loss of the optimal k-segmentation of D,
i.e., s ∈ SEG(βk) and `(D, s) =

∑
(x,y)∈D (s(x)− y)

2 ≤ α · optk(D).

We now describe an algorithm that computes such an approximation, in time only linear in the input’s
size |D| = nm. The following lemma gives the formal statement. A suggested implementation for
the algorithm is given in the appendix, as well as the full proof of the lemma; see Section B.
Lemma 5. Let D = {(x1, y1), · · · , (xnm, ynm)} be an n×m sub-signal and k ≥ 1 be an integer.
Then, there is an algorithm that can compute, in O(knm) time, an (α, β)k-approximation for D,
where α ∈ O(k log(nm)) and β ∈ kO(1) log2 (nm).

Overview of the bicriteria algorithm from Lemma 5: The algorithm is iterative and works as
follows. At the ith iteration, we find a collection Bi of at most t disjoint sub-signals in Di (where
D0 = D is the input), for which: (i)

∑
B∈Bi

opt1(B) ≤ optk(Di) ≤ optk(D), and (ii) ∪B∈Bi
B

has size |∪B∈Bi
B| ≥ |Di|/c for some parameter c that depends on k, i.e., those sub-signals contain

at least a 1/c fraction of Di. We then define Di+1 = Di \ ∪B∈BiB. After repeating this for at
most ψ ∈ O(c log(nm)) iterations, we end up covering all entries of D with sub-signals where the
overall loss of the sub-signals in each iteration is at most optk(D). This defines a partition of D
into a collection of at most tψ disjoint sets B′, which, in turn, define a set of at most (tψ)2 distinct
sub-signals. The output is now simply the function s that assigns, for every B ∈ B′ and b ∈ B, the
mean value s(b) = 1

|B|
∑

((i,j),y)∈B y of B. See Pseudo-code in Algorithm 4 at the appendix.

3 Balanced Partition

In this section we present Algorithm 2, which computes a partition similar to the simplicial partition
described in Section 1.4; It computes, in O(|D|) time, a partition B of the input D that satisfies
the following properties: (i) |B| depends on k/ε but independent of |D|, (ii) the loss opt1(B) of
every B ∈ B is small, and (iii) every k-segmentation s intersects only few sub-signals B ∈ B; see
Definition 6, Fig. 2, and Lemma 7. A full proof is given at the appendix; see Section C.
Definition 6 (Balanced Partition). Let D be an n×m signal, k ≥ 1 be an integer, and c1, c2, c3 > 0.
A (c1, c2, c3)k-balanced partition of D is a partition B of D such that: (i) B contains |B| ≤ c1 n×m
sub-signals, (ii) opt1(B) ≤ c2 for every B ∈ B, and (iii) every k-segmentation ŝ intersects at most
c3 sub-signals B ∈ B (i.e., assigns more than one unique number to those sub-signals).
Lemma 7. Let D be an n ×m signal, k ≥ 1 be an integer, ε ∈ (0, 1/4) be an error parameter,
and s : [n] × [m] → R be an (α, β)k-approximation of D, where α, β > 1. Define σ := `(D,s)

α
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Figure 2: (Left): A 6 × 5 signal D consisting of 6 rows R1, · · · , R6. (Middle): A step by step
illustration of the call to B := PARTITION(D, 1/4, 64) which partitions D into |B| = 13 sub-
signals (sub-matrices) as follows. (1) B′ := SLICEPARTITION({R1} , 4) (top green row). (2)
B′ := SLICEPARTITION(R1 ∪R2, 4) (middle green matrix), and so on as long as the output contains
at most |B′| ≤ 1/γ = 4 sub-signals (as in the bottom green matrix (3)). We then append B′ to the
output B, and repeat with the remaining {R4, R5, R6}. (4) B′ := SLICEPARTITION({R4} , 4) which
already returns |B′| = 5 > 1/γ signals (yellow matrix). We append them to B and repeat. (Right):
The final partition B, where opt1(B) ≤ γ2σ = 1/42 · 64 = 4 for every B ∈ B.

and γ := ε2

βk . Let B be an output of a call to PARTITION(D, γ, σ); see Algorithm 2. Then B an(
O
(
α
γ2

)
, γ2σ,O

(
kα
γ

))
k
-balanced partition of D. Moreover, B can be computed in O(nm) time.

Overview of Algorithms 1 and 2. Algorithm 2 gets as input an n×m-signal D and two parameters
σ, γ. Algorithm 2 aims to compute a balanced partition of D; see Fig. 2. In turn, it calls Algorithm 1,
which takes as input an n×m sub-signal R that is defined by several contiguous rows of the original
dataset D, and a parameter σ > 0, and aims to compute a partition B of R. To do so, Algorithm 1
partitions R along the vertical dimension (e.g., into vertical slices), in a greedy fashion, such that for
every B ∈ B, opt1(B) is as large as possible, while still upper bounded by σ. This will ensure that
the partition is into a relatively small number of slices. In the case where one of the sub-signals B in
this vertical partition of R contains only one column, and already exceeds the maximum tolerance
opt1(B) > σ, we recursively apply Algorithm 1 to BT in order to partition B horizontally. As long
as the total number of slices returned by Algorithm 1 is smaller than 1/γ, Algorithm 2 adds yet
another row to the previous set of rows, and repeats the above process. At this point, the partition
of the current horizontal slice (collection of rows) R is final, and is added to the output partition of
Algorithm 2. In turn, a new horizontal slice R of just one row, the first row of D that is not included
in the previous R, is initiated on which we again call Algorithm 1.

Algorithm 1: SLICEPARTITION(D,σ)

Input :A parameter σ > 0 and an n×m
signal D = {(xi, yi)}Ni=1.

Output :A partition B of D.
1 B := ∅ and cbegin := 1
2 while cbegin ≤ m do
3 B := {((i, j), y) ∈ D | j = cbegin}

// extract first column
4 if opt1(B) > σ then
5 B′ := SLICEPARTITION(BT , σ)

6 B := B ∪
{
B′

T | B′ ∈ B′
}

cbegin := cbegin + 1
7 else
8 cend := cbegin
9 while opt1(B) ≤ σ and cend < m do

10 cend := cend + 1 and lastB := B
11 B :=

{((i, j), y) ∈ D | i ∈ [cbegin, cend]}
12 B := B ∪ {lastB}
13 cbegin := cend
14 return B

Algorithm 2: PARTITION(D, γ, σ)

Input :An n×m signal D, a parameter
γ ∈ (0, 1), and a lower bound
σ ∈ [0, optk(D)].

Output : A partition B of D; see Lemma 7
1 B := ∅ and rbegin := 1
2 while rbegin ≤ n do
3 R := {((i, j), y) ∈ D | i = rbegin}

// extract first row
4 B′ := SLICEPARTITION(R, γ2σ)
5 rend := rbegin
6 lastB′ := B′
7 while |B′| ≤ 1/γ and rend < n do
8 rend := rend + 1
9 lastB′ := B′

10 S :=
{((i, j), y) ∈ D | i ∈ [rbegin, rend]}
// extract a slice

11 B′ = SLICEPARTITION(S, γ2σ)
12 B := B ∪ lastB′
13 rbegin := rend
14 return B
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4 Coreset Construction

In this section, we present our main algorithm (Algorithm 3), which outputs a (k, ε)-coreset for a
given n×m signal D, the number of leaves k ≥ 1, and an approximation error ε ∈ (0, 1).

Overview of Algorithm 3: The algorithm first utilizes the (α, β)k-approximation from Section 2 to
obtain a lower bound σ ≤ optk(D) for the optimal k-segmentation. It then computes, as described
in Section 3, a balanced partition B of D, where opt1(B) is small and depends on σ, for every
B ∈ B. Finally, it computes a small representation (CB , uB) for every B ∈ B, and returns the
union of those representations. Each such pair (CB , uB) satisfies: (i) |CB | = 4, and (ii) has the
same weighted sum of values, weighted sum of squared values, and sum of weights, as B, i.e.,∑

(a,b)∈CB
uB((a, b)) · (b | b2 | 1) =

∑
(x,y)∈B(y | y2 | 1); see Fig. 3. Such a representation can be

computed using Caratheodory’s theorem, as explained in Section E of the supplementary material.

Figure 3: (Left): A matrix representing of a 5× 5 sub-signal B where y is mapped into unique colors
for every (x, y) ∈ B. (Middle): A representative (coreset) pair (CB , uB) for B where CB ⊆ B is
a (small) subset and uB : CB → [0,∞) is a weight function. That is, the pair (CB , uB) satisfies∑

(a,b)∈CB
uB((a, b)) · (b | b2 | 1) =

∑
(x,y)∈B(y | y2 | 1). (Right): A duplication of the coreset

points according to their weight. We call the resulting pair a “smoothed” version of (CB , uB); see
more details and formal definition in Section D of the supplementary material.

Some intuition behind Algorithm 3: Consider some k-segmentation s. By the properties of the
balanced partition B of D, only a small number of sub-signals B ∈ B are intersected by s, i.e.,
assigned at least 2 distinct values. For every non-intersected sub-signal B ∈ B, the loss `(B, s) is
accurately estimated by the (coreset) pair (CB , uB). On the other hand, for every sub-signal B ∈ B
which is intersected by s, by the guarantees of the representation (CB , uB), the loss `(B, s) will
be approximated, using only (CB , uB), up to some small error that depends on opt1(B). However,
again by the properties of B, we have that opt1(B) is small. Hence, using the union (C, u) of the
representations we can approximate `(D, s) as required. Furthermore, combining that |CB | ∈ O(1)
for every B ∈ B with the fact that |B| is small yields that |C| is indeed small; see Theorem 8.

