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ABSTRACT

This paper aims to manipulate multi-entity 3D motions in video generation. Pre-
vious methods on controllable video generation primarily leverage 2D control sig-
nals to manipulate object motions and have achieved remarkable synthesis results.
However, 2D control signals are inherently limited in expressing the 3D nature of
object motions. To overcome this problem, we introduce 3DTrajMaster, a robust
controller that regulates multi-entity dynamics in 3D space, given user-desired
6DoF pose (location and rotation) sequences of entities. At the core of our ap-
proach is a plug-and-play 3D-motion grounded object injector that fuses multiple
input entities with their respective 3D trajectories through a gated self-attention
mechanism. In addition, we exploit an injector architecture to preserve the video
diffusion prior, which is crucial for generalization ability. To mitigate video qual-
ity degradation, we introduce a domain adaptor during training and employ an
annealed sampling strategy during inference. To address the lack of suitable train-
ing data, we construct a 360°-Motion Dataset, which first correlates collected 3D
human and animal assets with GPT-generated trajectory and then captures their
motion with 12 evenly-surround cameras on diverse 3D UE platforms. Exten-
sive experiments show that 3DTrajMaster sets a new state-of-the-art in both ac-
curacy and generalization for controlling multi-entity 3D motions. Project page:
http://fuxiao0719.github.io/projects/3dtrajmaster.

1 INTRODUCTION

Controllable video generation (Brooks et al. 2024} |Guo et al.l 2023b; |Chen et al., |2023) aims to
synthesize high-fidelity videos that are controlled by user inputs, such as text prompts, sketches, or
bounding boxes. A critical objective in controllable video generation is the precise manipulation of
object motions within videos, which is essential for simulating the dynamic world and potentially
aids video generative models in understanding the underlying physics of the world. In addition, it
can unleash many applications of video generative models, such as virtual cinematography for the
film industry, acting as interactive games, and providing world models for embodied Al systems.

Recently, there has been some methods attempting to manipulate object motions in video generation
by introducing 2D control signals, such as 2D sketches (Wang et al.l 2024b; |Guo et al., [2023al),
bounding boxes (Yang et al) [2024; Wang et al., |2024a), and points (Wang et al., 2024c; [Zhang
et al.,[2024). These methods offer convenient user interactions and have delivered impressive video
generation results. However, we argue that 2D control signals cannot fully express the inherent
3D nature of motion, which limits the control capability of object motions. As real-world objects
move in 3D space, some motion properties can only be described through 3D representations. For
example, the rotation of an object can be succinctly described using three parameters in 3D, and
occlusions between objects can be simply represented using z-buffering. In contrast, it is quite
difficult for 2D control signals to represent these concepts.

In this paper, we focus on the problem of controlling multi-object 3D motions in video genera-
tive models, aiming to simulate the authentic dynamics of objects in 3D space. This setting is
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Pose Sequence

Entity a gazelle with a body covered in sleek tan fur, long legs, and elegant curved horne Location glacier
aman with medium-length straight brown hair, tall and glender, a gray erew-neck t-shirt, beige trousers

Entity a rabbit with a body covered in soft fur, quick hops, and a playful demeanor Location geagide street
a gentle breeze with soft tendrils of pale blue mist resembling flowing fabric, delicate streaks of white vapor

} . AN y :
Entity a crocodile with a body covered in scaly green skin, a powerful fail, and sharp teeth Location snowy street
awolf with thick silver-gray fur, alert golden eyes, and a lean yet strong body, exuding confidence and boldness

&

SN \ - =
Entity a man with short spiky blonde hair, slim build, a black trench coat, blue jeans Location savanna
a bear with dark brown fur, small but fierce black eyes, and a broad and muscular build, radiating power
a parrot with bright red, blue, and yellow feathers, a curved beak, and sharp intelligent eyes

Location cave

o Entity a vintage convertible with a body covered in chiny red paint, chrome bumpers
aman with short black wavy hair, lean figure, a green and yellow plaid shirt, dark brown pants
a panda with a body covered in fluffy black-and-white fur, a round face, and gentle eyes, radiating warmth

Entity an exploration rover robot with solar panels, durable wheels, and advanced sengors Location park
a storm entity with dark swirling clouds as a body, streaks of electric blue lightning shooting across it
aman with buzz-cut blonde hair, stocky build, a gray zip-up sweater, black shorts, and red basketball shoes

Entity a man with short black wavy hair, lean figure, a green and yellow plaid shirt Location sunset beach
a gazelle with a body covered in sleek tan fur, long legs, and elegant curved horns
-2 <t

Modify a woman with short black wavy hair, lean figure, a green and yellow plaid shirt Location sunset beach
arobotic gazelle with a sturdy aluminum frame, an agile build, articulated legs and curved, metallic horne

Figure 1: 3DTrajMaster controls one or multiple entity motions in 3D space with input entity-
specific 3D trajectories for text-to-video (T2V) generation. It allows diverse entity categories
(human, animal, car, robot, natural force, etc) and flexible edits on entity descriptions (see more
in Fig. |[ST1). The text prompt is “{Entity 1},..., and {Entity N} is/are moving in the {Location}”.
(We kindly urge readers to check more generalizable results (>200) in our website)

more aligned with the requirements of downstream applications, such as emulating realistic human
motions in movies or exploring 3D virtual scenes in games. However, this problem is extremely
challenging. There are three core questions we need to answer: 1) How to precisely represent the
3D motions of objects; 2) How to correlate multiple object descriptions with their respective motion
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sequences in video generative models; 3) How to maintain the generalization capability of video
models after injecting 3D motion information.

