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1 OVERVIEW

In this supplementary material, we present further evaluation results on various datasets. In particu-
lar, we present more qualitative results on the Clevr dataset (Johnson et al., 2017) (Fig. 1) as well as
ShapeNet scenes (Chang et al., 2015) in Fig. 6, Fig. 7, and Fig. 8. Typical failure cases for ablations
of our method are shown in Fig. 2. We further present more detailed results on our experiments
with different object counts in Tab. 2, and Tab. 3, Tab. 4 and show qualitative results for these ex-
periments in Fig. 4 and preliminary results on real-world images in Fig. 3. In Fig. 5 and Fig. 9, we
present results for latent traversals for both Clevr and ShapeNet scenes. Renderings of novel views
on ShapeNet scenes are shown in Fig. 10. We provide rotation error histograms in Fig. 11. Detailed
explanations are provided in the captions of the corresponding Figures and Tables.

Moreover, we also provide more information about the network architecture, additional auxiliary
loss functions and the applied parameter settings in Section 2. A more detailed listing of the reported
metrics can be found in Section 3.

2 NETWORK ARCHITECTURE & PARAMETERS

Additional Loss Functions. For our experiments on the ShapeNet tabletop dataset, we use two
additional loss functions:

• We favor poses which render the object visible in the image

Lp =
∑
i

max(−min(xpi , w − x
p
i ), 0) , (1)

where xpi is the pixel position of the object center and w is the image width.

• We penalize intersections between objects through

Lint =
∑
i

∑
j<i

1

K

K∑
k=1

max(−(φi(xk) + φj(xk)), 0) , (2)

where i, j are object indices, xk are sample points distributed evenly between the object
centers and φi(xk) := Φ (zi,sh ,T

o
c(zi,ext)xk).

Network Parameters. We provide detailed information about our network architecture and param-
eter settings in Tab. 1.

3 EVALUATION METRICS

Instance Reconstruction. We evaluate the decomposition capability of our model by comparing
the predicted object masks M̂1:N with the ground truth masks Mgt . For each object combination
(Mi,Mgt,j), the IoU w.r.t. the occupied pixels is determined. We call object oi to be a true positive
if there is an object ogt,j for which IoU(Mi,Mgt,j) ≥ τ for some threshold τ . All other predicted
objects are considered as a false positives. Ground truth objects that were not associated with a
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Table 1: Network Parameters. Wer report the parameter setting that was used for our experiments.
Notation: *: same as Clevr, : latent vector is concatenated to input of this layer (see (Park et al.,
2019))

Clevr ShapeNet

network object encoder Conv [32, 32, 64, 64] *
architecture FC [256, 64] *

shape decoder FC [64, 64, 64, 64] *
color decoder FC [64, 64, 64, 64] *
obj. repr. Dsh 8 16

Dtex 7 15

training # epochs 500 400
setup batch size 8 *

learning rate 0.0001 *
loss functions, λI 1.0 *
weights λD 0.1 0.05

λgr 0.01 *
λsh lin(0.025-0.0025; 500K) lin(0.1-0.01; 500K)
(λinter) - (0.001)
(λview) - (0.005)

data image size (64, 64) *
dataset size (9K/ 1K/ 2.5K) (18K/ 2K/ 5K)
# objects 2, 3, 4, 5 3
position range [1.5, 1.5]2 *
size range [0.625, 1.25] cars:[1.0, 1.5],

chairs: [0.75, 1.25],
tabletop: [0.8, 1.5]

prediction are stated to be false negatives. As objects might not be viewable in the image due to
occlusion, we only consider masks with a minimum number of 25 occupied pixels. For an image
pair (M̂1:N ,Mgt), we denote the total number of true positives as TP0.5(M̂1:N ,Mgt), the number
of false positives as FP0.5(M̂1:N ,Mgt), and the number of false negatives as TP0.5(M̂1:N ,Mgt).

From this, we compute our reported metrics as follows.