Algorithm 3: SIGNAL-CORESET(D, k, ε); see Theorem 8
Input :An n×m signal D, an integer k ≥ 1, and an error parameter ε ∈ (0, 1/4).
Output :A (k, ε)-coreset (C, u) for D.

1 s := an (α, β)k approximation of D for α ∈ O(k log(nm)) and β ∈ kO(1) log2 (nm) ;see
Lemma 5 for suggested implementation.

2 γ := ε2/(βk), σ := `(D,s)
α and C := ∅

3 B := PARTITION(D, γ, σ) // see Algorithm 2.
4 for every set B ∈ B do
5 (CB , uB) := a (1, 0)-coreset for B, (a zero error coreset for k = 1), such that CB ⊆ B,

|CB | = 4, and
∑

(a,b)∈CB
uB((a, b)) · (b | b2 | 1) =

∑
(x,y)∈B(y | y2 | 1) this is done

using Caratheodory’s theorem; see Corollary 17 in the appendix.
6 Replace each of the coordinates a of the 4 pairs (a, b) ∈ C with one of the 4 corner

coordinates of the pairs in B ; see detailed explanation if the proof of
Theorem 8.

7 C := C ∪ CB and u((a, b)) := uB((a, b)) for every (a, b) ∈ CB .
8 return (C, u)

Theorem 8 (Coreset). Let D = {(x1, y1), · · · , (xN , yN )} be an n × m signal i.e., N := nm.
Let k ≥ 1 be an integer (that corresponds to the number of leaves/rectangles), and ε ∈ (0, 1/4)
be an error parameter. Let (C, u) be the output of a call to SIGNAL-CORESET(D, k, ε/∆) for a
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sufficiently large constant ∆ ≥ 1; see Algorithm 3. Then, (C, u) is a (k, ε)-coreset for D of size

|C| ∈ (k log(N))O(1)

ε4 ; see Definition 3. Moreover, (C, u) can be computed in O(kN) time.

Coreset size. While Theorem 8 gives a worst-case theoretical upper bound, this bound is too
pessimistic in practice, as common in coreset papers [42, 34]. This phenomenon is well known for
coresets; see discussion e.g., in [21, 53]. The reasons might include: worst-case artificial examples
vs. average behaviour on structured real-world data, noise removing/smoothing by coresets, the fact
that in practice we run heuristics that output a local minima (and not optimal solutions with global
minimum), non-tight analysis (especially when it comes to constants), etc.

Our experiments in Section 5 show that, empirically, the constructed coresets are significantly smaller:
for N := nm ∼ 140, 000, k = 1000, and ε = 0.2, Theorem 8 predicts, in the worst case, a coreset
of size larger than the full dataset size N . However, such an ε error is obtained with a coreset of size
at most 1% of the input; see Fig. 4.

5 Experimental Results

We implemented our coreset construction from Algorithm 3 in Python 3.7, and in this section we
evaluate its empirical results, both on synthetic and real-world datasets. More results are placed in
the supplementary material; see Section A. Open-source code can be found in [35]. The hardware
used was a standard MSI Prestige 14 laptop with an Intel Core i7-10710U and 16GB of RAM. Since
our coreset construction algorithm does not compete with existing solvers, but improves them by
reducing their input as a pre-processing step, we apply existing solvers as a black box on the small
coreset returned by Algorithm 3. The results show that our coreset can boost, by up to x10 times, the
running time and storage cost of common random forest implementations.

Implementations for forests. We used the following common implementations: (i) the func-
tion RandomForestRegressor from the sklearn.ensemble package, and (ii) the function
LGBMRegressor from the lightGBM package that implements a forest of gradient boosted trees.
Both functions were used with their default hyperparameters, unless states otherwise.
Data summarizations. We consider the following compression schemes:
(i): DT-coreset(D, k, ε) - The implementation based on Algorithm 3. In all experiments we used a
constant k = 2000 for computing the coreset, regardless of the (larger) actual k value in each test,
since k = 2000 was sufficient to obtain a sufficiently small empirical approximation error. Hence,
the parameter ε controls the trade-off between size and accuracy.
(ii): RandomSample(D, τ) - returns a uniform random sample of size τ from D. In all tests τ was
set to the size of the coreset DT-coreset(D, k, ε) for fair comparison.
Datasets. We used the following pair of datasets from the public UCI Machine Learning Reposi-
tory [3], each of which was normalized to have zero mean and unit variance for every feature:
(i): Air Quality Dataset [18] - contains n = 9358 instances and m = 15 features.
(ii) Gesture Phase Segmentation Dataset [45] - contains n = 9900 instances and m = 18 features.
The experiment. The goal was to predict missing entries in every given dataset, by training random
forests on the available data. The test set (missing values) consists of 30% of the dataset, and was
extracted from the input dataset matrix by randomly and uniformly choosing a sufficient number of
5× 5 patches in the input dataset, and defining them as missing values. The final loss of a trained
forest is the sum of squared distances between the forest predictions for the missing values, and the
ground truth values. To tune the hyperparameter k, we randomly generate a set K of possible values
for k on a logarithmic scale. Then, we either: (i) apply the standard tuning (train the forest on the full
data, for each value in K, and pick the one with the smallest test set error), or (ii) compress the input
(only once) into a small representative set, and then apply the standard tuning on the small, rather
than the full, data. The experiment was repeated 10 times. All the results are averaged over all 10
tests; see Fig. 4.

Discussion. While the size and accuracy of our coreset are independent of our exact implementation
of Algorithm 3, the running time is heavily based on our naive implementation, as compared to
the very efficient professional Python libraries. This explains why most of the running time is still
devoted to the coreset construction rather than the forest training. Nevertheless, even our simple
implementation yielded improvements of up to x10 in both computational time and storage, for a
relatively small accuracy drop of 0.03 in the SSE. Tuning more than one hyperparameter will result
in a bigger improvement. Furthermore, Fig. 4 empirically shows that tuning a hyperparameter on the
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Figure 4: Experimental results. (Top): The X-axis is the compression size. For every compression
size γ, hyperparameter tuning is applied on both the coreset and the uniform sample (which are
both of size γ). A random forest is then trained, on the full data, using those tuned parameters. The
Y -axis presents the test set SSE loss of the trained forests. (Bottom left): Hyperparameter tuning.
For every different value of k (X-axis), a forest is trained using this parameter value either on the
compression (of two different sizes) or on the full data. The Y -axis presents `+ k/105, where ` is
the normal SSE loss of the trained forest on the test set. (Bottom right): Time comparison. The
Y -axis presents the total running time of both to compute the compression and to tune the parameter
k on the compression (out of 50 different values). Note that the bottom right figures measure the total
time to tune the parameter k in the bottom left figures, but using many more compression sizes. The
optimal obtained parameter was then used to train the random forest in the top figures.

coreset yields a loss curve very similar to the loss curve of tuning on the full data. Lastly, we observe
that, in practice, our coresets have size much smaller than predicted in the pessimistic theory.

6 Conclusions and Future Work

While coresets for k-trees do not exist in general, we provided an algorithm that computes such a
coreset for every input n×m signal. The coreset size depends polynomialy on k log(nm)/ε and can
be computed in O(nmk) time. Our experimental results on real and synthetic datasets demonstrates
how to apply existing forest implementations and tune their hyperparameters on our coreset to boost
their running time and storage cost by up to x10. In practice our coreset works very well also on
non-signal datasets, probably since they have “real-world” properties that do not exist in the artificial
worst-case example from Section 1.2. An open problem is to define these properties. Moreover, while
this paper focuses on the sum of squares distances loss, we expect that the results can be generalized
to support other loss functions; see Section 1.2. Lastly, supporting high-dimensional data (tensors),
instead of matrices, is a straightforward generalization that can be achieved via minor modifications
to our algorithms. We also leave this to future work.
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Figure 5: The blobs dataset. The dataset D was generated using the function
sklearn.datasets.make_blobs, and contains n = 17, 000 points clustered into 3 clusters (con-
taining 8500, 5800, and 2700 points), each with a different label. A coreset (C, u) was constructed
using Algorithm 3. From top down, the rows illustrate: (i) The input dataset D, (ii) The balanced
partition of D, including the number of sets in the partition (iii) The weighted coreset points. Each
point (x, y) ∈ C is plotted at location x, colored according to its label y, and its radius is proportional
to its weight u(x, y). The percentage of the coreset size relative to the full data is presented. (iv) The
unweighted coreset points. Each point (x, y) ∈ C is plotted at location x, colored according to y,
and has a fixed radius. The percentage of the coreset size relative to the full data is presented. (v) The
partition of the space via a decision tree computed using a call to DecisionTreeRegressor from
the sklearn.tree package, where the input was the weighted coreset points only. Each region is
assigned a color according to the label assigned to it by the computed tree. (vi) Similar to Row (v),
but where the decision tree is trained on the full data. Algorithm 5 was used during training of the
decision tree to evaluate the loss of each model.

