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A METRIC-BASED EVALUATION

A.1 EVALUATION METRICS

We evaluate our method along two primary axes: (1) the semantic integrity of textual content, and (2)
the perceptual quality of the reconstructed images. Accordingly, we organize the metrics into two
groups.

OCR Metrics. To assess text restoration performance, we report:

• F1 score, Precision, Recall and Accuracy (↑), : character-level measures of OCR correct-
ness; higher is better.

• Normalized Edit Distance (1-NED) (↑): inverse of edit distance, scaled to [0, 100]; higher
values indicate closer agreement with the ground truth.

Image-Quality Metrics. For perceptual fidelity, we adopt:

• Peak Signal-to-Noise Ratio (PSNR) (↑): log-scaled pixel-level similarity to the reference
image.

• Structural Similarity Index (SSIM) (↑): evaluates luminance, contrast, and structural
consistency in line with human perception, scaled to 0–100.

• Learned Perceptual Image Patch Similarity (LPIPS Zhang et al. (2018a)) (↓): deep-
feature distance reflecting perceptual differences, scaled to 0–100.

• Multi-Dimension Attention Network for No-Reference IQA (MANIQA Yang et al.
(2022)) (↑): no-reference quality score based on attention-driven features, scaled to 0–100.

• CLIP-based Image Quality Assessment (CLIP-IQA Wang et al. (2023)) (↑): semantic
fidelity metric leveraging CLIP embeddings, scaled to 0–100.

• Multi-Scale Image Quality Transformer (MUSIQ Ke et al. (2021)) (↑): transformer-based
no-reference IQA that aggregates multi-resolution cues.

A.2 MISALIGNMENT BETWEEN METRICS AND HUMAN PERCEPTION

SR papers still default to PSNR, SSIM, and LPIPS. Although convenient, these scores often drift
from what people actually perceive—especially when the low-resolution input is heavily degraded.
Fig. 9 offers four counter-examples that highlight three recurring failure modes.

Perceptual vs. Semantic Fidelity. In Figure 9, the “HOMER BREWING COMPANY” sign is recon-
structed cleanly by GLYPH-SR yet receives lower PSNR and SSIM than Real-ESRGAN, whose
output contains aliasing and hallucinated glyphs.

Metrics Can Be Misleading. Across multiple benchmarks we frequently observe visually superior
outputs that score lower on PSNR/SSIM/LPIPS (see red vs. blue values in Figure 9). This misalign-
ment—echoed by prior studies Blau & Michaeli (2018); Jinjin et al. (2020); Gu et al. (2022); Yu
et al. (2024a)—underscores the danger of metric-only evaluation. For text-aware SR, side-by-side
inspection or user studies remain indispensable.
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Figure 9: Each triplet shows (left) the input LR image, (middle) a strong baseline, and (right) GLYPH-
SR. Despite GLYPH-SR producing visibly sharper text, its PSNR/SSIM/LPIPS scores (blue) are
often lower than those of the baseline (red). The gap exposes a growing consensus: traditional metrics
alone do not capture human perception of text-laden imagery.
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B EXPERIMENT DETAILS

B.1 REPRODUCIBILITY STATEMENT

Synth Dataset:
https://drive.google.com/drive/folders/1eYMvZQq-93okI2v1YldXLPHDycBkuvdu?
usp=drive_link

Pretrained Model:
https://drive.google.com/drive/folders/1hrZ5jRbVLcRSFpbL-uPxe9iLddylAFgk?
usp=drive_link

Code:
https://drive.google.com/drive/folders/1A75nhOQEG1hcEhzUJxO75X8LfTO7lR3K?
usp=drive_link

Results:
https://drive.google.com/drive/folders/1CArNuM0AI50z3TGsR66u218RLV5UdHYa?
usp=drive_link

Data Generation & Fine-Tuning Workflow

1. Stage 1 – Scene Description Extraction
dataset_generater/make_dataset_get_desc.py
./datasets/descriptions/ containing: {id, image_path, ocr_text, caption}.

2. Stage 2 – Augmented Prompt Synthesis
third_party/make_dataset_with_nunchaku/
make_dataset_with_augmentation.py
Invokes the Nunchaku augmentation engine to expand each record with synthetic corruptions
(blur, noise, JPEG artifacts) and with diversity-enhanced textual prompts. The output is a
paired folder structure: ./datasets/aug/{hq,lq}.

3. Stage 3 – Negative/HQ Pairing
dataset_generater/make_dataset_Neg_HQ.py
Generates explicit (LQ, HQ) pairs and the associated prompt metadata required by GLYPH-
SR. Final training files are placed under ./datasets/final/.

4. Stage 4 – Fine-Tuning
train_GLYPH_SR.py

python3 train_GLYPH_SR . py \
−− d a t a _ r o o t . / d a t a s e t s / \
−− c f g GLYPH−SR / m o d e l _ c o n f i g s / m o d e l _ c o n f i g . yaml

Inference Workflow

1. Create the checkpoint directory.
Download every model file from the Pre-trained Checkpoints link and place them in a newly
created folder named CKPT_PTH at the project root.

2. Patch all path references.
Edit the three files listed below so that each points to the new directory, e.g.
CKPT_PTH/<checkpoint_name>.pth:

• GLYPH-SR/model_configs/model_config.yaml
• GLYPH-SR/run_GLYPHSR.py

• GLYPH-SR/CKPT_PTH.py

3. Run command.
Verify correct loading by launching a single-image run:

py thon3 run_GLYPH_SR . py −− img_pa th . / image . j p g
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Successful execution confirms that all checkpoints are discovered and that GLYPH-SR is
ready for inference.

B.2 SETUP

All experiments were conducted on a workstation equipped with three NVIDIA RTX 6000 Ada GPUs
(48 GB each), all utilized concurrently for training and inference, an Intel Xeon W9-3475X CPU (36
cores, 72 threads), and 256GB RAM. The system runs Ubuntu 24.04.2 LTS and uses a 3.7TB NVMe
SSD for storage. The models were implemented in PyTorch 2.5.1 with CUDA 11.8.

B.2.1 EVALUATION DATASETS

ICDAR2017 (International Conference on Document Analysis and Recognition). The IC-
DAR2017 Robust Reading Challenge dataset consists of scene-text images designed to test text
detection and recognition systems under real-world conditions. It includes both high- and low-quality
images that exhibit various degradations such as blur, low resolution, and noise. This diversity makes
it well-suited for fine-tuning vision-language models to enhance OCR robustness. In our pipeline,
ICDAR2017 is used to fine-tune LLaVA-NeXT, enabling it to better handle degraded scene-text
images and produce more accurate token-level guidance.