AP =
1

|T |
∑
τ∈T

APτ , with T = {0.5, 0.55, ..., 0.95} (3)

AP0.5 =
1

#imgs

∑
(M̂1:N ,Mgt )

Prec0.5(M̂1:N ,Mgt) (4)

=
1

#imgs

∑
(M̂1:N ,Mgt )

TP0.5(M̂1:N ,Mgt)

TP0.5(M̂1:N ,Mgt) + FP0.5(M̂1:N ,Mgt)
(5)

AR0.5 =
1

#imgs

∑
(M̂1:N ,Mgt )

Rec0.5(M̂1:N ,Mgt) (6)

=
1

#imgs

∑
(M̂1:N ,Mgt )

TP0.5(M̂1:N ,Mgt)

TP0.5(M̂1:N ,Mgt) + FN0.5(M̂1:N ,Mgt)
(7)

F10.5 =
1

#imgs

∑
(M̂1:N ,Mgt )

2
Prec0.5(M̂1:N ,Mgt) ·Rec0.5(M̂1:N ,Mgt)

Prec0.5(M̂1:N ,Mgt) +Rec0.5(M̂1:N ,Mgt)
. (8)
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Image Reconstruction. We use the following metrics for evaluating the reconstructed images.

MSE(Î1:N , Igt) =
1

|Ω|
∑
u∈Ω

∥∥∥Î1:N (u)− Igt(u)
∥∥∥2

(9)

RMSE(Î1:N , Igt) =

√
MSE(Î1:N , Igt) (10)

PSNR(Î1:N , Igt) = 10 log10

L2

MSE(Î1:N , Igt)
, (11)

where L is the dynamic range of allowable image pixel intensities (Wang & Bovik, 2009). We refer
the reader to (Wang et al., 2004) for a detailed explanation of the SSIM metric.

We use the scikit-image implementation1 to compute PSNR and SSIM scores.

Depth Reconstruction. Our depth reconstruction evaluation is based on (Eigen et al., 2014) and is
evaluated with the following measures.

RMSE(D̂1:N , Dgt) =

√
1

|Ω|
∑
u∈Ω

∥∥∥D̂1:N (u)−Dgt(u)
∥∥∥2

(12)

AbsRD(D̂1:N , Dgt) =
1

|Ω|
∑
u∈Ω

∣∣∣D̂1:N (u)−Dgt(u)
∣∣∣ /Dgt(u) (13)

SqRD(D̂1:N , Dgt) =
1

|Ω|
∑
u∈Ω

∥∥∥D̂1:N (u)−Dgt(u)
∥∥∥2

/Dgt(u) (14)

Pose Estimation. We evaluate the error on the predicted pose only for objects that were denoted as
true positive, i.e. for which we found a valid ground truth object match. Since we are missing the
association between object masks and object poses in our data, we compare each predicted object’s
position pi to the closest ground truth object (pgt,j) according to its 3D position. Each ground truth
object is assigned at most once in a greedy proceeding.

Errpos =
1

|P |
∑

(pi,pgt,j)∈P

√
‖pi − pgt,j‖2, P = {found matches (pi,pgt,j)} (15)

Errrot = median(pi,pgt,j)∈P

[
360◦

2π
min

(
|ri − rgt,j |, 2π − |ri − rgt,j |

)]
(16)

with ri = arctan2(zcos,i, zsin,i)

1https://scikit-image.org/docs/dev/api/skimage.metrics.html
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Table 2: Absolute scores on the Clevr dataset (Johnson et al., 2017) for scenes with varied
number of objects (#obj = otrain/otest). Experiments are ordered w.r.t. otrain. We use the
encoder that was trained on otrain objects and adapt the number of slots otest to the number of
objects in the test set. Models achieve slightly better results when evaluated on scenes with a lower
number of objects. If tested on scenes with larger number of objects, our model is able to detect
more object than it has seen during training as can be seen from the AR0.5 and allObj score.