To address these, we propose a novel approach, 3DTrajMaster, which is able to manipulate multi-
entity motions in 3D space for video generation by leveraging entity-specific 6DoF pose sequences
as additional inputs. The core of our model is a plug-and-play 3D-motion grounded object injector,
which associates each entity with their corresponding pose sequences, and then injects these condi-
tions into the foundation model, to control the entity motion. Specifically, the entities and trajectories
are projected into latent embeddings via a frozen text encoder and a learnable pose encoder, respec-
tively. These two modality embeddings are then entity-wise added to form correspondences, which
are further fed into a gated self-attention layer for motion fusion. This plug-and-play architecture
preserves the video model’s prior and can generalize on more diverse entities and 3D trajectories.

However, another challenge in training our model lies in data availability. Existing video datasets
face two key limitations: 1) Low entity diversity: Datasets with paired entities and 3D trajectories
are mostly limited to humans and autonomous vehicles, with inconsistent spatial distributions and
overcrowded entities. 2) Inaccurate/Failed pose estimation: Current 6D pose estimation methods
focus on rigid objects, while non-rigid objects, such as animals, are underrepresented, with only
human poses studied using SMPL (Loper et al., 2023). To this end, we choose to construct a cus-
tom dataset, termed 360°-Motion Dataset, with unified trajectory distribution using advanced UE
rendering techniques. We start by collecting 3D assets of humans and animals and rescaling them
to a unified cubic space. GPT (Achiam et al.| 2023)) is then employed to generate 3D trajectory tem-
plates for these assets. Various entities and trajectory templates are arranged and combined to create
diverse motions. These globally animated assets are captured using 12 evenly positioned cameras
within the collected 3D scenes, including city (MatrixCity (L1 et al., |2023a))), desert, forest, and
HDRIs (projected into 3D space To prevent video domain shift in our constructed dataset, we in-
troduce two key components: 1) A video domain adaptor, which is trained to fit data distribution and
slightly reduced during inference. 2) An annealed sampling strategy, where trajectories are injected
to guide general motion in the early steps and drop out in the later stages.

We evaluate our 3DTrajMaster in the curated novel pose sequences with GPT-generated entity
prompts, obtaining a significant lead over current SOTAs. In summary, our contributions are:

1) We are the first to customize 6 degrees of freedom (DoF) multi-entity motion in 3D space for
controllable video generation, establishing a new benchmark for fine-grained motion control.

2) We propose a 3D-motion grounded video diffusion model that controls multi-entity motions using
pose sequences as motion representations. Our flexible object injector enforces entity-wise corre-
spondence between objects and their motions and preserves the video diffusion prior.

3) We introduce a scalable 4D motion dataset construction mechanism, and techniques like the video
domain adaptor and annealed sampling to enhance video quality while maintaining motion accuracy.

4) 3DTrajMaster achieves state-of-the-art accuracy in controlling 3D entity motions and allows fine-
grained entity input customization such as changing human hair, clothing, gender, and figure size.

2 RELATED WORK

Customizing Video Motion with 2D Guidance. Previous methods predominantly perform motion
control on 2D spaces, as this aligns more easily with the input video format. A straightforward
path is to direct videos based on motion patterns from reference videos (Zhao et al.l 2023; Jeong
et al., 2024; Ling et al. [2024). However, they require users to provide reference video templates.
While training-free paradigms (Yang et al.} 2024; Xiao et al.,|2024)), utilizing attention mechanisms
to edit spatial-temporal layouts, can mitigate this issue, they exhibit poor generalization in real-
world scenarios and rely heavily on trial-and-error. Further advancements utilize more high-level
representations, such as sketches&depths (dense or sparse) (Wang et al., [2024b; (Guo et al., [2023a),
pose skeletons (Feng et al., 2023} |Xu et al., [2024; |Chen et al., |2024), bounding boxes (Wang et al.,
2024a)), and 2D trajectories (Wang et al.| [2024c; [Zhang et al.l |2024; [Yin et al., 2023} |Yang et al.,
2024])), to enable more flexible motion generation. Although these methods can model camera,
object, or joint movements, the lack of 3D awareness limits precise 3D motion control.