SCUT-CTW1500 (Curved Text in the Wild). SCUT-CTW1500 is a large-scale scene-text de-
tection benchmark featuring 1,500 images with over 10,000 annotated curved text instances. The
dataset includes a wide variety of natural scenes such as street views, signboards, and shop names,
with text appearing in arbitrary orientations, lengths, and curvature. It is especially known for its
high diversity in text shape and layout, which makes it well-suited for evaluating the robustness of
text detection and SR models in processing long and curved text lines. SCUT-CTW1500 is widely
used for benchmarking models designed to process irregular and multi-oriented scene-text under
real-world conditions.

CUTE80 (Curve Text). CUTE80 is a compact yet challenging dataset containing 80 high-resolution
images, specifically curated to evaluate curved text detection and recognition systems. The dataset
features a range of naturally curved and perspective-distorted text instances embedded in complex
backgrounds such as logos, signs, and posters. Despite its small size, CUTE80 is frequently used in
literature to benchmark the generalization ability of text-focused models on non-horizontal and non-
linear text structures. Its emphasis on difficult geometric deformations makes it a useful supplement
to larger datasets for testing text-specific visual models under challenging conditions.

SVT (Street View Text). SVT is a benchmark dataset collected from Google Street View, consisting
of 647 images with approximately 2,000 annotated text instances. It features naturally occurring
scene-text with various distortions, backgrounds, lighting conditions, and orientations. Despite its
relatively small size, SVT is widely used in the literature for benchmarking the performance of
OCR and text SR models under real-world conditions. Its challenging scenarios make it suitable for
evaluating model generalization and robustness in unconstrained environments.

B.2.2 PRE-TRAINED MODELS

LLaVA-NeXT. We employ LLaVA-NeXT Liu et al. (2024) as the vision–language front-end that
extracts semantic context from low-resolution inputs. LLaVA-NeXT couples a CLIP-ViT visual
encoder with a 7-B parameter LLM and is instruction-tuned on a large multimodal corpus, yielding
state-of-the-art performance in fine-grained grounding, captioning, and region-level reasoning. Within
our pipeline it automatically produces (i) image-level captions (IMG prompts) and (ii) spatially aligned
OCR strings (OCR prompts); both streams are fed as high-level conditions to the diffusion backbone.

JuggernautXL (SDXL-based). For image generation we adopt JuggernautXL, a publicly released
checkpoint built on SDXL-base 1.0 and further fine-tuned for improved sharpness and color fidelity.
The underlying SDXL architecture is trained on billions of image–text pairs and natively supports
1024× 1024 resolution.
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B.2.3 KEY HYPER-PARAMETERS

• Vision–Language Encoder. A frozen LLaVA-NeXT produces 2 048-dimensional multi-
modal embeddings that act as cross-attention keys; because the encoder is not fine-tuned, it
adds zero trainable parameters.

• First Stage (VAE). A 256× 256 auto-encoder (4 latent channels, 4× down-sampling) maps
RGB images to a 64× 64× 4 latent grid.

• Denoising and Sampling. We use the standard 1 000-step DDPM schedule wrapped
by RESTORE-EDM sampling (default: 50 inference steps, classifier-free guidance scale
annealed from 7.5 to 4.0).

B.2.4 SYNTHETIC TRAINING DATA

To train the TS-ControlNet, we curate a purpose-built synthetic dataset with four mutually exclusive
partitions: Positive/High-Quality, Positive/Low-Quality, Negative/High-Quality, and Negative/Low-
Quality. Each split is created by selectively degrading either global content or localized glyph
regions while keeping spatial layout and annotations intact. This design lets the network disentangle
text-specific cues from general image priors.

Figure 10: Step 1: JSONL metadata—id, OCR text, and scene prompt—generated by LLAVA-
NEXT.

Step 1: Prompt-Metadata Extraction. Using a pretrained LLAVA-NEXT encoder and YAML-
defined prompt templates, we batch-process scene-text images and record three fields in JSONL:
image id, OCR text, and a scene-level prompt. Figure 10 illustrates the resulting metadata,
produced by make_dataset_get_desc.py.

Step 2: Stylistic Augmentation. We prepend each prompt with a style token (e.g., sunset glow,
cinematic bokeh) via make_dataset_with_augmentation.py. The enriched prompts drive
a Flux-based diffusion model equipped with ControlNet and LoRA modules to generate visually
diverse high-quality samples (Fig. 11).
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Figure 11: Step 2: Prompt augmentation with stylistic keywords to boost visual diversity.

Figure 12: Step 3: Positive vs. intentionally corrupted (negative) high-quality pairs.

Step 3: Negative High-Quality Pairs. The make_dataset_Neg_HQ.py script corrupts text
regions at the glyph level while leaving global detail untouched, yielding hard negative examples.
Corruptions are verified with the SUPIR pipeline Yu et al. (2024b)(Fig. 12).
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Figure 13: Step 4: Four synthetic subsets used for text-aware SR training.

Step 4: Final Dataset Assembly. All positive and negative images are merged into the four target
splits shown in Fig. 13.
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C EXPERIMENT RESULTS

C.1 COMPARE CHARACTER GENERATION TO OTHER MODELS.

We compare our model’s character generation ability against standard OCR models across difficulty
levels. The results in Table 2 show significant improvements, especially under hard conditions. For
evaluation, LLaVA-NeXT and our model were prompted using the following instructions: "Please
perform OCR on this image." Additionally, both predicted and ground truth texts were normalized by
removing non-alphabetic characters and ignoring case sensitivity before computing the metrics.

Fig. 18 provides a qualitative comparison between GLYPH-SR and baselines at magnification factors
of ×4, ×8, and an extreme ×16. GLYPH-SR continuously reconstructs glyph outlines, stroke widths,
and kerning while remaining true to the underlying truth, while harmonizing color and brightness with
the surrounding background area. This visual evidence corroborates the quantitative gap observed
in Table 1: models that optimize solely for perceptual metrics (e.g. DiffBIR, Real-ESRGAN) or for
edge contrast fall short on OCR fidelity once the scale factor exceeds ×8.

C.2 ABLATION STUDY

In this ablation, we test an alternative to our binary ping-pong policy: several static "Mixing" policies.
These policies use a constant mixing ratio λt = C (where C ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) to blend the
text and image guidance at every step, rather than alternating. The results in Table 4 demonstrate that
this static mixing leads to an unstable and sub-optimal trade-off.