Instance Reconstruction Image Reconstruction Depth Reconstruction Pose Est.

mAP ↑ AP0.5 ↑ AR0.5 ↑ F10.5 ↑ allObj ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ AbsRD ↓ SqRD ↓ Errpos

# obj=2/2 0.782 0.977 0.963 0.967 0.928 0.039 28.389 0.941 0.432 0.012 0.040 0.138
# obj=2/3 0.606 0.877 0.842 0.854 0.622 0.060 24.827 0.884 0.671 0.027 0.085 0.214
# obj=2/4 0.406 0.698 0.629 0.655 0.186 0.083 21.972 0.81 0.906 0.049 0.149 0.293
# obj=2/5 0.294 0.583 0.474 0.516 0.031 0.095 20.714 0.769 0.921 0.056 0.151 0.312

# obj=3/2 0.756 0.974 0.969 0.97 0.942 0.041 28.011 0.937 0.452 0.013 0.044 0.14
# obj=3/3 0.712 0.949 0.942 0.943 0.85 0.049 26.466 0.914 0.554 0.019 0.061 0.155
# obj=3/4 0.613 0.883 0.853 0.863 0.512 0.06 24.669 0.88 0.665 0.028 0.083 0.179
# obj=3/5 0.478 0.775 0.71 0.735 0.212 0.072 23.093 0.841 0.69 0.033 0.086 0.201

# obj=4/2 0.720 0.969 0.959 0.961 0.923 0.044 27.39 0.929 0.484 0.015 0.051 0.146
# obj=4/3 0.708 0.953 0.943 0.945 0.852 0.05 26.252 0.911 0.564 0.020 0.064 0.153
# obj=4/4 0.688 0.941 0.919 0.926 0.746 0.054 25.632 0.899 0.584 0.022 0.064 0.151
# obj=4/5 0.575 0.869 0.81 0.832 0.397 0.063 24.258 0.869 0.600 0.026 0.067 0.165

# obj=5/2 0.606 0.919 0.913 0.914 0.845 0.053 25.959 0.908 0.582 0.021 0.075 0.174
# obj=5/3 0.628 0.914 0.908 0.908 0.778 0.057 25.181 0.892 0.657 0.026 0.091 0.168
# obj=5/4 0.640 0.916 0.899 0.903 0.691 0.058 24.950 0.885 0.649 0.027 0.082 0.161
# obj=5/5 0.604 0.895 0.861 0.872 0.539 0.061 24.568 0.876 0.593 0.025 0.067 0.149

Table 3: Relative scores on the Clevr dataset (Johnson et al., 2017) for scenes with varied
number of objects. Experiments are ordered w.r.t. otrain and relative scores (obj = n/m) / (obj =
n/n) are presented. Results are based on the same experiments as in Tab. 2.

Instance Reconstruction Image Reconstruction Depth Reconstruction Pose Est.

mAP ↑ AP0.5 ↑ AR0.5 ↑ F10.5 ↑ allObj ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ AbsRD ↓ SqRD ↓ Errpos

# obj=2/3 0.775 0.898 0.874 0.883 0.670 1.538 0.875 0.939 1.553 2.250 2.125 1.551
# obj=2/4 0.519 0.714 0.653 0.677 0.200 2.128 0.774 0.861 2.097 4.083 3.725 2.123
# obj=2/5 0.376 0.597 0.492 0.534 0.033 2.436 0.730 0.817 2.132 4.667 3.775 2.261

# obj=3/2 1.062 1.026 1.029 1.029 1.108 0.837 1.058 1.025 0.816 0.684 0.721 0.903
# obj=3/4 0.861 0.930 0.906 0.915 0.602 1.224 0.932 0.963 1.200 1.474 1.361 1.155
# obj=3/5 0.671 0.817 0.754 0.779 0.249 1.469 0.873 0.920 1.245 1.737 1.410 1.297

# obj=4/2 1.047 1.030 1.044 1.038 1.237 0.815 1.069 1.033 0.829 0.682 0.797 0.967
# obj=4/3 1.029 1.013 1.026 1.021 1.142 0.926 1.024 1.013 0.966 0.909 1.000 1.013
# obj=4/5 0.836 0.923 0.881 0.898 0.532 1.167 0.946 0.967 1.027 1.182 1.047 1.093

# obj=5/2 1.003 1.027 1.060 1.048 1.568 0.869 1.057 1.037 0.981 0.840 1.119 1.168
# obj=5/3 1.040 1.021 1.055 1.041 1.443 0.934 1.025 1.018 1.108 1.040 1.358 1.128
# obj=5/4 1.059 1.023 1.044 1.036 1.282 0.951 1.016 1.010 1.094 1.080 1.224 1.081

Table 4: Relative scores on the Clevr dataset (Johnson et al., 2017) for scenes with varied
number of objects. Experiments are ordered w.r.t. otest and relative scores (obj = n/m) / (obj =
m/m) are presented. Results are based on the same experiments as in Tab. 2.