'Poly Haven: https://polyhaven.com/
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Learning 3D-aware Motion Synthesis. Considering that video is a sequence of images projected
from 3D world, manipulating video in 3D space is both more crucial and impactful. A key aspect
of this manipulation is camera movement. MotionCtrl (Wang et al., [2024c) is the first to regu-
late video using camera poses (rotation and translation) in 3D space, while CameraCtrl (He et al.,
2024) and VD3D (Bahmani et al., |2024b)) further enhance camera representation with pliicker em-
beddings (Sitzmann et al., 2021). SynCamMaster (Bai et al., |2024) extends single-camera control
to multi-camera synchronization. GameGen-X (Che et al., [2024) can generate game videos with
novel “WASD’ keyboard inputs. Other approaches (Hou et al., [2024; Hu et al., |2024a) also explore
training-free paradigms. However, none address the customization of object motion in 3D space.
Manipulation on 2D maps (Wang et al.,|2024c}; Zhang et al.,[2024) often fails in multi-object scenar-
ios, particularly with 1) aligning each entity and its corresponding motion, 2) handling 3D occlusion.
In contrast, 3DTrajMaster is the first to overcome them and simulate plausible 3D motions.

3 3DTRAJMASTER

Our goal is to master entity motions in 3D space for text-to-video (T2V) generation by leverag-
ing entity-specific 3D trajectories as additional inputs. To this end, we introduce 3DTrajMaster
(see Fig.[2), a 3D-motion grounded video diffusion model trained in two stages. First, we describe
the video diffusion model and the task formulation (Sec.[3.I). Then, we present our proposed model,
whose core is to train a plug-and-play 3D grounded object injector to integrate multiple detailed en-
tity descriptions and the respective pose sequences (Sec. [3.2). We further incorporate a domain
adaptor to mitigate video domain shifts introduced by our constructed training data (Sec. . Fi-
nally, we detail the inference process using annealed sampling to enhance video quality (S%.
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Figure 2: 3DTrajMaster Framework. Given a text prompt consisting of N entities {e, }_;,
3DTrajMaster (a) is able to generate the desired video with entity motions that conform to the input
entity-wise pose sequences {P,,}_, . Specifically, it involves two training phases. First, it utilizes a
domain adaptor to mitigate the negative impact of training videos. Then, an object injector module is
inserted after the 2D spatial self-attention layer to integrate paired entity prompts and 3D trajectories.
(b) Details of the object injection process. The entities are projected into latent embeddings through
the text encoder. The paired pose sequences are projected using a learnable pose encoder and then
fused with entity embeddings to form entity-trajectory correspondences. This condition embedding
is concatenated with the video latent and fed into a gated self-attention layer for motion fusion.
Finally, the modified latent gets back to the remaining layers in the DiT block.

3.1 PRELIMINARIES ON 3D-ENTITY-AWARE VIDEO DISTRIBUTION

Video Diffusion Models. Latent text-to-video diffusion model (Ho et al., |2022akb}; [Brooks et al.,
2024;|Chen et al.,2023; [Blattmann et al.,2023) learns the conditional distribution p(x|c) of encoded
video datax (x = £(X), £(+) is VAE encoder) given text description c in latent space. In the forward
progress, it progressively transits the clean data x to the desired Gaussian distribution in a Markov
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chain: {x¢,t € (1,T) | x¢ = ayXo + o€, € ~ N(0,I)}. To iteratively recover the data X from the
noise € ~ N (O7 O'tQI), it learns a denoising model €g with the objective function: € & €g (x¢;t, C).
With the preconditioning strategy (Karras et al.,|2022; [Salimans & Ho} 2022), it optimizes the neural
network Fp by parameterizing the €g as: ég = Cout(Ut)Fg (cin(04)x¢;5 €, 0¢) + Cokip (0¢) X

Task Formulation. Given an input text prompt c consisting of N entities {e,, }Y_; and their paired
3D trajectories {P,,}_,, where P/ = [R;T] € R3** for f-th frame and object orientation and
translation are represented by R € R3*3 and T € R?, respectively, our goal is to generate plausible
video X € RIF>XHXW that accords with each entity description e and the respective trajectory P.
The overall generative formulation f(-) is

f(.):ceyL7(enEyLn’PneR?»@)nN:l_)XERFXHXW 1)
where X = D(Xg) (D(+) is the VAE decoder), x = p (Xr) Hthl Do ()A(t—l | %, ¢, (e, Pp)N ))

n=1
Y is the alphabet, and L is the token length. Our primary challenge lies in modeling the distribution
pe or specifically €g to generate realistic videos that accurately correspond to the given multiple 3D
entity conditions. Here we structure €g(x; ¢, 04, (€, P,,))_,) as transformer architecture (Peebles

& Xie), 2023)) for its superior scalability and performance over U-Net (Ronneberger et al., [2015).