As detailed in Table 5, increasing w generally improves perceptual metrics (e.g., CLIP-IQA, MUSIQ)
by strengthening the generative prior. However, we observed a distinct trade-off where excessive
guidance (w > 7.5) leads to a degradation in OCR performance.

The control scale modulates the influence of our Text-SR Fusion ControlNet. As presented in Table 6,
we identified severe failure modes associated with high values of sCTRL. When the scale exceeds 1.0,
the strong injection of control features disrupts the natural image statistics of the diffusion backbone,
leading to over-conditioning.

C.3 SENSITIVITY TO UPSTREAM VLM/OCR ERRORS

We assess how errors in upstream text guidance (OCR/VLM) propagate to GLYPH-SR. Because
our method deliberately conditions on token-level strings and locations, corrupted guidance could
degrade both readability and overall perceptual quality. We simulate three error modes and measure
their impact on OCR and IQA metrics.

1. Random Character Corruption: Replace n% ∈ {30, 50, 90} of characters in the OCR string
with uniformly sampled alternatives (random noise).

2. Plausible Character Swaps (“Swap”): Systematically replace characters with visually confusable
counterparts from a curated set (e.g., O↔0, I↔1, T↔7).

3. Missed Detections (“Drop”): Remove a portion of OCR-recognized characters to emulate
detection/recognition failures.

Table 7 reports OpenOCR/GOT-OCR F1 and MANIQA/CLIP-IQA. Parentheses show absolute
changes w.r.t. the uncorrupted baseline.

All error modes substantially hurt both axes: readability (OpenOCR/GOT-OCR F1) and perceived
image quality (MANIQA/CLIP-IQA). Even moderate noise (50%) reduces OpenOCR F1 by 16.79,pp
and MANIQA by 16.62 points. Plausible swaps and missed detections also trigger large drops,
indicating that quantity (how many tokens are wrong), nature (plausible vs. random), and absence
(drops) all impair glyph integrity and global appearance. This validates our design choice to use a
strong, LR-aware OCR/VLM and to treat guidance quality as a first-order factor in text-aware SR.

To investigate the trade-off mechanism empirically, we visualized the internal noise prediction maps
ϵθ across diffusion timesteps, as shown in Fig. 22. We compared the feature map evolution under
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Table 2: Quantitative comparison of OCR performance on images degraded by various factors and
restored using six SR models, evaluated across three benchmark datasets and three OCR systems.
Red and blue denote the best and second-best results, respectively.

OpenOCR GOT-OCR LLaVA-NeXT

Precision Recall F1 score 1-NED Accuracy Precision Recall F1 score 1-NED Accuracy Precision Recall F1 score 1-NED Accuracy

SVT(x4)
LR 61.41 40.28 48.65 26.37 32.14 75.70 59.91 66.89 34.60 50.25 83.27 60.50 70.08 13.50 53.94
HR 74.73 87.86 80.76 27.69 67.73 81.18 82.97 82.06 34.80 69.58 87.68 82.14 84.82 17.77 73.65
BSRGAN 57.03 51.19 53.96 28.04 36.95 69.63 50.68 58.66 31.29 41.50 84.60 57.55 68.50 15.82 52.09
DiffBIR 41.49 36.31 38.73 20.21 24.01 48.34 37.65 42.33 24.47 26.85 63.20 35.16 45.19 13.34 29.19
DiffTSR 39.55 12.81 19.35 14.27 10.71 51.76 14.39 22.51 15.97 12.68 78.98 17.94 29.23 5.49 17.12
InvSR 55.56 60.22 57.79 27.53 40.64 65.44 57.05 60.96 31.65 43.84 78.67 55.38 65.00 15.95 48.15
MARCONet 0.00 0.00 0.00 0.03 0.00 12.50 0.12 0.25 2.02 0.12 0.00 0.00 0.00 0.08 0.00
MARCONet++ 55.08 45.85 50.05 27.74 33.37 68.58 53.14 59.88 32.49 42.73 81.76 55.19 65.90 15.01 49.14
PiSA-SR 60.16 66.79 63.30 26.71 46.31 66.84 63.70 65.23 33.74 48.40 83.20 57.14 67.75 15.44 51.23
Real-ESRGAN 59.41 58.89 59.15 30.16 42.00 75.05 61.04 67.32 33.50 50.74 83.70 63.99 72.53 16.25 56.90
SwinIR 58.21 51.43 54.61 28.31 37.56 72.41 56.59 63.53 34.02 46.55 83.54 64.86 73.03 16.22 57.51
StableSR 62.08 57.83 59.88 30.32 42.73 73.79 56.13 63.76 34.71 46.80 84.70 65.56 73.91 16.81 58.62
SUPIR 58.16 58.67 58.41 20.17 41.26 64.54 59.48 61.90 26.81 44.83 74.54 53.28 62.14 15.86 45.07
TAIR 42.11 20.13 27.23 20.81 15.76 46.60 22.26 30.13 23.61 17.73 63.71 21.88 32.58 10.04 19.46
GLYPH-SR (ours) 61.33 75.14 67.54 22.17 50.99 68.07 75.79 71.72 28.37 55.91 79.22 68.07 73.22 19.49 57.76