Instance Reconstruction Image Reconstruction Depth Reconstruction Pose Est.

mAP ↑ AP0.5 ↑ AR0.5 ↑ F10.5 ↑ allObj ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ AbsRD ↓ SqRD ↓ Errpos

# obj=3/2 0.967 0.997 1.006 1.003 1.015 1.051 0.987 0.996 1.046 1.083 1.100 1.014
# obj=4/2 0.921 0.992 0.996 0.994 0.995 1.128 0.965 0.987 1.120 1.250 1.275 1.058
# obj=5/2 0.775 0.941 0.948 0.945 0.911 1.359 0.914 0.965 1.347 1.750 1.875 1.261

# obj=2/3 0.851 0.924 0.894 0.906 0.732 1.224 0.938 0.967 1.211 1.421 1.393 1.380
# obj=4/3 0.994 1.004 1.001 1.002 1.002 1.020 0.992 0.997 1.018 1.052 1.049 0.987
# obj=5/3 0.882 0.963 0.964 0.963 0.915 1.163 0.951 0.976 1.186 1.368 1.492 1.084

# obj=2/4 0.590 0.742 0.684 0.707 0.249 1.537 0.857 0.901 1.551 2.227 2.328 1.940
# obj=3/4 0.891 0.938 0.928 0.932 0.686 1.111 0.962 0.979 1.139 1.272 1.297 1.185
# obj=5/4 0.930 0.973 0.978 0.975 0.926 1.074 0.973 0.984 1.111 1.227 1.281 1.066

# obj=2/5 0.487 0.651 0.550 0.592 0.058 1.557 0.843 0.878 1.553 2.240 2.254 2.094
# obj=3/5 0.791 0.866 0.825 0.843 0.393 1.180 0.940 0.960 1.164 1.320 1.284 1.349
# obj=4/5 0.952 0.971 0.941 0.954 0.737 1.033 0.987 0.992 1.012 1.040 1.000 1.107
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Figure 1: Qualitative results on the Clevr dataset (Johnson et al., 2017) with three, four, and
five objects. Our model is able to decompose the scene into the individual objects. It recognizes
basic color appearance and geometric properties like basic shape type and deformations (best seen
in normal map). It is able to infer complete objects although some of them might be partly occluded
by others in the input image. In the last two rows we also show failure cases: We found that our
model sometimes misinterprets cubes as cylinders which is presumably due to the similarity of their
shape and appearance at the image resolution. In few cases, it only detects a low number of objects,
predominantly the most significant ones.
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Figure 2: Qualitative results for ablation study. When training variants of our model without
specific components, we observe typical failure cases. While a model trained without LI is able
to decompose the scene in the input image, it is obviously not able to recover the correct objects’
appearance. LD is crucial for learning the decomposition as otherwise the model can adapt the
texture to obtain similar RGB reconstructions. If the shape is not regularized (Lsh) to match the
pre-trained shape latent space, the model was not able to predict any reasonable object at all. Lgr
helps to prevent the objects from being merged into the ground as well as to make sure that objects
have a closed surface towards the ground. Without the Gaussian blur at the beginning of the training,
the model often fails to detect the different objects but focuses on a single one instead.