3.2 PLUG-AND-PLAY 3D-MOTION GROUNDED OBJECT INJECTOR

Matching Entity-Trajectory Pair. The entity prompts {e,, }"_, are projected into latent embed-
dings {Z&}_| using a frozen text encoder Ex(*) : e, € Y — Z8 € REnxD where each em-
bedding Z is zero-padded to maximum token length L,,. Correspondingly, the pose sequences
{P,,}_, are also projected into latent embeddings {ZF}N_, through the trainable pose encoder
Ep(): P, € RFx12 » 7ZP ¢ RFXD  The pose encoder Ep consists of a linear layer and a

downsampler along the temporal dimension, resembling the causal encoding applied to video in-

put x in 3D VAE, where the mapping function is £x(-): X € RIXHXW o x ¢ REXHXW,
Here the downsampler refers to interval sampling of tensors, where we also tried several sequen-
tial one-dimensional convolution layers but achieved similar results. Then, the paired entity and
trajectory embeddings are expanded and combined through entity-wise addition to form a bonded

entity-motion correspondence ZF® € RF XN X Lmux D

Gated Self-Attention for Motion Fusion. Inspired by (Li et al., [2023b), we employ a gated self-
attention layer to handle multiple entity-trajectory pairs Z*® (with varying dimensional embeddings)
as input, while further refining the correlated features. Specifically, we replicate the weight of the
2D spatial self-attention layer in each DiT block as initialization to enable grounding. The input
video tokens x; and ZF® are passed through this trainable copy via truncated self-attention. The
output can be expressed in a residue-connection form:

x; = x¢ + - Te(Att(q, k, v))
q=Q T.k=K-T,v=V -T,T=x, & Z"®

where [ is a trainable scale, Tc(+) is the truncation operation to preserve x,, tokens, Att(-) is
softmax attention, Q, K and V are query, key and value embedding matrices, and & denotes con-
catenation. In this stage, we train the 6, including the pose encoder and the gated self-attention
parameters as follow.

E(gl) = Ex,c,ewN(O,a?I),e,P,t,B |:H€ - éel (Xt? c, (env Pn)ﬁ:l% t’ B) H;:| (3)

2)

3.3 ALLEVIATING VIDEO DOMAIN SHIFT FROM CONSTRUCTED TRAINING DATA

360°-Motion Dataset. High-quality training data is vital for learning generalizable 3D motion
control. A straightforward preparation is to extract paired entity descriptions and 6DoF poses from
common video datasets. However, it is hard due to twofold: 1) Low diversity/quality entity: Datasets
with paired entities and 3D trajectories are mostly limited to humans (Jiang et al., 2024} |Araujo
et al., 2023) and autonomous vehicles (Geiger et al) [2012; [Sun et al., 2020), where the spatial
distributions vary between datasets and the entities may be overcrowded. In video datasets like
Artgrid, Pixabay, and Pexelsﬂ human category occupies a relatively large proportion in 3D/4D asset

2 Artgrid: https://artgrid.io/, Pixabay: https://www.videvo.net/, Pexels: https://www.pexels.com/
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two objs (65%) three objs (10%)
(b) GPT-generated Trajectories (Bird's Eye View)

(c) Collected 3D UE Scens ) ] (d) 360°urround Camera Sho Object Motion
Figure 3: Dataset Construction Illustration. We correlate (a) collected 3D assets with (b) GPT-

generated 3D trajectories on (c) diverse 3D UE platforms, positioning (d) 12 evenly distributed
surrounding cameras to capture the object motions in video format.

objectives (refer to Sec. [E.2), limiting model generalization to other categories like animals and
vehicles. Issues like watermarks in WebVid further increase the cost of filtering.
2) Low-accuracy/Failed pose estimation: Most 6D pose estimation methods exclusively focus on
rigid objects, and rely on CAD models (Labb€ et all, 2022, Wen et al.} 2024) or posed multi-view
images (Liu et al 2022} [Sun et al [2022). For non-rigid animated objects, only human poses have
been widely studied via methods like SMPL (Loper et al,[2023), limiting the estimation for general
4D objects, such as animals. A simpler alternative is to represent only 3D locations via depth
models (Hu et al.}[2024D}; [Ke et al., 2024} [Fu et al.}, 2025). However, there exist errors in segmenting
the foreground entities from the background and can not generate consistent video metric depth.

To circumvent the aforementioned challenges, we opt to construct a synthetic dataset, named 360°-
Motion, through Unreal Engine (UE) with advanced rendering technologies (see Fig. [3). We begin
by collecting 70 animated 3D assets across two categories: human and animal. Humans are dif-
ferentiated by attributes such as gender, clothing, body shape, and hairstyle. GPT-4V
is then used to generate text descriptions e,, € ¥~ (L,, < 20) for each rendered asset image
(Fig. [3] (a)). For posed object trajectory templates (Fig. [3] (b)), we follow TC4D
by leveraging GPT to generate 3D spline (location T') and additional orientation R via the
gradient calculation on spline. This process yields approximately 96 templates in canonical space,
each associated with one to three assets. We additionally reduce the size of the animals by a ratio
of 0.6 to prevent collisions with other assets. The paired assets and their motion templates are then
placed within a 5x5 square meter range in one of the 3D platforms, including city (MatrixCity
2023a))), dessert, forest, and HDRIs (projected into 3D). We position 12 sets of cameras evenly
around the scene to capture 360-degree views, producing 100 frames per video clip at 384 <672 res-
olution for each camera. This process produces a total of 54,000 videos by arranging and combining
various objects and trajectories. (see Sec. [E.I|and Supp. video samples for illustration)