A Additional Experiments

In this section, we present some additional experiments conducted using our algorithm from Sec-
tions 3-4. We give visual illustration both of our coreset itself and of the result of applying a very
common decision tree implementation on the coreset, as compared to running the same function on
the original (full) data; see Fig. 5-6.

Discussion. Visual representation. As seen in Fig. 5-6, the balanced partition in the second row
partitions the input data into multiple subsets, where, as expected, flat and relatively smooth regions
are partitioned into a smaller number of large cells, while more complex regions are partitioned into a
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Figure 6: The moons dataset. The dataset was generated using the function
sklearn.datasets.make_moons. The dataset contains n = 24, 000 points spread across
two interleaving half circles (12, 000 points for each half circle), each with a different label. See
caption of Fig. 5 for a detailed explanation about the rows.

larger number of finer cells. This is expected since the balanced partition insures a small variance
inside each cell.

Furthermore, as seen in the third row of the above figures, the weighted coreset contains a small
number of “large” circles (points with large weight) in the flat and relatively smooth regions, while it
contains large number of “small” circles (points with small weight) in the more complex regions of
the input.

Accuracy. As seen in the last two rows of Fig. 5-6, the decision tree trained only on the coreset
points resembles the decision tree trained on the full data, even for coresets of size only 6%, 8%, and
14% of the input data, as seen in Fig. 5,6, and 7 respectively. This implies a x10 faster training time
of a decision tree (or, similarly, a forest) on a given coreset, compared to training it on the full data,
with almost no compromises to the accuracy.

The difference in the coreset size required in order to accurately represent the full data depends on the
complexity of the input dataset. Indeed, the dataset in Fig. 5 is a much simpler dataset for a decision
tree to classify, compared to the dataset in Fig. 7. Hence, the coreset sizes required in Fig. 5 are
smaller than the ones in Fig. 7.
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Figure 7: The circles dataset. The dataset was generated using the function
sklearn.datasets.make_circles. The dataset contains n = 26, 000 points spread across a big
circle (14, 000 points) and a small circle (12, 000 points), each with a different label. See caption of
Fig. 5 for a detailed explanation about the rows.

B Bi-criteria Approximation

Notations. A sub-signal B is said to be horizontally intersected by a k-segmentation function s
if there are ((i1, j1), y1), ((i2, j2), y2) ∈ B where i1 6= i2 such that s(i1, j1) 6= s(i2, j2). Similarly,
a block B of D is said to be vertically intersected by s if there are ((i1, j1), y1), ((i2, j2), y2) ∈ B
where j1 6= j2 such that s(i1, j1) 6= s(i2, j2). B is said to be intersected by s if B is either
horizontally or vertically intersected, i.e., |{s(x) | (x, y) ∈ B}| > 1. A set of sub-signals B is said
to be horizontally (vertically) intersected by s if it contains a sub-signal B ∈ B that is horizontally
(vertically) intersected by s.

Also, we might abuse notation and denote by signal (sub-signal) an n×m signal (sub-signal) and by
k-segmentation an n×m k-segmentation.

In this section we give a constructive proof for Lemma 5. A suggested implementation for this
constructive proof is given in Algorithm 4.

We first prove a small technical observation (see Observation 9), and then we prove Lemma 10, which
will be used throughout the proof of Lemma 5.
Observation 9. Let A and B be two n×m sub-signals. Then it holds that

opt1(A ∪B) ≥ opt1(A) + opt1(B).
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Algorithm 4: BICRITERIA(D, k); Lemma 5

Input :An n×m sub-signal D = {(xi, yi)}Ni=1 and an integer k ≥ 1.
Output :An (α, β)k-approximation for D.

1 B := ∅
2 ν, γ := sufficiently large constants // see proof of Lemma 5
3 while |D| > k logN do
4 if D contains a row R with |R| ≥ |D|νk then
5 Partition [m] into t′ = γk intervals [m] = ∪t′j=1Ij such that every j ∈ [t′], the size of

each corresponding sub-signal Rj = {((x1, x2), y) ∈ R | x2 ∈ Ij} is

|Rj | ∈
{
|R|
t′ − 1, |R|t′ + 1

}
. // e.g., by a greedy pass over [m].

6 B := the set of t′ − 2k signals Rj with the smallest opt1(Rj).
7 else
8 Partition [n] into ψ intervals [n] = ∪ψj=1Ij such that for every j ∈ [ψ], the size of each

corresponding sub-signal Dj = {((x1, x2), y) ∈ D | x1 ∈ Ij} is |D|νk ≤ |Dj | ≤ 2|D|
νk .

// e.g., by a greedy pass over [n].
9 if at least ψ/2 of the sub-signals Dj do not contain a column col of size |col| ≥ |Dj |

2(νk)2

then
10 Vertically partition each of the (at least ψ/2) sub-signals Dj into ψj sub-signals, each

such sub-signal B of size |Dj |
2(νk)2 ≤ |B| ≤

|Dj |
(νk)2 , and let B′ contain the union of all

those sub-signals. e.g., via a greedy algorithm.
11 B := the set of |B′| − 4ν2k3 − 2kψ signals B ∈ |B′| with the smallest opt1(B).
12 else
13 B :=

{
C | C is a column of Dj , |C| ≥ |Dj |

2(νk)2 and j ∈ [ψ]
}

14 D := D \ ∪B∈B′B and B := B ∪ B
15 s(b) := 1/|B|

∑
(x,y)∈B y for every b ∈ B and B ∈ B.

16 return s

Proof. Let C = A ∪B. Let µ = 1
|C|
∑

(x,y)∈C y be the weighted mean of A ∪B. By Definition of
opt we have that

opt1(A ∪B) =
∑

(x,y)∈C

(y − µ)2

=
∑

(x,y)∈A

(y − µ)2 +
∑

(x,y)∈B

(y − µ)2

≥ opt1(A) + opt1(B),

where the first derivation holds since the mean of a points minimizes the sum of squared distances to
those points, and the last derivation is by the definition of opt1.

Lemma 10. Let D = {(x1, y1), · · · , (xN , yN )} be an n×m sub-signal and let k ≥ 1 be an integer.
Then, in O(N) time we can find a set B of |B| = t ∈ O(k3) mutually disjoint blocks with respect to
D, for which

(i)
∑
B∈B opt1(B) ≤ optk(D).

(ii) |∪B∈BB| ∈ Ω
(
N
k

)
.

Proof. Let ν > 50 be an arbitrary parameter and let γ ≥ 8 be a parameter that will be defined later.
We will prove Lemma 10 for t ≤ 2ν3k3 and for |∪B∈BB| ≥ N

8νk .

We start with the simple 1-dimensional case, namely – we assume that m = 1. In this case, we just
partition [n] into t′ = γk consecutive intervals [n] = ∪t′1 Ej , such that each corresponding sub-signal
Dj = {((a, b), y) ∈ D | a ∈ Ej}, j ∈ [t′] of D has equal share of elements in D (up to ±1), i.e.,

17



|Dj | ∈ {|D|/t′ − 1, |D|, |D|/t′ + 1} . This can be done by moving point by point along the elements
of D, which are assumed to be sorted in ascending order according to a for every ((a, b), y) ∈ D, and
defining a new interval at the first moment the current interval contains more than |D|/t′ elements
of D or just at the prior point. We then compute for each Dj , j ∈ [t′] the optimal opt1(Dj), and
return as output the set B containing the t = t′ − 2k sub-signals Dj with the smallest loss opt1(Dj),
among all the t′ sub-signals {D1, · · · , Dt′}.
To see what guarantees we get, note that the computation takes O(nm) = O(N) time to sort the
elements ((a, b), y) of D according to a, since a ∈ [nm] is a bounded integer. Afterwards, the above
greedy partition also takes O(nm) = O(N) time. Furthermore,

|∪B∈BB| ≥ (γ − 2)k · |D|
γk
≥ γ − 2

γ
|D| ≥ N

8νk
.

For γ ≥ 8 this proves Property (ii) above.

Finally, any n × 1 k-segmentation function intersects at most 2k sub-signals from {Dj}t
′

j=1 (i.e.,
at most 2k sub-signals are assigned more than 1 distinct value via the k-segmentation function).
Hence, the optimal k-segmentation s∗ of D intersects at most 2k of those sub-signals as well. This
implies that at least t′ − 2k ≥ (γ − 2)k of the intervals {Dj}t

′

j=1 which are assigned 1 distinct value
|{s(x) | (x, y) ∈ Dj}| = 1. Hence, by Observation 9, we conclude that optk(D) ≥

∑
B∈B opt1(D)

which verifies the 1st item above.

We remark that for the 1-dimensional case we can do much better (there is an overall (1 + ε)-
approximation of the k-segmentation using logarithmic number of blocks), but this will not be used
here. Another remark is that we have ignored the ±1 slack in the sizes above, making the actual part
of D that is removed at least γ−2γ |D| − t

′. This is insignificant in the 1-dimensional case above, as
for t = O(1) and for |D| ≥ log n this would be an insignificant fraction, while for smaller D, we
can just use single point sub-signals.

The 2-dim case : Consider a row R of D, say the i′th row R = {((a, b), y) ∈ D | a = i}. We
call a row R of D r-heavy if |R| ≥ |D|/r, namely – R contains at least |D|/r elements from D.
Analogously, we define a column to be r-heavy.