SCUT-CTW1500(x4)
LR 49.86 8.57 14.63 21.56 7.89 61.44 14.57 23.55 24.51 13.35 80.62 33.40 47.23 21.73 30.91
HR 72.57 68.73 70.59 56.36 54.55 75.74 65.33 70.15 52.17 54.02 87.67 69.89 77.77 35.27 63.63
BSRGAN 46.41 16.80 24.67 29.86 14.07 56.71 13.54 21.86 23.70 12.27 78.96 22.56 35.10 17.25 21.28
DiffBIR 38.18 18.26 24.71 33.85 14.09 36.43 17.70 23.82 30.71 13.52 54.93 21.31 30.71 20.94 18.14
DiffTSR 45.86 12.60 19.77 25.83 10.97 50.84 9.48 15.98 18.64 8.69 72.82 14.14 23.69 11.30 13.43
InvSR 45.37 21.93 29.57 34.39 17.35 47.40 18.31 26.41 28.17 15.22 66.15 23.33 34.50 18.34 20.84
MARCONet 17.65 0.07 0.13 0.71 0.07 13.83 0.29 0.57 2.55 0.29 41.67 0.11 0.22 0.20 0.11
MARCONet++ 47.02 14.98 22.72 27.05 12.82 54.82 12.70 20.63 22.17 11.50 74.92 21.24 33.10 15.93 19.83
PiSA-SR 49.11 30.27 37.46 40.32 23.04 56.25 24.50 34.14 33.47 20.58 71.18 31.96 44.11 23.23 28.30
Real-ESRGAN 52.95 22.22 31.31 33.69 18.56 59.50 17.41 26.94 26.49 15.57 79.94 29.65 43.25 20.12 27.59
SwinIR 49.75 15.05 23.10 28.11 13.06 59.40 14.42 23.21 24.64 13.13 80.24 26.14 39.44 17.58 24.56
StableSR 53.58 16.77 25.55 30.02 14.64 57.67 12.06 19.95 22.18 11.08 79.31 32.25 45.86 21.07 29.75
SUPIR 39.95 11.84 18.26 25.73 10.05 45.16 10.93 17.61 21.40 9.65 62.60 15.13 24.37 14.32 13.87
TAIR 46.43 26.80 33.98 38.09 20.47 50.58 20.76 29.44 32.51 17.26 66.76 30.29 41.67 23.32 26.32
GLYPH-SR (ours) 48.82 31.46 38.26 37.75 23.66 47.45 30.27 36.96 36.09 22.67 63.59 32.37 42.90 25.86 27.31

CUTE(x4)
LR 72.41 60.29 65.80 51.93 49.03 75.66 52.27 50.58 50.32 44.75 93.72 79.51 80.47 38.43 75.49
HR 77.78 80.38 79.06 51.61 65.37 75.33 51.36 61.08 45.35 43.97 95.17 79.76 86.78 37.54 76.65
BSRGAN 68.84 77.89 73.09 54.63 57.59 69.44 46.95 56.02 45.37 38.91 92.54 76.86 83.97 39.00 72.37
DiffBIR 64.90 73.37 68.88 48.01 52.53 61.48 40.49 48.82 43.45 32.30 88.12 76.39 81.84 38.53 69.26
DiffTSR 64.94 57.65 61.08 51.95 43.97 67.80 36.53 47.48 45.54 31.13 92.59 61.22 73.71 30.66 58.37
InvSR 70.19 74.87 72.46 53.54 56.81 72.79 45.00 55.62 43.91 38.52 90.87 79.41 84.75 37.15 73.54
MARCONet 100.0 1.17 2.31 0.78 1.17 54.55 2.38 4.56 3.74 2.33 100.00 1.95 3.82 0.96 1.95
MARCONet++ 68.34 70.10 69.21 54.17 52.92 71.64 43.84 54.39 44.30 37.35 93.09 71.72 81.02 39.79 68.09
PiSA-SR 71.36 74.24 72.77 50.28 57.20 70.29 44.91 54.80 42.70 37.74 93.30 74.18 82.65 38.00 70.43
Real-ESRGAN 71.43 76.14 73.71 53.32 58.37 71.81 49.77 58.79 45.31 41.63 93.03 76.95 84.23 36.37 72.76
SwinIR 74.63 72.82 73.71 57.77 58.37 71.74 45.41 55.62 46.40 38.52 91.92 75.52 82.92 37.52 70.82
StableSR 69.71 74.74 72.14 51.76 56.42 74.64 46.40 57.22 42.36 40.08 89.66 77.12 82.92 38.02 70.82
SUPIR 68.78 73.06 70.85 49.43 54.86 63.38 43.90 51.87 42.38 35.02 89.05 76.17 82.11 40.24 69.65
TAIR 50.00 41.21 55.21 39.41 29.18 60.83 34.76 43.77 41.46 28.40 87.18 57.38 69.87 35.23 52.92
GLYPH-SR (ours) 69.48 77.08 73.09 47.00 57.59 68.28 46.92 55.62 38.27 38.52 90.05 80.51 85.01 39.78 73.93

SVT(x8)
LR 34.62 4.84 8.49 8.92 4.43 53.04 18.82 27.78 19.86 16.13 79.78 29.23 42.79 8.65 27.22
HR 74.73 87.86 80.76 27.69 67.73 81.18 82.97 82.06 34.80 69.58 87.68 82.14 84.82 17.77 73.65
BSRGAN 35.75 9.18 14.61 13.02 7.88 36.54 7.99 13.12 14.68 7.02 76.77 15.34 25.56 6.25 14.66
DiffBIR 25.00 12.54 16.70 16.56 9.11 29.23 13.58 18.55 18.51 10.22 44.16 14.93 22.32 10.21 12.56
DiffTSR 28.03 6.29 10.28 11.36 5.42 31.51 6.46 10.72 14.98 5.67 62.50 9.09 15.87 4.60 8.62
InvSR 29.34 12.08 17.12 18.54 9.36 37.80 14.68 21.15 19.87 11.82 50.00 13.73 21.54 8.20 12.07
MARCONet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.30 0.00 0.00 0.00 0.00 0.05 0.00
MARCONet++ 28.03 6.29 10.28 12.41 5.42 38.36 8.54 13.97 14.26 7.51 62.96 15.60 22.32 6.62 14.29
PiSA-SR 36.11 11.57 17.53 14.53 9.61 47.84 16.06 24.05 19.83 13.67 79.41 24.77 37.76 7.72 23.28
Real-ESRGAN 34.50 11.93 17.73 16.17 9.73 48.20 15.35 23.29 19.45 13.18 76.68 19.30 30.83 7.14 18.23
SwinIR 34.59 9.26 14.61 13.61 7.88 45.63 13.43 20.75 17.89 11.58 76.44 19.04 30.48 6.45 17.98
StableSR 41.13 14.05 20.95 17.50 11.70 50.45 16.12 24.43 19.15 13.92 79.43 29.71 43.24 9.96 27.59
SUPIR 42.82 27.66 33.61 15.29 20.20 43.00 30.90 35.96 18.80 21.92 59.22 26.68 36.78 11.28 22.54
TAIR 35.38 15.48 21.54 16.68 12.07 40.91 16.46 23.48 21.45 13.30 51.87 17.96 26.68 10.14 15.39
GLYPH-SR (ours) 48.52 49.06 48.79 19.16 32.27 57.32 55.03 56.16 23.17 39.04 69.57 50.53 58.54 17.99 41.38