Video Domain Adaptor. Training video diffusion models on this relatively small set of constructed
video clips can lead to an undesirable UE style, limiting the generalization ability. To prevent
learning this variation in quality and retain the knowledge of the base T2V, we train LoRA mod-
ules that serve as video domain adaptor. Specifically, we integrate LoRA into
self-attention, cross-attention, and linear layers of the base T2V model, as shown in Fig. |Zl The
attention/linear projection matrices {W,, }X_, are associated with additional trainable lower rank
matrices {AW,, = aA,,BT}X | where « is the scaler that can be adjusted to control the adaptor
influence. During inference, we set « to a small value to mitigate the negative impact of synthetic
video data. We optimize 82 = {AW,, }X_, with the training objective:

~ 2
[’(02) = ]Ex,c,er\//\/(o,zftzl),t7 |:||6 — €0, (Xt’ ct, O5)”2] : 4)

Note that the domain adaptor 85 is frozen when training the object injector 8.
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3.4 INFERENCE PROCEDURE

We initialize the video latent X7 as standard Gaussian noise, and progressively denoise it with
the guidance of desired entity-trajectory pairs (e,, P,,)2_,;, following the same schedule as the
previous two training stages. We apply classifier-free guidance (Ho & Salimans, 2022) and use
DDIM (Song et al. 2020) for re-spaced sampling for acceleration. To further enhance the video
quality, we employ an annealed sampling strategy (Algorithm 1): During inference in the former
steps, trajectories are inserted into the model to define the general object motions, while in the latter
stage, they are dropped out, transitioning to the standard T2V generation process. We also observe
that setting negative 3D trajectories as static motions {(P,,)N_, |P,, = Py, ¥n} can further improve
pose accuracy. This phenomenon reflects the model’s ability to learn 3D motion representations:
Since we do not randomly drop out motion sequences during training like text, the model implicitly
learns static motion modeling from videos where entities are primarily in motion. Thus when setting
static motion as a ‘“negative motion prompt”’, we can amplify the magnitude of entity movement,
leading to improved pose accuracy during evaluation. However, we do not adopt it as it sometimes
results in a video quality decline (refer to Sec.[F2.2).

Algorithm 1 Annealed conditional sampling with classifier-free guidance (CFG)

Require: w: guidance strength, T;.: annealed timestep, o: LoRA modulator, 0: frozen base T2V
model, 6;: object injector, 82: domain adaptor, c: text condition, (e, P): entity-trajectory pairs
fcl ~ N (0, O'tQI)
fort=1,....,T do
if < T, then
&= (1+w)égg, g, (Xt:C, (€0, Py, ) —wég g g, (Xt,Q)
else
&= (1+wes (X4,¢) —weg (X¢)
end if
z = (f(t - Utét) /Oét
Xip1 ~ N (Xeprs g (2,%e) Ut2+1\t1) ift <Telsexip1 =2
end for
return X; 1

T2 Y RN RN

—_—

N

EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For input text prompts, we use a unified template: “{Entity 1},..., and {Entity N} are moving in
the {Location}.” Here we set “{Location}” based on the respective 3D UE platform. We train
3DTrajMaster based on our internal video diffusion model for research purposes (see Sec. [A] for
more details), which contains ~ 1B parameters. The clipped training video and inference video are
set to 384 x 672 resolutions. Each video segment is 5 seconds long. We utilize the Adam optimizer
and train on a cluster of 8§ NVIDIA H800 GPUs, with a learning rate of 5 x 10~° and a batch size of
8. The training process consisted of 50,000 steps for the domain adaptor and an additional 36,000
steps for the object injector. During inference, we set the DDIM steps as 50 and the CFG as 12.5.

4.2 BASELINES

We compare 3DTrajMaster with existing SOTA methods that are capable of customizing object
motions: MotionCtrl (Wang et al.,|2024c)), Direct-a-Video (Yang et al.,2024)) and Tora (Zhang et al.,
2024). We configure these baseline models using their best performance settings, based on their
official open-sourced codebases.

4.3 EVALUATION METRIC

1) Trajectory accuracy: Due to the absence of a pose estimator for open-world 4D objects, we
limit our evaluation to only human objectives. Specifically, we utilize GVHMR (Shen et al., [2024)

to estimate human poses {(R¢*t, T¢*)}L_ | and compare them with the input pose sequences
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{(RY!, T9)}E_,. We align the two trajectories at the first frame location. We follow CameraC-
trl to estimate the rotation angle error RotErr and translation scale error TransErr,
but take the average rather than the sum. 2) Video quality: We leverage standard metrics such as
Frechét Video Distance (FVD) (Unterthiner et al., [2018)), Frechét Image Distance (FID)
[2020), and CLIP Similarity (CLIPSIM) (Wu et al., 2021) to assess the video appearance.

4.4 EVALUATION DATASET

1) Pose Sequence: We collect 44 novel pose templates, each comprising one or more object motions.
2) Entity Description: we use GPT to generate 20 novel human, 52 novel non-human descriptions,
and 32 novel locations (refer to Sec. [E:3)), which are randomly assigned to poses to form 100 pairs
(12 single-entity, 72 two-entity, and 16 three-entity each pair has one human entity).