Assume first that our D contains a νk-heavy row R. We choose R and use it as in the 1-dimensional
case. As explained above we can find inR a set of disjoint sub-signals B containing γk blocks and for
which the first item above holds for optk(R) and in particular for optk(D), i.e.,

∑
B∈B opt1(B) ≤

optk(R) ≤ optk(D). Further, using the above guarantees for the 1-dim case, |∪B∈BB| ≥ γ−2
γ ·|R| ≥

γ−2
γ ·

|D|
νk . This proves 2nd item for this case (with γ ≥ 3).

Otherwise, let ei = |Ri| where Ri = {((a, b), y) ∈ D | a = i}. By our assumption ei ≤ |D|/νk
for every i ∈ [n]. Our algorithm is essentially identical to the 1-dimensional case, on the 1-dim
array L = (e1, . . . , en1) where we weight the ith element by ei. Namely, we find a partition
of L into ψ contiguous subintervals E = {E1, · · · , Eψ} such that the corresponding sub-signals
Dj = {((a, b), y) ∈ D | a ∈ Ej} of D are as equal as possible. By our assumption this could be
done so that for any j ∈ ψ, the number of elements in Dj is between |D|νk and at most 2|D|

νk . This
is since adding a new ‘point’ from the list to an existing interval may increase the sum by at most
|D|/νk. this implies that νk/2 ≤ ψ ≤ νk.

Next we perform the above algorithm again on D1, · · · , Dψ with the intention to “vertically partition”
each such Dj , i.e., split each Dj into sets according to the value b for every ((a, b), y) ∈ Dj (rather
than considering the value a above). Let r = 2ν2k2, we continue with the following case analysis:
(i) at least a 1

2 -fraction of {D1, · · · , Dψ} contain no a r-heavy column, and (ii) at most a ψ/2 of
{D1, · · · , Dψ} contain no a r-heavy column.

Case (i): At least a 1
2 -fraction of {D1, · · · , Dψ} contain no a r-heavy column. Then we partition

each set Dj with no r-heavy column into ψi sub-signals
{
D

(1)
j , · · · , D(ψi)

j

}
of nearly equal number

of points, where the partition is applied onto the values b of every ((a, b), y) ∈ Dj . By a reasoning

similar to that above, each r/2 ≤ ψi ≤ r, and each such block B ∈
{
D

(1)
j , · · · , D(ψi)

j

}
contains

|Di|/r ≤ |B| ≤ 2|Di|/r. Using the bounds on |Di| and r we get |D|
2ν3k3 ≤ |B| ≤

2|D|
ν3k3 . In particular
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we conclude that the total number of such sub-signals is at most t′, and t′ ≤ 2ν3k3. On the other
hand, t′ ≥ ψ

2
|D|
νk ·

ν3k3

2|D| ≥ ν
3k3/8. Let B2 be the collection of these sub-signals.

We choose for our output collection, B, the set of t′ − z sub-signals B ∈ B2 with the smallest
opt1(B), for z = 2k(r + ψ) ≤ 6k3ν2.

We note that B contains t sub-signals, where t′ − z ≤ t ≤ t′. Further, by the lower bound on t it
follows that |∪B∈BB| ≥ (t′ − z) · |D|2ν3k3 ≥ (ν3k3/8− 6k3ν2) |D|2ν3k3 ≥

|D|
8 (1− 48/ν).

This verifies the 2nd item for this case. Finally, we note that any row of D is shared by at most
r sub-signals of B, and each column of D is shared by at most ψ sub-signals of B. Hence, any
k-segmentation function may intersect at most z = 2k(r + ψ) sub-signals from B. Therefore, for
any k-segmentation s there are at least t′ − z sub-signals in B2 which are not-intersected by s. By
our definition of B to be the set of t′ − z sub-signals in B2 with the smallest loss, we obtain that the
loss `(D, s) is at least

∑
B∈B `(B) proving the 1st item of the lemma for this case.

Case (ii): At most ψ/2 of {D1, · · · , Dψ} contain no a r-heavy column, namely – at least ψ/2 of
the Di have a r-heavy column. In this case we take the heavy column from each Di as its own
sub-signal. We get a collection B1 of ψ1 ≥ ψ/2 blocks. We now return as output the set B of the
ψ1 − 2k sub-signals B ∈ B1 with the smallest opt1(B). We note that number of blocks we output in
this case is at most ψ ≤ νk.

Note also that B contains at least ψ/2 blocks, it follows that | ∪B∈B B|) ≥ ψ
2 ·

|D|
2ν2k2 ≥

|D|
8νk which

proves the 2nd item in the lemma.

Finally, note that any k-segmentation s can intersect at most 2k intervals from B1 (similarly to the
1-dim case). Hence, there are at least |B1| − 2k = ψ1 − 2k sub-signals in B1 that are not-intersected
by s, which implies that its loss `(D, s) is at least the sum

∑
B∈B opt1(B), which proves the 1st

item of this lemma.

Remark: we did not optimise the parameter. A slightly better partition can be obtains (less blocks),
but this is good enough for our purposes.

Computational time: Note that the elements of the input D can be sorted in lexicographic order in
O(nm) = O(N) time since the coordinates a and b for every ((a, b), y) ∈ D are bounded integers.
Then, a linear-time preprocessing can be applied to the input D to store some statistics, e.g., the
number of elements in each non-empty row or column, and the index of the next non-empty row or
column for every element in D. Afterwards, the above greedy partition also takes O(nm) = O(N)
time.

We now restate and prove Lemma 5 from Section 2.

Lemma 11 (Lemma 5). Let D = {(x1, y1), · · · , (xN , yN )} be an n × m signal and k ≥ 1 be
an integer. Then, in O(kN) time we can compute an (α, β)k-approximation for D, where α ∈
O(k logN) and β ∈ O(kO(1) log2N).

The proof of the above claim is a constructive proof. A suggested implementation is provided in
Algorithm 4.

Proof. The top level idea of the algorithm is as follows. We suggest an iterative algorithm. We
start the first iteration with D1 = D and, using Lemma 10, find a collection of disjoint sub-signals
B1 = {B1, · · · , Bt} in D1 (which will not necessarily cover the entire signal D1), such that: (i)
the sum of their 1-segmentation loss satisfies,

∑t
i=1 opt1(Bi) ≤ optk(D1) = optk(D), and (ii)

∪B∈B1
B has size |∪B∈B1

B| ≥ |D1|/c for some c (e.g., c ∈ O(k) in the lemma). Let B1 be such a
collection. We then ‘delete’ from D1 the elements of ∪B∈B1

B, and set D2 = D1 \ ∪B∈B1
B.

In the ith iteration, we repeat the same process with respect to the current set Di. Namely, we find a
collection Bi of at most t disjoint sub-signals in D, for which: (i)

∑
B∈Bi

opt1(B) ≤ optk(Di) ≤
optk(D), and (ii) ∪B∈Bi

B has size |∪B∈Bi
B| ≥ |Di|/c, i.e., those blocks cover at least a constant

fraction of Di.

Repeating these iterative procedure for at most ψ = O(c log(nm)) times, we end up covering all
entries of D with sub-signals where the overall loss of the sub-signals in each iteration is at most
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optk(D). This defines a collection of at most tψ sub-signals B that cover the entire original set D.
Hence, the total overall loss over those sub-signals is

∑
B∈B′ OPT1(B) ≤ ψoptk(D). By defining

the output function s such that for every B ∈ B and b ∈ B, s assigns to b the mean value of B,
i.e., s(b) = 1/ |B|

∑
((i,j),y)∈B y, we obtain that `(B, s) = opt1(B) for every B ∈ B, and that the

`(D, s) ≤
∑
B∈B `(B, s) ≤ ψoptk(D).

While for every B ∈ B s assigns the same value for every element b ∈ B, there is not necessarily a
partition of n×m into |B| ∈ O(tψ) distinct axis-parallel blocks that correspond to the sub-signals
of B. Therefore, s is not necessarily a |B|-segmentation function. However, looking at all possible
intersections of the sub-signals in B, it is easy to realize that the tψ sub-signals in B define a partition
of D into at most O(t2ψ2) sub-signals B′ that indeed correspond to a distinct partition of n×m into
|B′| distinct axis-parallel blocks. Hence, s is guaranteed to be a |B′|-segmentation function.

The parameters that are guaranteed by the lemma are c ∈ O(k), t ∈ O(k3). This implies that
β = |B′| ∈ O(t2ψ2) = O(k8 log2 nm) and α = ψ ∈ O(k log nm).

Computational time: By Lemma 10, each of the ψ iterations above takes time linear in the input
size. The input size in the i’th iteration is O(N((k − 1)/k)i) since at each iteration we remove at
least a 1/k fraction of the input. Hence, the total running time is the sum of the geometric series
N ·

∑
i∈ψ((k − 1)/k)i ∈ O(kN).

C Balanced Partition

In this section we give our full proof for Lemma 7. We first prove the following lemma regarding the
output of Algorithm 1.
Lemma 12. Let D be an n×m sub-signal, and σ > 0 be a parameter. Let B =

{
B1, · · · , B|B|

}
be

the output of a call to SLICEPARTITION(D,σ), where the sub-signals in B are numbered according
to the order in which each of them was added to B; see Algorithm 1. Then the following properties
hold:

(i) B is a partition of D.

(ii) opt1(B) ≤ σ for every sub-signal B ∈ B.