SCUT-CTW1500(x8)
LR 27.91 0.27 0.53 1.38 0.26 38.41 2.54 4.76 8.22 2.44 73.05 5.47 10.18 5.14 5.36
HR 72.57 68.73 70.59 56.36 54.55 75.74 65.33 70.15 52.17 54.02 87.67 69.89 77.77 35.27 63.63
BSRGAN 29.10 1.79 3.37 7.67 1.72 31.06 1.88 3.54 7.31 1.80 64.75 2.00 3.88 2.10 1.98
DiffBIR 15.66 2.81 4.76 17.18 2.44 11.46 3.28 5.10 16.05 2.62 21.26 2.60 4.64 9.28 2.37
DiffTSR 28.10 1.55 2.95 6.94 1.50 28.33 1.51 2.86 6.44 1.45 51.94 1.49 2.90 2.37 1.47
InvSR 21.15 1.10 2.09 7.13 1.06 18.66 1.15 2.17 7.17 1.10 55.45 1.24 2.43 1.78 1.23
MARCONet 20.00 0.07 0.13 0.59 0.07 16.67 0.31 0.61 2.28 0.31 46.15 0.13 0.26 0.33 0.13
MARCONet++ 35.53 1.21 2.35 4.27 1.19 34.48 1.35 2.60 5.15 1.32 67.42 1.33 2.60 1.03 1.32
PiSA-SR 25.50 4.48 7.61 17.41 3.96 29.21 3.92 6.92 13.26 3.58 50.45 5.20 9.43 6.82 4.95
Real-ESRGAN 32.77 2.72 5.02 9.82 2.57 34.74 3.07 5.64 9.91 2.90 66.30 4.11 7.74 3.81 4.02
SwinIR 36.32 1.93 3.67 6.60 1.87 32.06 2.52 4.68 9.01 2.40 67.96 2.74 5.27 2.77 2.70
StableSR 39.90 1.74 3.33 5.63 1.69 40.55 2.34 4.43 7.41 2.26 71.37 3.95 7.49 3.68 3.89
SUPIR 19.91 3.15 5.43 14.12 2.79 22.41 3.64 6.26 13.13 3.23 33.47 3.91 7.00 7.13 3.63
TAIR 27.45 6.67 10.74 21.66 5.67 28.06 5.52 9.23 18.45 4.84 38.99 7.19 12.14 12.97 6.46
GLYPH-SR (ours) 22.61 7.35 11.09 20.54 5.87 25.24 10.38 14.71 20.10 7.94 34.12 9.34 14.67 13.85 7.92

CUTE(x8)
LR 60.00 29.30 39.38 38.33 24.51 68.33 37.44 36.31 45.45 31.91 91.02 62.81 67.18 29.99 59.14
HR 77.78 80.38 79.06 51.61 65.37 75.33 51.36 61.08 45.35 43.97 95.17 79.76 86.78 37.54 76.65
BSRGAN 58.33 52.41 55.21 47.56 38.13 68.42 35.29 46.57 42.81 30.35 91.61 58.20 71.18 28.40 55.25
DiffBIR 61.58 57.67 59.56 45.10 42.41 58.73 36.10 44.71 38.97 28.79 88.61 58.58 70.53 30.10 54.47
DiffTSR 60.76 49.23 54.39 48.20 37.35 62.16 32.09 42.33 41.04 26.85 86.23 50.00 63.30 27.95 46.30
InvSR 55.80 57.06 56.42 47.28 39.30 60.98 35.89 45.18 39.50 29.18 87.43 61.86 72.46 35.41 56.81
MARCONet 100.00 1.56 3.07 1.15 1.56 33.33 2.45 4.56 4.65 2.33 100.00 1.95 3.82 0.83 1.95
MARCONet++ 56.49 45.79 50.58 48.26 33.85 67.57 33.94 45.18 40.53 29.18 90.51 59.09 71.50 33.08 55.64
PiSA-SR 58.23 48.17 52.72 51.39 35.80 61.61 32.24 42.33 41.76 26.85 92.26 63.52 75.24 30.23 60.31
Real-ESRGAN 60.67 57.75 59.18 50.53 42.02 70.00 38.01 49.27 42.81 32.68 93.25 61.79 74.33 31.11 59.14
SwinIR 58.33 47.40 52.30 49.71 35.41 64.66 34.72 45.18 42.14 29.18 90.68 60.33 72.46 28.55 56.81
StableSR 60.06 55.73 57.81 51.68 40.66 61.22 35.80 45.18 43.35 29.18 88.79 63.24 73.87 32.52 58.56
SUPIR 57.69 58.33 58.01 43.46 40.86 59.83 33.33 42.81 35.98 27.24 82.25 61.23 70.20 35.16 54.09
TAIR 49.30 37.84 42.81 37.98 27.24 54.10 32.84 40.87 40.20 25.68 82.27 50.00 62.20 33.88 45.14
GLYPH-SR (ours) 63.49 63.83 63.66 42.40 46.69 58.91 37.25 45.65 36.80 29.57 83.80 65.79 73.71 35.12 58.37
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Table 3: Quantitative comparison of SR models on three scene-text datasets (SVT, SCUT-CTW1500,
CUTE80) at ×4 and ×8 upscaling factors. Metrics include distortion-based (PSNR, SSIM, LPIPS↓)
and perceptual quality scores (MANIQA, CLIP-IQA, MUSIQ). Red and blue denote the best and
second-best results, respectively.

Dataset SR model PSNR SSIM LPIPS↓ MANIQA CLIP-IQA MUSIQ

SVT(x4)

LR 30.12 87.21 33.58 20.45 17.06 26.31
HR - - - 23.64 25.51 41.63
BSRGAN 28.09 83.16 35.34 38.16 39.63 66.25
DiffBIR 21.96 63.94 43.55 47.82 58.66 71.18
DiffTSR 26.06 78.42 44.95 21.34 27.69 46.24
InvSR 24.78 76.58 38.61 46.78 57.30 70.81
PiSA-SR 26.58 82.04 34.13 37.41 44.30 61.87
MARCONet 18.40 69.07 58.91 30.92 24.43 27.26
MARCONet++ 27.73 84.33 34.75 29.31 19.82 49.20
Real-ESRGAN 29.67 88.58 30.68 31.16 28.58 51.14
SwinIR 30.48 86.38 35.29 26.32 44.50 34.55
StableSR 30.54 87.00 33.73 24.75 32.18 24.44
SUPIR 22.76 67.15 45.14 42.36 48.42 67.55
TAIR 24.80 73.72 40.31 29.31 19.82 49.20
GLYPH-SR (ours) 22.89 67.19 42.20 47.75 59.40 70.99