4.5 COMPARISON

Granularity Level. As shown in Table [T} 3DTrajMaster can customize object location and orien-
tation in 3D space. In contrast, 2D motion representations such as points (MotionCtrl/Tora) and
bounding box (Direct-a-Video), lack awareness of the z dimension. This ambiguity becomes more
problematic when handling 3D occlusion. Besides, MotionCtrl and Tora integrate multiple entities
into a single 2D feature, lacking the capability to correlate individual entities with their respec-
tive trajectories (see failure case in Fig.[6). When tested on multi-entity input, Direct-a-Video (a
training-free paradigm) shows particularly weak results. Furthermore, 3DTrajMaster allows for di-
verse entities and backgrounds (see Fig.[d), and detailed control of entity inputs (see Fig.[5).

Table 1: Fine Control Comparison with Multi-Entity Input.

Location Orientation Entity-Traj. Corresp.  Learning-based?

Direct-a-Video v (2D) X v X
MotionCtrl/Tora v'(2D) X X V' (not decoupled)
3DTrajMaster (Ours) v (3D) v v V' (decoupled)

=g | W . -
autumn forest coagtal harbor glacier foregt

Figure 4: Diversity on Entity and Background. 3DTrajMaster can control versatile entities (hu-
man, animal, car, robot, and even abstract natural force), while also generating diverse locations.

Input human entity "a man with short black hair, medium figure, gray striped sweater, black jeans, light brown leather shoes"

short black hair 'ld hea lack jeang red pante”  "/"—>add a "wi bkpk"
Figure 5: Fine-grained Editing on Human Entity Input. 3DTrajMaster supports modifications in

attributes such as hair, clothing, figure size, and so on. (Please check more in Fig.[STT)

Quantative & Qualitative Results. To align with the input requirement of MotionCtrl and Direct-
a-Video, we project the 3D pose trajectories onto 2D space. For baselines, we simplify the entity
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Figure 6: Qualitative Comparison on Single/Multiple Entity Motion. 3DTrajMaster outperforms
all 2D baselines by modeling 6 DoF entity motion, which can better express the inherent 3D nature
of motion. In the last figure, Tora mistakenly regards the background entity as the girl entity.

description, such as changing “a man with messy black hair, tall frame, a red shirt” to “a man”
or “a man in red”. Otherwise, they may fail to generate videos with detailed descriptions. As
shown in Fig. [f] in single entity settings, 3DTrajMaster generates precise entity motion, such as
a 180° turn-back and a continuous inward 90° turn-around. In contrast, Tora and Direct-a-Video
produce simpler motions, merely shifting objects from left to right or top-right. In the multi-entity
benchmark, 3DTrajMaster successfully handles 3D occlusions, such as a man walking in front of a
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Table 2: Quantative Comparison on Single/Multiple Entity Motion. 3DTrajMaster performs
better on multiple entity input since the single entity trajectory is more complex.

Single Entity Multiple Entities All Entities
Methods TransErr (m) | RotErr (deg) |  TransErr (m) | RotErr (deg) | TransErr (m) ]  RotErr (deg) |
Base T2V 1.946 1.799 1.586 1.208 1.629 1.279
MotionCtrl 1.752 2.134 1.682 1.613 1.690 1.675
Tora 1.707 1.158 1.867 1.514 1.848 1.471
Direct-a-Video 1.632 1.902 1.391 0.942 1.420 1.057
3DTrajMaster 0.456 0.319 0.390 0.272 0.398 0.277

zebra. Direct-a-Video, however, fails in overlapping regions with mixed man and zebra. We report
metric results in Table[2} It is not surprising that ours significantly outperforms all baselines.

4.6 ABLATION STUDY

Table 3: Ablation Study on Full Testest and Base T2V Videos (As Reference Video).

Video Quality 3D Trajectory Accuracy
Ablation Setting FvD|] FIDJ] CLIPSIM?T TransErr (m)| RotErr (deg) |
w/ Cross-Attn. Fusion 1673.24 102.13 32.87 0.453 0.341
w/ 3D Self-Attn. 1597.51 98.74 33.15 0.427 0.296
w/o Domain Adaptor  2379.89 157.51 30.50 0.415 0.301
w/o Annealed Sampl.  1841.64 112.57 32.26 0.407 0.265
Full Model 1546.15  96.75 33.77 0.398 0.277
base T2V model LoRA Scalar v |, Annealed Timestep Tt |

Figure 7: Ablation Results on Domain Adaptor (upper) and Annealed Sampling (the bottom).
We provide more experiments in Sec.[F-2.1|to choose suitable « and T, to improve video quality.

Improving Video Quality. As illustrated in Fig.[7]and Table 3] without the video domain adaptor,
the video quality deteriorates significantly, reverting to a purely UE-style appearance similar to
the training set. Likewise, omitting the annealed sampling strategy results in a decline in video
quality (see the beard of the lion and overall scene style). While the rotation accuracy drops slightly
(0.277—0.265), this is acceptable since there exist errors in evaluating open-world human poses.