(iii) If |B| > 8k then for any k-segmentation s that does not horizontally intersect D we have

that `(D, s) ≥
(
|B|
4 − 2k

)
σ.

(iv) B can be computed in O(|D|) time.

Proof. We consider the variables defined in Algorithm 1.

Proof of (i): By construction it immediately follows that B is a partition of D.

Proof of (ii): Consider a sub-signal B ∈ B. We prove (ii) for each of the following cases: Case (a):
B was added to B at Line 12, and Case (b): B was either added to B at Line 6

Case (a): In this case, by the condition at Line 9, B must satisfy that opt1(B) ≤ σ.

Case (b): In this case, B was returned via a recursive call. Hence, this case holds trivially by Case
(a) above.

Therefore, (ii) above holds by combining Cases (a)–(b).

Proof of (iii): Let t = |B| and assume for simplicity that t is an even number. Recall that the index
of each sub-signal in B indicates its order of insertion to B, i.e., B1 is the first sub-signal that was
inserted to B and Bt was the last such sub-signal to be inserted to B.

Observe that each recursive call B′ := SLICEPARTITION(BT , σ) at Line 5 returns at least |B′| ≥ 2
sub-signals. This is because the recursive call happens only when opt1(BT ) = opt1(B) > σ, which
can only happen if |{(i, j) | ((i, j), y) ∈ B}| > 1, i.e., BT exceeds the maximum tolerance, and
can indeed be partitioned into sub-signals. Hence, there are at least t/4 distinct pairs of consecutive
sub-signals Bi and Bi+1 that were both either computed via the recursive call or both were not
computed via the recursive call. We now show that each such pair satisfies opt1(Bi ∪Bi+1) > σ.
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Consider a pair of consecutive sub-signals Bi and Bi+1 that were both not computed via the recursive
call at Line 5. Let B′ ⊆ Bi+1 contain the elements ((i, j), y) ∈ Bi+1 with the smallest value of i
over all elements of Bi+1. By the greedy partition loop at Line 9 we obtain that opt1(Bi ∪B′) > σ.
We now have that

opt1(Bi ∪Bi+1) ≥ opt1(Bi ∪B′) > σ,

where the first inequality is by Claim 9.

Consider a pair of consecutive sub-signals Bi and Bi+1 that were both computed via the recursive
call at Line 5. Then, similarly to the previous argument, we obtain that opt1(Bi ∪Bi+1) > σ.

Now, let s be a k-segmentation that does not horizontally intersect B, i.e., it does not horizontally
intersect any B ∈ B. By the definition of s, there might be at most 2k sub-signals in B which are
vertically intersected by s. Hence, among the t/4 distinct consecutive pairs of sub-signals discussed
above there are at least t/4− 2k such pairs that are not intersected by s.

Since B is a partition of D, we have that `(D, s) is at least the sum of opt1(Bi ∪Bi+1) ≥ σ, over
the above t/4− 2k non-intersected pairs of sub-signals. Hence,

`(D, s) ≥
(
t

4
− 2k

)
σ =

(
|B|
4
− 2k

)
σ.

Proof of (iv): The greedy Algorithm 1 can be implemented so that it computes only O(|D|) oper-
ations. The most costly operation is the computation of opt1(B) for some sub-signal B. We now
argue that this can be computed in O(1) time. Let B be a sub-signal and let µB = 1/|B|

∑
(x,y)∈B y

be its mean value. Observe that

opt1(B) =
∑

(x,y)∈B

(y − µB)2

=
∑

(x,y)∈B

y2 + |B| · µB − 2µB
∑

(x,y)∈B

y.
(1)

By precomputing and storing some statistics at each of the signal’s elements, then the three terms on
the right hand side of (1) can all be evaluated in O(1) time for any sub-signal B. Hence, the total
running time of Algorithm 1 is linear in the input size.

We now restate and prove Lemma 7 from Section 3.
Lemma 13. Let D be an n ×m signal, k ≥ 1 be an integer, ε ∈ (0, 1/4) be an error parameter,
and s : [n]× [m]→ R be an (α, β)k-approximation of D. Define σ := `(D,s)

α and γ := ε2

βk . Then

algorithm PARTITION(D, γ, σ) outputs a partition B of D that is an
(
O
(
α
γ2

)
, γ2σ,O

(
kα
γ

))
k
-

balanced partition in O(|D|) time.

Proof. To prove that B is a
(
O
(
α
γ2

)
, γ2σ,O

(
kα
γ

))
k

-balanced partition as in Definition 6, we need
to prove the following properties:

(i) opt1 (B) ≤ γ2σ for every B ∈ B.

(ii) B is a partition of D whose size is |B| ∈ O
(
α
γ2

)
.

(iii) For every k-segmentation ŝ there are O
(
kα
γ

)
sub-signals B ∈ B for which ŝ assigns at

least 2 distinct values, i.e., |{ŝ(x) | (x, y) ∈ B}| ≥ 2.

Proof of (i): Observe that the output set B contains the the union of multiple output sets B′ :=
SLICEPARTITION(·, γ2σ) computed via calls to Algorithm 1. By Property (ii) of Lemma 12, every
sub-signal B ∈ B′ in such output set B′ satisfies that opt1 (B) ≤ γ2σ. Hence, Property (i) of
Lemma 7 immediately holds.
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Proof of (ii): By the greedy construction it holds that B is a partition of D. We now prove that the
number of times that Line 12 was executed is t ∈ O(α/γ), i.e., the number of times we append a
set of signals lastB′ to B is at most O(α/γ). Let B1, · · · ,Bt denote the set of sub-signals lastB′ in
each of the t executions of Line 12, i.e., B1 := lastB′ at the first time Line 12 was executed. Each
such set is called a horizontal set.

Recall that s ∈ SEGβk is a βk-segmentation. First of all, by the definition of a βk-segmentation
function there are at most 2βk sets among the horizontal sets B1, · · · ,Bt which can be horizontally
intersected by s.

Consider two consecutive horizontal sets Bi,Bi+1 that are not horizontally intersected by s, and
let H =

⋃
B∈Bi∪Bi+1

B be the union of all the sub-signals in Bi ∪ Bi+1. We now argue that
the loss `(H, s) is at least O(γσ). Since Bi and Bi+1 are two different horizontal sets, by the
greedy construction we know that their union H could have been partitioned via a call to E :=
SLICEPARTITION(H, γ2σ) into a set E =

{
E1, · · · , E|E|

}
of at least |E| ≥ 1

γ blocks. By substituting
D = H, k = βk,B = E and σ = γ2σ in Property (iii) of Lemma 12, for a βk-segmentation s, we
have that

`(H, s) ≥
(
|E|
4
− 2βk

)
γ2σ ≥

(
1

4γ
− 2βk

)
γ2σ

≥
(

1

4γ
− βk

9ε2

)
γ2σ =

(
1

4γ
− 1

9γ

)
γ2σ

≥ γσ/2,

where the second derivation holds for ε ∈ (0, 1/3), and the third derivation is by the definition of γ.

Assume by contradiction that there are more than 2α
γ such pairs of consecutive horizontal sets

Bi,Bi+1, which are not horizontally intersected by s. The loss of those slices to s would be bigger
than 2α

γ ·
γσ
2 = ασ = `(D, s), which is a contradiction. Therefore, the number of pairs of consecutive

horizontal sets, which are not horizontally intersected by s, cannot exceed O
(
α
γ

)
. Observe that the

total number of horizontal sets that can be intersected by s is at most 2βk. Hence, the total number
of horizontal sets is at most

m ∈ O
(
α

γ
+ 2βk

)
∈ O

(
α

γ

)
. (2)

We now prove that the number of output cells is at most |B| ∈ O
(
α
γ2

)
in two steps. In step (i) we

consider the horizontal sets that contain more than one row of D and show that they contain a total of
O
(
α
γ2

)
sub-signals. In step (ii) we consider the horizontal sets that contain exactly one row of D

and prove that they also contain a total of O
(
α
γ2

)
sub-signals.

Step (i): By (2), the total number of horizontal sets is at most m ∈ O(αγ ). Therefore, the total

number of horizontal slices that contain more than one row of A is also at most O
(
α
γ

)
. By the

construction in Algorithm 2, each such horizontal set Bi with more than 1 row of A is partitioned
into at most 1

γ sub-signals. Hence, the total number of blocks in horizontal sets than contain more

than one row of D is at most O
(
α
γ ·

2
γ

)
= O

(
α
γ2

)
.

Step (ii): Consider all the horizontal sets Bi which contain one row of D, and which have been
partitioned into |Bi| ≤ 2βk ≤ 1/γ blocks. The total number of blocks in such horizontal slices is
thus bounded by the maximum number of horizontal slices m ∈ O(α/γ) times 1/γ for a total of at
most O(α/γ2) blocks.