SCUT-CTW1500(x4)

LR 19.16 55.44 47.91 28.92 31.16 25.82
HR - - - 64.23 77.42 70.87
BSRGAN 20.22 64.59 32.12 51.41 47.44 67.52
DiffBIR 17.91 56.34 36.20 62.37 61.90 71.19
DiffTSR 18.99 58.59 41.34 35.39 30.59 55.83
InvSR 18.32 60.71 32.99 57.75 55.94 69.25
PiSA-SR 20.07 63.99 31.18 56.31 53.05 68.19
MARCONet 14.80 40.89 66.30 33.34 16.54 28.78
MARCONet++ 19.08 58.77 41.60 34.65 19.58 43.61
Real-ESRGAN 20.85 67.46 36.81 40.81 43.43 52.66
SwinIR 19.91 58.45 47.11 33.85 46.07 39.36
StableSR 19.24 55.45 49.03 31.04 43.61 24.92
SUPIR 13.61 32.98 52.15 57.35 51.68 66.96
TAIR 18.19 60.04 34.46 65.38 47.05 67.08
GLYPH-SR (ours) 18.19 54.67 37.15 70.33 57.88 70.31

CUTE80(x4)

LR 26.44 78.35 36.69 28.93 36.80 37.64
HR - - - 40.12 55.71 60.81
BSRGAN 27.35 79.76 31.83 44.22 55.73 69.13
DiffBIR 22.60 66.07 37.74 51.04 72.64 69.06
DiffTSR 24.06 72.66 42.74 33.94 38.47 58.74
InvSR 24.41 75.55 32.93 50.30 67.78 70.66
PiSA-SR 25.83 77.41 31.49 45.82 61.81 66.18
MARCONet 16.17 63.52 56.18 33.58 26.69 31.06
MARCONet++ 25.16 77.75 34.91 31.88 34.90 54.15
Real-ESRGAN 28.14 82.30 32.01 38.20 48.71 60.65
SwinIR 27.18 77.95 38.02 31.87 59.32 47.94
StableSR 26.23 79.51 30.45 36.26 49.74 60.09
SUPIR 22.42 66.20 39.33 47.50 62.62 68.26
TAIR 20.82 69.03 41.27 58.25 49.76 72.06
GLYPH-SR (ours) 23.03 69.54 37.03 49.77 65.93 69.96

SVT(x8)

LR 26.15 78.90 48.54 19.81 44.07 22.96
HR - - - 23.64 25.51 41.63
BSRGAN 25.13 73.71 45.64 37.14 37.58 62.83
DiffBIR 22.89 65.20 50.07 45.54 53.20 64.11
DiffTSR 24.45 76.19 46.32 21.39 26.39 43.96
InvSR 22.82 71.34 41.84 32.51 50.83 51.69
PiSA-SR 26.12 77.64 50.83 34.02 18.39 30.24
MARCONet 18.68 69.49 58.71 30.84 24.76 27.02
MARCONet++ 25.15 76.11 44.44 20.97 8.44 38.06
Real-ESRGAN 25.69 80.28 41.92 28.38 17.86 43.01
SwinIR 26.48 78.16 48.01 22.05 26.68 30.33
StableSR 26.38 78.15 50.20 23.16 23.38 16.22
SUPIR 21.23 59.08 51.46 40.17 45.06 65.20
TAIR 22.72 68.24 44.86 31.99 29.49 54.27
GLYPH-SR (ours) 21.77 61.36 47.85 47.40 56.78 69.93

SCUT-CTW1500(x8)

LR 17.04 43.70 63.73 16.39 26.19 17.71
HR - - - 64.23 77.42 70.87
BSRGAN 17.32 48.50 47.86 46.21 37.83 66.05
DiffBIR 15.78 43.47 50.05 54.75 49.89 63.16
DiffTSR 14.83 40.25 54.50 35.49 31.88 50.43
InvSR 11.81 30.68 65.88 29.65 29.62 40.29
PiSA-SR 17.22 47.63 48.90 41.77 36.75 58.95
MARCONet 14.93 40.72 66.71 33.56 16.20 28.95
MARCONet++ 16.79 44.04 57.88 14.75 8.06 30.27
Real-ESRGAN 17.65 52.34 52.14 28.37 20.95 39.99
SwinIR 17.39 45.42 61.26 19.00 24.14 25.64
StableSR 17.00 43.50 66.02 20.93 20.92 16.62
SUPIR 12.63 26.51 58.63 55.46 47.02 65.55
TAIR 16.02 45.70 45.73 63.60 36.57 66.38
GLYPH-SR (ours) 16.27 41.31 52.58 61.94 48.21 63.43

CUTE80(x8)

LR 23.25 71.52 47.61 17.29 22.58 17.32
HR - - - 40.12 55.71 60.81
BSRGAN 23.84 72.55 39.14 42.07 54.31 67.33
DiffBIR 22.77 65.36 41.79 47.53 62.09 64.62
DiffTSR 22.67 70.41 42.80 33.55 42.95 57.47
InvSR 21.83 70.76 38.05 37.66 62.43 57.69
PiSA-SR 23.36 70.52 47.71 30.71 30.80 45.16
MARCONet 16.37 63.64 56.08 33.66 26.69 30.88
MARCONet++ 22.79 70.85 43.34 21.03 22.72 44.24
Real-ESRGAN 24.01 75.58 39.60 35.17 36.46 56.55
SwinIR 23.82 71.22 47.71 22.72 40.40 39.44
StableSR 7.94 35.66 79.75 26.00 40.42 34.48
SUPIR 20.64 61.31 43.76 46.38 61.67 67.04
TAIR 20.49 67.69 42.35 37.11 36.84 55.06
GLYPH-SR (ours) 21.19 65.15 42.31 47.75 65.85 68.85
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Figure 14: Qualitative comparison.

two distinct conditions: a baseline with accurate text guidance versus a perturbed setting with high
guidance error (OCR error). As observed in the heatmaps, the introduction of incorrect conditioning
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Figure 15: Qualitative comparison of text-focused SR on the Real-Text dataset. Each block shows
a LQ input (left) and the outputs of four representative SR methods: BSRGAN, DiffBIR, InvSR,
and the proposed GLYPH-SR (right). GLYPH-SR consistently reconstructs sharper glyph bound-
aries, preserves accurate character shapes, and restores correct textual semantics across diverse
scenes—including license plates, bird labels, warning signs, Chinese characters, and directional
symbols—while competing methods often exhibit distortions, blurring, or hallucinated characters.