Motion Fusion Design. As shown in Table [3] replacing gated self-attention with cross-attention
fusion (w/ Cross-Attn. Fusion, here we use the entity-motion bonded feature ZF® as the query)
or placing the object injector after the 3D self-attention layer (w/ 3D Self-Attn.) results in a slight
decline in both video quality and pose sequence accuracy.

5 CONCLUSION

In this work, we introduce 3DTrajMaster, a unified framework for controlling multi-entity motions
in 3D space, with motion representation as 6DoF location and rotation sequences. Our flexible object
injector establishes entity-wise correspondence and allows flexible editing of entity descriptions.

Limitation. Generalizable entities, like animals, cannot be edited with the same level of granularity
as humans. This limitation can be addressed by constructing more diverse and detailed 3D assets
of the same category. Currently, the model is constrained to global motion patterns; however, fine-
grained local motions (e.g., human dancing or waving hands) and interactions between different
entities (e.g., a man picking up a dog) can also be modeled similarly to our 6 DoF motions with
structured motion patterns. At present, our model can only generate limited entities (<3) at a time,
but this can be improved with more powerful video foundation models and paired datasets.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank Jinwen Cao, Yisong Guo, Haowen Ji, Jichao Wang, and Yi Wang from Kuaishou Technol-
ogy for their help in constructing our 360°-Motion Dataset. As for the fruitful discussion, we thank
Yuzhou Huang, Qinghe Wang, Runsen Xu, Zeqi Xiao, and Zhouxia Wang.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joao Pedro Aratijo, Jiaman Li, Karthik Vetrivel, Rishi Agarwal, Jiajun Wu, Deepak Gopinath,
Alexander William Clegg, and Karen Liu. Circle: Capture in rich contextual environments.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
21211-21221, 2023.

Sherwin Bahmani, Xian Liu, Yifan Wang, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu,
Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, et al. Tc4d: Trajectory-conditioned text-
to-4d generation. arXiv preprint arXiv:2403.17920, 2024a.

Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian,
Michael Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, et al.
Vd3d: Taming large video diffusion transformers for 3d camera control. arXiv preprint
arXiv:2407.12781, 2024b.

Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Xiao Fu, Zuozhu Liu, Haoji Hu, Pengfei
Wan, and Di Zhang. Syncammaster: Synchronizing multi-camera video generation from diverse
viewpoints. arXiv preprint, 2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisserman. Frozen in time: A joint video and
image encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1728-1738, 2021.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. technique report, 2024. URL https://openai.
com/research/video—generation-models—as-world-simulators.

Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin, and Hao Chen. Gamegen-x: Interactive open-
world game video generation. arXiv preprint arXiv:2411.00769, 2024.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafterl: Open diffusion models for high-
quality video generation. arXiv preprint arXiv:2310.19512, 2023.

Weiliang Chen, Fangfu Liu, Diankun Wu, Haowen Sun, Haixu Song, and Yueqi Duan. Dreamcin-
ema: Cinematic transfer with free camera and 3d character. arXiv preprint arXiv:2408.12601,
2024.

Mengyang Feng, Jinlin Liu, Kai Yu, Yuan Yao, Zheng Hui, Xiefan Guo, Xianhui Lin, Haolan Xue,

Chen Shi, Xiaowen Li, et al. Dreamoving: A human video generation framework based on
diffusion models. arXiv e-prints, pp. arXiv—-2312, 2023.

11


https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

Published as a conference paper at ICLR 2025

Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping Tan, Shaojie Shen, Dahua Lin, and
Xiaoxiao Long. Geowizard: Unleashing the diffusion priors for 3d geometry estimation from a
single image. In European Conference on Computer Vision, pp. 241-258. Springer, 2025.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pp- 3354-3361. IEEE, 2012.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Sparsectrl:
Adding sparse controls to text-to-video diffusion models. arXiv preprint arXiv:2311.16933,
2023a.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint arXiv:2307.04725, 2023b.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
and José Lezama. Photorealistic video generation with diffusion models. arXiv preprint
arXiv:2312.06662, 2023.

Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
Yang. Cameractrl: Enabling camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633—
8646, 2022b.

Chen Hou, Guogiang Wei, Yan Zeng, and Zhibo Chen. Training-free camera control for video
generation. arXiv preprint arXiv:2406.10126, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Teng Hu, Jiangning Zhang, Ran Yi, Yating Wang, Hongrui Huang, Jieyu Weng, Yabiao Wang, and
Lizhuang Ma. Motionmaster: Training-free camera motion transfer for video generation. arXiv
preprint arXiv:2404.15789, 2024a.

Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and
Ying Shan. Depthcrafter: Generating consistent long depth sequences for open-world videos.
arXiv preprint arXiv:2409.02095, 2024b.

Hyeonho Jeong, Geon Yeong Park, and Jong Chul Ye. Vmc: Video motion customization using
temporal attention adaption for text-to-video diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9212-9221, 2024.