For the rest of this step, we assume that all horizontal sets Bi have |Bi| ≥ 2βk. Let G ⊆ [t] contain
the indices of the horizontal sets which contain exactly one row of D, and let i ∈ G. Observe that
Bi was computed, at some point, via a call Bi := SLICEPARTITION(∪B∈BiB, γ

2σ). Also, since the
points ∪B∈Bi

B of Bi all have the same row index, observe that Bi cannot be horizontally intersected
by s. Therefore, by substituting D = ∪B∈Bi

B, k = βk and σ = γ2σ in Property (iii) of Lemma 12
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we obtain that

`(Bi, s) ≥
(
|Bi|
4
− 2βk

)
· γ2σ. (3)

Furthermore, we have that

α · σ = `(D, s) ≥
∑
i∈G

`(Bi, s) ≥
∑
i∈G

(
|Bi|
4
− 2βk

)
· γ2σ, (4)

where the first derivation is by the definition of σ, the second derivation holds since
{(x, y) ∈ B | B ∈ Bi, i ∈ G} ⊆ D, and the third derivation is by (3). Rearranging terms in (4)
concludes Step (ii) as ∑

i∈G
|Bi| ≤

4α

γ2
+ 8

∑
i∈G

βk ≤ 4α

γ2
+ 8tβk

≤ 4α

γ2
+

8αβk

γ
∈ O

(
α

γ2

)
.

Therefore, the total number of blocks in horizontal sets that contain exactly one row of D is at most
O
(
α
γ2

)
.

Proof of (iii): By the properties above we have that: (i) there are at mostO(α/γ) horizontal sets, and
(ii) each horizontal set Bi either contains at most O(1/γ) sub-signals, or all the points ((i, j), y) ∈ B
of all the blocks B ∈ Bi have the same row index i. Let ŝ be a k-segmentation. ŝ can horizontally
intersect all the (at most) 1/γ sub-signals of at most k horizontal sets, and can vertically intersect
at most 1 block from each of the O(α/γ) horizontal sets. Hence, the total number of intersected
sub-signals is O(kα/γ).

Computational time: We now prove that B can be computed in O(|D|) time. The computational
time of Algorithm 2 is dominated by the computational time of Line 11 where we partition a slice
S. Using Algorithm 1 we can partition each such slice S in linear O(|S|) time; see Lemma 12.
Therefore, the naive implementation, i.e. by calling Algorithm 1 for every slice S, will result in
O(|D|2) overall time, since many rows of D participate many times in such a call to Algorithm 1.

However, we can implement Line 11 in O(m) time, rather than O(|S|) time, by preprocessing the
input signal D, in linear time O(|D|), and storing some statistics for every element ((i, j), y) ∈ D.
For example, one can store the sum of values and squared values over all elements ((i′, j′), y′) where
i′ < i or j′ < j. Using those values we can compute opt(B) inO(1) time for every sub-signalB ofD.
Now, using such statistics (and possibly more statistics), Line 11 can be implemented in O(m) time
via a greedy algorithm that iterates over the points of the last row R = {((i, j), y) ∈ D | i = rend}
added to S (i.e. with no need to iterate over other elements of S). We leave the small details to the
reader.

D Coreset Construction

In this section, we provide the proof of correctness for our main coreset construction algorithm
presented in Algorithm 3; see Theorem 15. Furthermore, we provide an algorithm than gets as input
a k-segmentation s, as well as a (k, ε)-coreset for some input dataset D, which was computed using
Algorithm 3. The algorithm returns a (1 + ε)-approximation to the loss `(D, s), in O(k|C|) time;
see Algorithm 5 and full details in Lemma 14.

In what follows, for an n×m sub-signal B and a weight function u : B → [0,∞), we abuse notation
and denote u((a, b)) by simply u(a, b) for (a, b) ∈ B.

Some intuition behind Algorithm 5. Given a (k, ε)-coreset (C, u) for an input dataset D =
{(x1, y1), · · · , (xN , yN )}, and a k-segmentation s, the algorithm outputs a (1 + ε)-approximation to
`(D, s) in time that depends only on k and |C|.
During the computation of (C, u) in Algorithm 3, a partition B of D was computed. Then, for every
set B in the partition B, a representative pair (CB , uB) for B was computed and added to C.
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To approximate the loss `(D, s), we will approximate individually `(B, s) for every B ∈ B, and
return the sum of those losses. Therefore, we now consider a single set B ∈ B, and consider the
following two cases.

Case (i) : s assigns the same value for all the elements of B. Then, by construction, it is guaranteed
that `(B, s) =

∑
(x,y)∈CB

uB(x, y)(s(y)− y)2. Therefore, in this case, `(B, s) will be accurately
estimated using (CB , uB).

Case (ii) : s assigns more than one unique value to the elements of B. In this case, if we ig-
nore the computational time, we would ideally want to compute a “smoothed version” (S,w) of
(CB , uB), as shown in Fig. 3 (see (9)- (11) below for formal details). Then, we would return the
loss

∑
(x,y)∈S w(x, y)(s(y) − y)2. However, computing (S,w) is not necessary, since there are

many subsets of B in which all the elements x ∈ B have simultaneously the same label in S and
are assigned the same value by s. Combining this with the fact that those subsets are of rectangular
(simple) shape, we obtain that the loss over those subsets can be evaluated efficiently, as computed in
Algorithm 5.

Algorithm 5: FITTING-LOSS((C, u), s); see Lemma 14
Input :A (k, ε)-coreset (C, u) which was returned from a call to

SIGNAL-CORESET(D, k, ε/∆) in Algorithm 3, for some n×m-signal D, k ≥ 1,
ε ∈ (0, 1) and a sufficiently large ∆ ≥ 1.
A k-segmentation (or k-tree) s.

Output :A (1 + ε)-approximation to the loss `(D, s).
1 loss := 0

2 for every 4 consecutive elements Ĉ = {(ai, bi)}4i=1 in C do
3 Denote by B the sub-signal that corresponds to C ′. // By construction in

Algorithm 3, the coordinates a of the 4 elements (a, b) ∈ Ĉ are the
corners of B.

4 z := | {s(x) | (x, y) ∈ B} |
5 if z = 1 // i.e., s does not intersect B
6 then
7 lossĈ :=

∑
(x,y)∈CB

uB(x, y)(s(x)− y)2. // note that s(x1) = s(x2) for
every x1, x2 ∈ B

8 else
// In this case, s intersects B

9 Denote by S the partition that s induces onto [n]× [m]. // S contains |S| ≤ k
subsets of [n]× [m].

10 i := 1
11 for every S′ ∈ S do
12 Denote by ` the label that s assigns to the elements of S′ i.e., s(x, y) = ` for every

(x, y) ∈ S′
13 z := |B ∩ S′| // The number of element in the intersection of the

S′ and the subset of [n]× [m] that is represented by C ′.
14 lossĈ := 0
15 while z ≥ 1 do
16 if u(ai, bi) ≤ z then
17 lossĈ := lossĈ + u(ai, bi) · (`− bi)2
18 u(ai, bi) := 0
19 z := z − u(ai, bi)
20 i := i+ 1
21 else
22 lossĈ := lossĈ + z · (`− bi)2
23 u(ai, bi) := u(ai, bi)− z
24 z := 0
25 loss := loss+ lossĈ .
26 return loss
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Lemma 14. Let D = {(x1, y1), · · · , (xN , yN )} be an n × m signal i.e., N := nm. Let
k ≥ 1 be an integer, ε ∈ (0, 1/4) be an error parameter, and (C, u) be the output of a call to
SIGNAL-CORESET(D, k, ε) (see Algorithm 3). Let s be a k-segmentation (in particular, a k-tree).
Finally, let loss be the output of a call to FITTING-LOSS((C, u), s); see Algorithm 5. Then there is a
sufficiently large constant ∆ ≥ 1 such that

|`(D, s)− loss| ≤ ∆ε · `(D, s).

Moreover, loss can be computed in O(k|C|) time.

Proof. We consider the variables defined in Algorithm 5.

First, consider a subset Ĉ of C from some iteration of the For loop at Line 2 of Algorithm 5, and let
B be the sub-signal that corresponds to Ĉ, as in Line 3. We now prove that the loss lossĈ computed
in the same iteration of the For loop (i.e., at Lines 3- 25) satisfies the following claim.

Claim 14.1. Let z = | {s(x) | (x, y) ∈ B} | be the number of distinct values s assigns to the
coordinates of B (as computed in Line 4). Then, lossĈ satisfies that{

`(B, s) = lossĈ if z = 1∣∣`(B, s)− lossĈ∣∣ ≤ ε · `(B, s) +O
(

opt1(B)
ε

)
otherwise

Proof. We prove Claim 14.1 using the following case analysis: (i) z = 1 and (ii) z ≥ 2.

Case (i): z = 1. We prove that `(B, s) = lossĈ .

Since the input coreset (C, u) was computed using Algorithm 3, we know that the set Ĉ was
computed at Line 5 of Algorithm 3, along with a weight function û. Hence, the pair (Ĉ, û) satisfy, by
construction, the following property:∑

(a,b)∈Ĉ

û((a, b)) · (b | b2 | 1) =
∑

(x,y)∈B

(y | y2 | 1). (5)

Now, for any constant ŝ ∈ R, we have that∑
(a,b)∈Ĉ

û(a, b)(b− ŝ)2

=
∑

(a,b)∈Ĉ

û(a, b) · b2 + ŝ2
∑

(a,b)∈Ĉ

û(a, b)− 2ŝ
∑

(a,b)∈Ĉ

û(a, b)b

=
∑

(x,y)∈B

y2 + ŝ2
∑

(x,y)∈B

1− 2ŝ
∑

(x,y)∈B

y

=
∑

(x,y)∈B

(y − ŝ)2,

(6)

where the second equality is by (5).