Figure 16: Qualitative comparison of scene-text SR under various degradation scales (×4, ×6, ×8).
While prior methods often blur or hallucinate characters, GLYPH-SR accurately restores readable,
coherent text. Zoom in for detail.

generates significant spatial anomalies, which we term ‘prediction noise outliers’ (highlighted in
red boxes). Unlike the baseline, where noise predictions converge coherently, the high-error setting
exhibits persistent instability throughout the intermediate steps (e.g., Step 25).

Based on these visual findings, we identify the mechanism by which incorrect text conditioning
degrades the entire image, including non-textual regions:
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Figure 17: Qualitative Comparison of Handwriting SR. Visual comparison between the LQ input (top
row) and the output generated by GLYPH-SR (bottom row) on various handwritten texts.

Figure 18: Qualitative comparison of text-centric SR results at ×4, ×8 and ×16 scales.

Table 4: Ablation on the scheduler policy evaluated on the CUTE80 dataset.

(a) CUTE80 (LR × 4)

Scheduler Policy MANIQA CLIP-IQA MUSIQ OCR F1

Binary ping–pong 49.77 65.93 69.96 85.01
Mixing (λt = 0.1) 49.95 70.64 70.67 81.57
Mixing (λt = 0.3) 49.04 69.56 69.75 83.18
Mixing (λt = 0.5) 47.57 65.47 68.95 84.23
Mixing (λt = 0.7) 47.86 68.91 68.83 81.84
Mixing (λt = 0.9) 48.85 69.11 69.13 82.65

(b) CUTE80 (LR × 8)

Scheduler Policy MANIQA CLIP-IQA MUSIQ OCR F1

Binary ping–pong 47.75 65.85 68.85 73.71
Mixing (λt = 0.1) 48.89 67.65 69.56 66.49
Mixing (λt = 0.3) 47.44 68.31 68.86 69.87
Mixing (λt = 0.5) 46.57 64.07 67.35 73.40
Mixing (λt = 0.7) 45.80 67.98 67.19 66.84
Mixing (λt = 0.9) 45.58 67.66 67.18 68.88

• Noise Dispersion: When incorrect conditioning is injected, the predicted noise values fail to
localize around the text regions. Instead, as shown in Fig. 22, high-variance noise artifacts
become spatially dispersed across the entire domain.
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Figure 19: Qualitative Comparison of Curved Text SR (Curved Stress Test). The figure compares the
low-quality (LQ) input (top row) with the output of GLYPH-SR (middle row) and a magnified view
(bottom row). The curvature of the text increases from left to right across the figure. GLYPH-SR
successfully reconstructs the intricate curved glyphs (e.g., ’SEACREST BEACH’ and ’STARBUCKS
COFFEE’) without introducing the shape distortion or blurring often seen in other SR methods. The
results demonstrate the robustness of GLYPH-SR in handling non-linear text layouts.

Figure 20: Qualitative Comparison of High-Density Text SR (Dense Stress Test). This comparison
highlights the capability of GLYPH-SR (middle row) versus the LQ input (top row) in highly dense
and cluttered text environments. The density and complexity of the text increase from left to right
across the figure. GLYPH-SR excels at isolating and sharpening individual characters and lines of text,
even when tightly packed (e.g., the ’BROADFIELD HOTEL’ sign and the multi-line management
sign), proving its superior performance in complex, dense scenes where competing methods often
struggle with inter-line blurring.

Table 5: Ablation study on CFG scale w. Evaluated on CUTE80 (×4).

CFG Scale (w) OCR Metric (F1 Score ↑) SR Metric (↑)
OpenOCR GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ

2 75.54 57.62 87.53 41.26 55.96 65.23
4 74.63 57.22 88.50 43.42 60.01 67.30

7.5* 73.09 55.62 85.01 49.77 65.93 69.96
12 71.50 53.56 84.23 49.52 69.87 70.51
20 65.45 45.18 79.06 50.60 74.30 71.03

• Dissipation of Predictive Capacity: In diffusion models, the noise predictor ϵθ(zt, t, c)
estimates a noise vector subject to a magnitude constraint at each timestep. When the
semantic condition c conflicts with the visual features (due to erroneous OCR), the model
expends its finite predictive capacity attempting to resolve this ambiguity. Consequently, the
prediction energy is dissipated globally rather than being concentrated on glyph restoration.
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Figure 21: Performance Comparison under Extreme Degradation. We compare SR results with
extremely LR input images. Despite the inherent difficulty of achieving full restoration in these
Extreme LR scenarios, GLYPH-SR demonstrates a unique capability for semantic reconstruction. As
shown by the comparison against the LR input and the GT, GLYPH-SR successfully recovers partial
text structure and generates sharper outlines, showcasing its effectiveness even when input quality is
severely degraded.

Table 6: Ablation study on Control Scale sCTRL. Evaluated on CUTE80 (×4).

sCTRL
OCR Metric (F1 Score ↑) SR Metric (↑)

OpenOCR GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ

1.0* 73.09 55.62 85.01 49.77 65.93 69.96
2.0 69.21 56.02 81.84 26.36 66.95 49.92
3.0 4.56 6.04 25.17 37.17 45.28 49.21

10.0 0.00 0.00 0.00 35.22 25.26 27.18

Table 7: Sensitivity to OCR/VLM guidance errors. Values in parentheses are absolute deltas from
the baseline (lower is worse).

Error rate / Type OpenOCR F1 GOT-OCR F1 MANIQA CLIP-IQA

Baseline 48.82 38.36 62.01 79.69
30% 38.36 (−10.46) 28.67 (−9.69) 45.87 (−16.14) 63.65 (−16.04)
50% 32.03 (−16.79) 26.35 (−12.01) 45.39 (−16.62) 64.88 (−14.81)
90% 27.52 (−21.30) 26.35 (−12.01) 45.61 (−16.40) 66.00 (−13.59)
Swap 39.88 (−8.94) 33.12 (−5.24) 45.81 (−16.20) 66.00 (−13.69)
Drop 41.85 (−6.97) 32.03 (−6.33) 44.82 (−17.19) 65.30 (−14.39)

• Global Texture Degradation: This misallocation of predictive resources leaves insufficient
residual capacity for restoring fine-grained non-text textures. As a result, the background
is not merely neglected; it is actively degraded by incoherent noise updates driven by the
semantic conflict.
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Figure 22: Intermediate Feature Analysis under OCR Error Rates.