Nan Jiang, Zhiyuan Zhang, Hongjie Li, Xiaoxuan Ma, Zan Wang, Yixin Chen, Tengyu Liu, Yixin
Zhu, and Siyuan Huang. Scaling up dynamic human-scene interaction modeling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1737-1747, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-

based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

12



Published as a conference paper at ICLR 2025

Bingxin Ke, Dominik Narnhofer, Shengyu Huang, Lei Ke, Torben Peters, Katerina Fragkiadaki,
Anton Obukhov, and Konrad Schindler. Video depth without video models. arXiv preprint
arXiv:2411.19189, 2024.

Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield, Jonathan Trem-
blay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic. Megapose: 6d pose estima-
tion of novel objects via render & compare. arXiv preprint arXiv:2212.06870, 2022.

Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai.
Matrixcity: A large-scale city dataset for city-scale neural rendering and beyond. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 3205-3215, 2023a.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22511-22521, 2023b.

Pengyang Ling, Jiazi Bu, Pan Zhang, Xiaoyi Dong, Yuhang Zang, Tong Wu, Huaian Chen, Jiaqi
Wang, and Yi Jin. Motionclone: Training-free motion cloning for controllable video generation.
arXiv preprint arXiv:2406.05338, 2024.

Yuan Liu, Yilin Wen, Sida Peng, Cheng Lin, Xiaoxiao Long, Taku Komura, and Wenping Wang.
Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. In European
Conference on Computer Vision, pp. 298-315. Springer, 2022.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
A skinned multi-person linear model. In Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pp. 851-866, 2023.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint
arXiv:2401.03048, 2024.

OpenAl. Gpt-4v(ision) system card. OpenAl, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, and Ziwei Liu. Freetraj:
Tuning-free trajectory control in video diffusion models. arXiv preprint arXiv:2406.16863, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention—
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part Il 18, pp. 234-241. Springer, 2015.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Maximilian Seitzer. pytorch-fid: Fid score for pytorch. htips://github.com/ mseitzer/pytorch-fid,
2020.

Zehong Shen, Huaijin Pi, Yan Xia, Zhi Cen, Sida Peng, Zechen Hu, Hujun Bao, Ruizhen Hu,
and Xiaowei Zhou. World-grounded human motion recovery via gravity-view coordinates. In
SIGGRAPH Asia Conference Proceedings, 2024.

Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field
networks: Neural scene representations with single-evaluation rendering. Advances in Neural
Information Processing Systems, 34:19313-19325, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Jiaming Sun, Zihao Wang, Siyu Zhang, Xingyi He, Hongcheng Zhao, Guofeng Zhang, and Xiaowei
Zhou. Onepose: One-shot object pose estimation without cad models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6825-6834, 2022.

13



Published as a conference paper at ICLR 2025

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2446-2454, 2020.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

Jiawei Wang, Yuchen Zhang, Jiaxin Zou, Yan Zeng, Guoqiang Wei, Liping Yuan, and Hang
Li. Boximator: Generating rich and controllable motions for video synthesis. arXiv preprint
arXiv:2402.01566, 2024a.

Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion con-
trollability. Advances in Neural Information Processing Systems, 36, 2024b.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
ACM SIGGRAPH 2024 Conference Papers, pp. 1-11, 2024c.

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 17868-17879, 2024.

Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and
Nan Duan. Godiva: Generating open-domain videos from natural descriptions. arXiv preprint
arXiv:2104.14806, 2021.

Zeqi Xiao, Yifan Zhou, Shuai Yang, and Xingang Pan. Video diffusion models are training-free
motion interpreter and controller. arXiv preprint arXiv:2405.14864, 2024.

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation
using diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1481-1490, 2024.

Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma, Pengfei Wan, Di Zhang, Xiaodong Chen,
and Jing Liao. Direct-a-video: Customized video generation with user-directed camera movement
and object motion. In ACM SIGGRAPH 2024 Conference Papers, pp. 1-12, 2024.

Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Hougiang Li, Gong Ming, and Nan Duan. Drag-
nuwa: Fine-grained control in video generation by integrating text, image, and trajectory. arXiv
preprint arXiv:2308.08089, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp- 3836-3847, 2023.

Zhenghao Zhang, Junchao Liao, Menghao Li, Long Qin, and Weizhi Wang. Tora: Trajectory-
oriented diffusion transformer for video generation. arXiv preprint arXiv:2407.21705, 2024.

Rui Zhao, Yuchao Gu, Jay Zhangjie Wu, David Junhao Zhang, Jiawei Liu, Weijia Wu, Jussi Keppo,
and Mike Zheng Shou. Motiondirector: Motion customization of text-to-video diffusion models.
arXiv preprint arXiv:2310.08465, 2023.

14



	Introduction
	Related Work
	3DTrajMaster
	Preliminaries on 3D-Entity-Aware Video Distribution
	Plug-and-play 3D-Motion Grounded Object Injector
	Alleviating Video Domain Shift from Constructed Training Data
	Inference Procedure

	Experiments
	Implementation Details
	Baselines
	Evaluation Metric
	Evaluation Dataset
	Comparison
	Ablation Study

	Conclusion