Since z = | {s(x) | (x, y) ∈ B} | = 1, there is a constant ŝ ∈ R such that

`(B, s) =
∑

(x,y)∈B

(y − ŝ)2. (7)

Hence, we have that

`(B, s) =
∑

(x,y)∈B

(y − ŝ)2 =
∑

(a,b)∈Ĉ

û(a, b)(b− ŝ)2 = lossĈ ,

where the first derivation is by (7), the second derivation is by (6), and the last derivation is by the
definition of lossĈ at Line 7 of Algorithm 5.
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Case (ii): z ≥ 2. We prove that∣∣`(B, s)− lossĈ∣∣ ≤ ε · `(B, s) +O

(
opt1(B)

ε

)
.

We first observe that, by the triangle inequality, for any a, b, c ∈ R we have that

||a− c|2 − |b− c|2| = ||a− c| − |b− c|| · (|a− c|+ |b− c|)
≤ |a− b| · (2|a− c|+ |a− b|)
= |a− b|2 + 2|a− c| · |a− b|

= |a− b|2 + 2
√
ε|a− c| · |a− b|√

ε

≤ |a− b|2 + ε · |a− c|2 +
|a− b|2

ε

= ε · |a− c|2 +

(
1 +

1

ε

)
· (a− b)2,

(8)

where the second inequality holds since 2xy ≤ x2 + y2 for every x, y ∈ R.

Smoothed coreset. In Algorithm 3 we computed some small compression CB , along with a weights
function uB , for every subset B in the partition of the input. The size |CB | of this compression is a
small constant, independent of the (potentially large) size of B. The pair (CB , uB) satisfy a set of
properties, which we visually demonstrate via this “smoothed coreset” notion; see Fig. 3. Informally,
the “smoothed version” of (CB , uB) is another pair (C ′B , u

′
B), such that C ′B contains a duplication

of the elements of CB . The number of duplications of every element c from CB is according to its
weight uB(c).

We now formally define a “smoothed version” of a pair (Ĉ, û). A pair (S,w) is said to be a smoothed
version of the pair (Ĉ, û) if it satisfies the following properties: (i) (S,w) has the same sum of
weights, sum of labels, and sum of squared labels as (Ĉ, û), (ii) The set of coordinates {a|(a, b) ∈ S}
in S covers the entire set of coordinates {x|(x, y) ∈ B} of the original setB, with possible duplicates,
and (iii) The sum of weights over all elements in S with the same coordinate is 1. Formally,∑

(a,b)∈S

w((a, b)) · (b | b2 | 1) =
∑

(a,b)∈Ĉ

û((a, b))(b | b2 | 1), (9)

{x|(x, y) ∈ B} = {a|(a, b) ∈ S} , (10)
and ∑

(a,b)∈S:a=x

w((a, b)) = 1 for every (x, y) ∈ B. (11)

In what follows, for every pair (S,w) which is a smoothed version of (Ĉ, û), we prove the following
two properties: We now prove the following two properties: first, that

|`(B, s)− `((S,w), s)| ≤ ε · `(B, s) +O

(
opt1(B)

ε

)
, (12)

for every every pair (S,w) which is a smoothed version of (Ĉ, û). Second, we need to prove there is
some pair (Ŝ, ŵ) which is a smoothed version of (Ĉ, û) that satisfies

lossĈ = `((Ŝ, ŵ), s), (13)

where lossĈ is the loss computed at Lines 3- 25, using only the pair (Ĉ, û) (i.e., at the current
iteration of the outer-most For loop of Algorithm 5), without actually computing (Ŝ, ŵ)). Case (ii)
then immediately holds by combining (12) and (13) above.

A proof of (12). Let (S,w) be a pair which is a smoothed version of (Ĉ, û). By definition of
(S,w), we have that w sums to 1 over all (a, b) ∈ S with the same a, as in (11). Therefore, for every
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(x, y) ∈ B we can rewrite the term (y − s(x))2 as
∑

(a,b)∈S:a=x w(a, b)(y − s(x))2. Now, define
yB(x) = y for every (x, y) ∈ B. We therefore have that

`(B, s) =
∑

(x,y)∈B

(y − s(x))2

=
∑

(x,y)∈B

 ∑
(a,b)∈S:a=x

w(a, b)

 · (y − s(x))2

=
∑

(x,y)∈S

w(x, y)(yB(x)− s(x))2,

(14)

where the last equality holds by (10) and by simply combining the two sums.

We now have that
|`(B, s)− `((S, u), s)|

=

∣∣∣∣∣ ∑
(x,y)∈S

w(x, y)(yB(x)− s(x))2 −
∑

(x,y)∈S

w(x, y)(y − s(x))2

∣∣∣∣∣ (15)

=

∣∣∣∣∣∣
∑

(x,y)∈S

w(x, y) ·
(
(yB(x)− s(x))2 − (y − s(x))2

)∣∣∣∣∣∣
≤

∑
(x,y)∈S

w(x, y)
∣∣(yB(x)− s(x))2 − (y − s(x))2

∣∣ (16)

≤
∑

(x,y)∈S

w(x, y)

(
ε · (yB(x)− s(x))2 +

(
1 +

1

ε

)
(yB(x)− y)2

)
(17)

= ε ·
∑

(x,y)∈S

u(x, y) · (yB(x)− s(x))2 +

(
1 +

1

ε

) ∑
(x,y)∈S

w(x, y) · (yB(x)− y)2

= ε · `(B, s) +

(
1 +

1

ε

) ∑
(x,y)∈S

u(x, y) · (yB(x)− y)2, (18)

where (15) is by combining (14) and the definition of `, (16) holds since the sum of absolute values
is greater or equal than the absolute value of a sum, (17) holds by substituting in (8) every term in the
sum, and (18) is by (14).

We now bound the rightmost term of (18). Let ŝ ≡ 1/|B|
∑

(x,y)∈B y be a 1-segmentation function
that returns the label mean of B. We have that∑

(x,y)∈S

w(x, y) · (yB(x)− y)2

≤ 2 ·
∑

(x,y)∈S

w(x, y) ·
(
(yB(x)− ŝ(x))2 + (y − ŝ(x))2

)
(19)

= 2
∑

(x,y)∈S

w(x, y) · (yB(x)− ŝ(x))2

+ 2
∑

(x,y)∈S

w(x, y) · (y − ŝ(x))2

= 2 · (`(B, ŝ) + `((S, u), ŝ)) (20)
= 2 · (`(B, ŝ) + `(B, ŝ)) (21)
= 4 · `(B, ŝ)
= 4 · opt1(B) (22)

where (19) is by the weak triangle inequality, (20) is by combining the definition of ` with (14),
(21) holds by Case (i) above, and (22) holds since the label means minimizes its sum of squared
differences to the labels.
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Figure 8: (Left): The pair (Ĉ, û). (Middle): A 4-segmentation s, which in-
duces a partition of [5] × [5] into 4 sets B = B1 ∪ B2 ∪ B3 ∪ B4 where
B1 = {(1, 1), (2, 1), (3, 1), (4, 2), · · · , }, B2 = {(1, 3), (2, 3), (1, 4), (2, 4), · · · , }, B3 =

{(3, 3), (4, 3), (5, 3)}, B4 = {(3, 4), (4, 4), (4, 5), (3, 5), · · · }. (Right): A smoothed version (Ŝ, ŵ)

of (Ĉ, û). There can be more than one unique smoothed version for the same pair (Ĉ, û); see
Properties in (9)-(11). The pair (Ŝ, ŵ) is constructed by iterating over every set B ∈ B. Every
element in B is assigned to a label from the labels of the 4-coreset points (8, 17, 21, 22) as follows:
If |B| > û(li), then û(li) elements of B are assigned to l1 and |B| − û(li) are assigned to li+1. If
|B| ≤ û(li) then all the elements of B are assigned to û(li), and |B| is subtracted from û(li), and so
on. If û assigns fractional weights, then some elements of B might be assigned to more than one
label, as long as the sum of weights over every element in B is 1. By construction, (Ŝ, ŵ) satisfies
Properties (10)-(11). Hence, (Ŝ, ŵ) is a smoothed version of Ĉ, û). Computing `((Ŝ, ŵ, s) can be
trivially computed in time only O(k|Ĉ|) (rather than O(n) where n is the size of the original data),
since the sets in the partition B contain a duplication of a constant number of labels.

Equation (12) now holds by combining (18) and (22).

A proof of (13). To prove (13), in Fig. 8 we construct a smoothed version (Ŝ, ŵ) of (Ĉ, û) which
satisfies (13).

Furthermore, by combining the construction of (Ŝ, ŵ) with the computation of lossĈ in Lines 9-25
of Algorithm 5, we obtain, as desired, that lossĈ = `((Ŝ, ŵ), s).

Claim 14.1 now holds by combining cases (i) and (ii) above.

We now prove Lemma 14. Consider the construction of (C, u) in Algorithm 3. By definition and
by Lemma 5, the function s′ computed at Line 5 of Algorithm 3 is an O(k8 log2 nm)-segmentation
and satisfies that

`(D, s′) ∈ O (k log n · optk(D)) .

By the last derivation, let cα be the smallest constant such that

`(D, s′) ≤ cα · k log n · optk(D).

By the last inequality and definitions of σ and α we obtain that

σ :=
`(D, s′)

α
≤ cαk log nm · optk(D)

α

=
cαk log nm · optk(D)

cαk log nm

= optk(D).