GT Prediction GT Prediction GT Prediction GT Prediction

Figure 3: Demo on real images. We show preliminary results on real images by our model that was
trained on the synthetic Clevr dataset. In some images our model can capture the coarse scene layout
and shape properties of the objects. However, challenges arise due to domain, lighting, camera
intrinsics and view point changes indicating interesting directions for future research.
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GT # obj=3/3 # obj=3/5 # obj=4/4 # obj=4/5 # obj=5/5
Input Normal Reconstruction Reconstruction Reconstruction Reconstruction Reconstruction

Figure 4: Qualitative results on the Clevr dataset (Johnson et al., 2017) with varied number
of objects. As we use a shared encoder for detecting the objects in a recurrent architecture, it is
possible to evaluate our model on a different number otest of objects than it was trained on (otrain ).
We show reconstruction results for varying numbers #obj = otrain/otest . Remarkably, our models
that were trained only on either three or four objects are able to recognize larger number of objects.
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Figure 5: Latent traversal on the Clevr dataset (Johnson et al., 2017). We linearly adapt the
first object’s shape (top) or texture (middle) latent to match each of the other objects’ respective
representation. Moreover, we move the first object within the scene (bottom). As we reason about
objects in 3D, we are able to recognize intersections between objects and exclude invalid scenes
(missing images in last row). By doing so, we are able to generate new plausible scenes. Object
shapes are best seen in normal maps.
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Figure 6: Qualitative results on ShapeNet datasets (Chang et al., 2015) with car models. Our
model generates reasonable reconstruction for scenes with both seen and unseen object instances.
For the latter case, it describes objects with similar shapes and textures is has seen in training. Typ-
ical failure cases are related to a pseudo-180-degree symmetry of the cars that is not distinguished
by the model but handled by adapting the texture. In the lower two rows, all cars face in the wrong
direction. This is in most cases not obvious from the reconstructed images only.
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Figure 7: Qualitative results on ShapeNet datasets (Chang et al., 2015) with chair models. For
the chair models it is more important to predict the correct rotation to infer a well matching shape
than for other models in our datasets. The model still got easily trapped in local minima of 90-degree
rotation steps where it would rather adapt shape and texture reconstruction instead of the estimated
rotation. Due to the low resolution as well as the discrete sampling by the renderer, our model is
prone to miss fine structural elements like armrests or thin legs.
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Figure 8: Qualitative results on tabletop scenes with ShapeNet (Chang et al., 2015) models. For
our mixed dataset, our model needs to predict object shapes from three different categories (mugs,
bottles, cans) as well as respective typical size ranges. We found that our model is able to distinguish
between the objects based on their typical characteristics. Unseen objects in the second test set are
typically replaced by known objects from the training set which are similar in appearance. Handles
of cups as well as thin, long bottlenecks are often neglected by the model. Especially for small
objects, the model sometimes misses to reconstruct an object in the scene. The last row shows
reconstructions from a failed training run in which only one object can be found.
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Figure 9: Latent traversal on ShapeNet datasets (Chang et al., 2015) with chair models. We
linearly adapt the first object’s latent to match each of the other objects’ respective representation in
either shape alone (top rows) or shape and texture (bottom rows). By this, we are able to generate
new plausible scenes. Object shapes are best seen in the normal maps.
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Figure 10: Rendering of novel views. As our model reasons about the underlying 3D structure of
a given image, it is able to render novel views of a scene. This is possible although our model was
trained exclusivity from single images. The reconstructed normal maps show that the model learned
to reason about the depicted objects in 3D space. It can be observed that our model renders the
reverse side of the car objects less accurate than the visible parts. This might be due to limited range
in rotation that the model infers due to pseudo-symmetry.

Cars Chairs Tabletop

Figure 11: Rotation Prediction on ShapeNet dataset (Chang et al., 2015). From top to bottom:
GT and predicted rotation angles for each dataset and resulting rotation angles. While values for GT
rotation are naturally uniformly distributed over the entire range of [−π, π] for all scenes, we found
that predicted rotation estimates can be spread over a smaller sub-range. Peaks in the histogram for
cars (∼ π) and chairs (∼ π

2 ,∼ π) indicate that the model got stuck in local minima where it predicts
a rotation up to a pseudo-symmetry. In contrast, it predicts rotation almost uniformly for the tabletop
scenes due to the rotational symmetry of the shapes and the capability of adapting the texture.
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