(23)

Now consider the partition B computed at Line 3 of Algorithm 3 via a call to PARTITION(D, γ, σ).
By Lemma 7, B satisfies that

(i) opt1 (B) ≤ γ2σ for every B ∈ B.

(ii) B is a partition of D whose size is |B| ∈ O
(
α
γ2

)
.
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(iii) There are O
(
kα
γ

)
sub-signals B ∈ B where |{s(x) | (x, y) ∈ B}| > 1.

(iv) B can be computed in O(|D|) time.

Consider the pair (CB , uB) computed at Line 5 of Algorithm 3 for some B ∈ B. Now, consider the
For loop at Line 2 of Algorithm 5. For every pair (CB , uB), there is an iteration of this For loop for
which C ′ = CB . In this iteration, Algorithm 5 computes a loss lossCB

that corresponds to (CB , uB).
We can plug B, (CB , uB), and lossCB

in Claim 14.1 to obtain that:{
`(B, s) = lossCB

if z = 1

|`(B, s)− lossCB
| ≤ ε · `(B, s) +O

(
opt1(B)

ε

)
otherwise

(24)

Let B1 ⊆ B contain the set of sub-signals in B that are not intersected by s, i.e., B1 =
{B ∈ B | |s(B)| = 1|}, and let B2 = B \ B1 be the set of sub-signals which are partially inter-
sected by s.

By Property (iii) above,

|B2| ∈ O
(
kα

γ

)
. (25)

Furthermore, by combining (24) with Property (i) above, for every B ∈ B2 we have that

|`(B, s)− lossCB
| ≤ ε · `(B, s) +O

(
opt1(B)

ε

)
≤ ε · `(B, s) +O

(
γ2σ

ε

)
. (26)

In other words, the loss `(B, s) of every sub-signal B ∈ B2 is approximated by lossCB
up to some

small error. Hence, by summing over all B ∈ B2 we obtain that∑
B∈B2

|`(B, s)− lossCB
|

∈
∑
B∈B2

(
ε · `(B, s) +O

(
γ2σ

ε

))
(27)

≤ ε · `(D, s) +O

(
|B2| ·

γ2σ

ε

)
(28)

≤ ε · `(D, s) +O

(
kα

γ
· γ

2σ

ε

)
≤ ε · `(D, s) +O

(
kαγ

ε
· optk(D)

)
(29)

≤ ε · `(D, s) +O(ε · optk(D)) (30)
∈ O(ε · `(D, s)), (31)

where (27) follows from (26), (28) is by (25), (29) is by (23), (30) holds since kαγ ≤ ε2, and (31)
holds since optk(D) ≤ `(D, s) for every k-segmentation s.

Furthermore, for every B ∈ B1, by (24) we have that `(B, s) = lossCB
. Hence, by summing over

every B ∈ B1 we obtain that ∑
B∈B1

`(B, s) =
∑
B∈B1

lossCB
. (32)

In other words, the loss `(B, s) of ever sub-signal B ∈ B1 is accurately estimated by lossCB
.

Algorithm 5 then outputs the sum of losses

loss :=
∑

B ∈ BlossCB
. (33)

We hence obtain that

|`(D, s)− loss| =

∣∣∣∣∣ ∑
B∈B1

(`(B, s)− lossCB
) +

∑
B∈B2

(`(B, s)− lossCB
)

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
B∈B1

(`(B, s)− lossCB
)

∣∣∣∣∣+

∣∣∣∣∣ ∑
B∈B2

(`(B, s)− lossCB
)

∣∣∣∣∣ ∈ O(ε · `(D, s)), (34)
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where the first derivation is by 33, second derivation is by the triangle inequality, and the last is by
combining (32) and (31).

By (34), there is a constant ∆ ≥ 1 such that

|`(D, s)− loss| ≤ ∆ε`(D, s).

This concludes the proof of the claim in Lemma 14.

Computational time: Line 2 of the Algorithm 5 is a loop with |C||Ĉ| iterations. Inside this loop: if

z > 1 line 7 is computed in O(|Ĉ|), else line 11 is another loop with O(k) iterations, inside which
the line 20 is executed at most |Ĉ| times and line 24 can be executed only once because it results in
z = 0 and in exiting from the while loop.

In total the complexity of line 15 is O(|Ĉ|), of line 11 is O(k|Ĉ|) and of line 2 and the whole
algorithm: O(k|C|)
Space complexity: Algorithm 5 uses only constant amount of additional storage space because
in each line of the algorithm only numeric variables are created and variables are reused inside the
loops.

Theorem 15 (Coreset). Let D = {(x1, y1), · · · , (xN , yN )} be an n × m signal i.e., N := nm.
Let k ≥ 1 be an integer (that corresponds to the number of leaves/rectangles), and ε ∈ (0, 1/4)
be an error parameter. Let (C, u) be the output of a call to SIGNAL-CORESET(D, k, ε/∆) for a
sufficiently large constant ∆ ≥ 1; see Algorithm 3. Then, (C, u) is a (k, ε)-coreset for D of size

|C| ∈ (k log(N))O(1)

ε4 ; see Definition 3. Moreover, (C, u) can be computed in O(kN) time.

Proof. To prove that (C, u) is a (k, ε)-coreset for D, we need to prove that for every k-segmentation
s, (C, u) suffices to approximate the loss `(D, s), up to a multiplicative factor of 1 + ε, in time that
depends only on |C| and k.

Let s be a k-segmentation and let loss ≥ 0 be an output of a call to FITTING-LOSS((C, u), s); see
Algorithm 5. Then, by Lemma 14, loss can be computed in O(k|C|) time (i.e., in time that depends
only on |C| and k), and provides, as required, a (1 + ε)-approximation to `(D, s) as

|`(D, s)− loss| ≤ ∆ · ε
∆
· `(D, s) = ε · `(D, s).

Hence, (C, u) is a (k, ε)-coreset for D.

Line 1 of Algorithm 3 can be computed in O(k · |D|) time by Lemma 5. Line 3 of Algorithm 3 can
be computed in O(|D|) time by Lemma 7. The loop at Line 4 can be computed in

∑
B∈B O(|B|) =

O(|D|) time by Section E. Hence, the call SIGNAL-CORESET(D, k, ε) can be implemented in
O(k|D|) = O(kmn) time.

Proof behind Line 6. We now prove that the replacements of the coordinates applied at Line 6 does
not violate the correctness of the algorithm. Observe that replacing the coordinates of entries inside
each cell, while keeping the same labels, does not affect the variance of this subset. Therefore, the
cost of this cell, which is computed in Algorithm 5) and depends only on the labels, remains exactly
the same.

Space complexity: By construction, each pair (CB , uB) computed at Line 5 can be stored using
onlyO(1) space. Hence, the concatenation (C, u) of the |B| pairs {(CB , uB) | B ∈ B} can be stored
using O(|B|) ∈ O(α/γ2) = O(α(βk)2/ε4) = O

(
kO(1) logO(1) nm

ε4

)
space.

E The Caratheodory Theorem

Given a point p ∈ Rd inside the convex hull of a set of points P ⊆ Rd, Caratheodory’s Theorem
proves that there is a subset of at most d+ 1 points in P whose convex hull also contains p.
Theorem 16 (Caratheodory’s Theorem [13, 48]). Let P ⊆ Rd be a (multi)set of n points. Then in
O(nd3) time we can compute a subset Q ⊆ P and a weights functions u : Q→ [0,∞) such that: (i)
Q ⊆ P , (ii) |Q| = d+ 1, (iii)

∑
q∈Q u(q) · q = 1

n

∑
p∈P p, and (iv)

∑
q∈Q u(q) = n.
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Corollary 17. Let D be an n ×m sub-signal. Then, in O(|D|) time we can compute a weighted
n ×m sub-signal (A,w) such that: (i) A ⊆ D, (ii) |A| = 4, (iii)

∑
(a,b)∈A

w(a, b) · (b | b2 | 1) =∑
(x,y)∈D

(y | y2 | 1), and
∑

(a,b)∈A

w(a, b) = |D|.

Proof. Define the multi-set P =
{

(y | y2 | 1) ∈ R3 | (x, y) ∈ D
}

. Now, substituting P in The-
orem 16 yields that in O(n) time we can compute a subset Q ⊆ P and a weights functions
u : Q → [0,∞) such that: (i) Q ⊆ P , (ii) |Q| = 4, (iii)

∑
q∈Q u(q) · q = 1

|D|
∑
p∈P p, and

(iv)
∑
q∈Q u(q) = |D|.

Now, add to A a single element (x, y) ∈ D for every (y | y2 | 1) ∈ Q. In other words, for every
element chosen for the set Q by the Caratheodory theorem, add its corresponding element from D to
A. Furthermore, define w(x, y) = |D| · u((y | y2 | 1)) for every (x, y) ∈ A. Corollary 17 trivially
holds for (A,w).

31


	Introduction
	Coresets
	First coreset for decision trees and their generalization
	Our Contribution
	Novel technique: partition trees meet decision trees
	Preliminaries

	Bi-criteria Approximation
	Balanced Partition
	Coreset Construction
	Experimental Results
	Conclusions and Future Work
	Additional Experiments
	Bi-criteria Approximation
	Balanced Partition
	Coreset Construction
	The Caratheodory Theorem