Consequently, we posit that text fidelity and background quality are positively correlated in our
framework. Precise text guidance acts as a stabilizing anchor, preventing noise dispersion and
ensuring a coherent denoising trajectory for both glyphs and scene textures.

As illustrated in Fig. 23, GLYPH-SR can deliver visually plausible SR results yet still hallucinates
glyphs in regions that were originally non-textual. This deficiency in text-region localization means
the reconstructed text may be ambiguous, incomplete, or entirely spurious. Furthermore, when
multiple words are present, the model tends to enhance only the most visually salient word and
overlook the rest. These failure cases underline the necessity for finer-grained attention mechanisms
and explicit supervision of glyph positions in future work.
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Figure 23: Failure cases where GLYPH-SR produces visually plausible SR outputs but incorrectly
generates text in non-textual regions.

C.4 COMPUTATIONAL FOOTPRINT AND PRACTICAL EFFICIENCY

Setup. We benchmark inference on a 4× SR task with 512×512 inputs. Times are mean ± std.
over repeated runs. For methods that require a large VLM (SUPIR and GLYPH-SR), we used two
NVIDIA A6000 GPUs; reported peak VRAM is the sum across both devices.

Table 8: Compute comparison. For VLM-guided methods, #Params lists (restoration, VLM) in
millions.

Method #Params (M) Inference (s / sample) Peak VRAM (GB)

StableSR 153 79.98± 0.22 10.10
DiffBIR 385 53.14± 1.41 9.64
SUPIR 18, 152 25.25± 0.86 46.21
GLYPH-SR 13, 225 38.25± 1.28 43.56

GLYPH-SR trades extra parameters and memory for markedly better text fidelity: it couples a
restoration backbone with a powerful OCR/VLM to reason about low-resolution text. This design
improves accuracy but introduces a computational bottleneck. To mitigate the cost while keeping
readability gains, we will pursue:

• Lighter VLM Guidance. Replace the current general-purpose VLM with a compact, LR-text-
specialized guider (or distill the guider), reducing parameter count and latency with minimal loss
in guidance quality.

• Inference Optimization (“Block Caching”). Cache and reuse guidance features that repeat across
diffusion steps/tiles (e.g., projected text embeddings and cross-attention KV maps), skipping
redundant compute and lowering end-to-end runtime.

These directions aim to preserve GLYPH-SR’s strengths (“looks right and reads right”) while
improving deployability under realistic compute budgets.
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OCR metric: F1 ↑ SR metric

Dataset / Guider OpenOCR GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ

Ours 73.09 55.62 85.01 49.77 65.93 69.96
R-4B 72.77 55.21 84.75 40.78 57.20 65.57
PaliGemma-3B 70.53 51.45 84.52 42.11 59.61 65.83

Table 9: Compact/alternative guiders in GLYPH-SR.

Table 9 highlights a clear but controllable accuracy–efficiency trade-off. While GLYPH-SR employs
a high-capacity LLaVA-NeXT-8B guider by default to handle severe degradations, our ablation study
demonstrates that significantly lighter models can serve as efficient alternatives. Specifically, replacing
the 8B guider with the 4B model (R-4B) reduces the model size by 50%, yet the OpenOCR F1 score
drops by a negligible 0.32 points (from 73.09 to 72.77). Even with the 3B model (PaliGemma-3B),
which represents a ∼62.5% reduction in parameters, the model maintains robust text recognition
capabilities with a moderate decline of 2.56 points in OpenOCR. This quantitative evidence indicates
that practitioners with tighter deployment budgets can adopt these lighter guiders to substantially
reduce computational overhead (latency and VRAM) at only a modest performance cost, proving
GLYPH-SR’s adaptability to resource-constrained environments.

Table 10: Preliminary evaluation on CUTE80 (×16) comparing the baseline GLYPH-SR with
proposed solution strategies. Red indicates improvement, and Blue indicates degradation compared
to the baseline.

Method OpenOCR GOT-OCR ManiQA ClipIQA

LR 12.41 12.41 14.12 29.11

GLYPH-SR (Baseline) 9.63 11.72 38.52 54.68

GLYPH-SR + [1]
13.77 12.41 35.75 49.68
(+4.14) (+0.69) (-2.77) (-5.00)

GLYPH-SR + CoT
10.33 13.09 42.15 59.99
(+0.70) (+1.37) (+3.63) (+5.31)

We conducted a proof-of-concept experiment on the CUTE80 dataset under an extreme downscaling
factor of ×16, a setting where severe degradation renders text nearly illegible and prone to detec-
tion failures. As summarized in Table 10, integrating the dual-stage restoration framework [26]
significantly improved OpenOCR performance (+4.14), demonstrating its effectiveness in mitigating
hallucinations and recovering structural details despite detection errors. Furthermore, refining the
inference process with Chain-of-Thought (CoT) prompting notably enhanced perceptual quality
metrics (ManiQA and ClipIQA) while boosting recognition accuracy, confirming its capacity to
effectively balance the trade-off between fidelity and perception. These results empirically verify the
robust extendability of GLYPH-SR even under extreme degradation scenarios.

Trainable parameters. Although the full model size is large due to the VLM, our fine-tuning
recipe is lightweight. We freeze the diffusion backbone and update only two components:

1. TS-ControlNet branch (≈54.8M parameters) that handles text-guidance fusion.

2. VLM LoRA adapter (≈5.9M parameters) with low rank (r=8), lora_alpha of 32, and
dropout of 0.05.

To minimize memory further, the large frozen VLM is loaded in 4-bit quantization (nf4 with double
quantization via BitsAndBytes).
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Table 11: Trainable parameter counts (millions). Despite using a VLM, GLYPH-SR keeps trainable
parameters modest via freezing and LoRA.

Metric GLYPH-SR PiSA-SR StableSR DiffBIR SUPIR DiffTSR

Trainable (M) 60.7 0.38 152.67 378.95 3865.64 55.31

Inference latency. The OCR/VLM guider is the main overhead driver. Out of a total per-image
latency of 38.25 ± 1.28 seconds (Sec. C.4), the VLM component accounts for ≈ 8.46 seconds.
Notably, while integrating the VLM increases total parameter count, the latency impact is not
proportional. In practice, we retain training practicality with only 60.7M trainable parameters and
observe that the rise in inference time is moderate relative to the parameter growth, yielding a
favorable trade-off between accuracy (readability and IQA) and compute.

Implication. These results align with our compute study (Table 8): GLYPH-SR deliberately
expends parameters on guidance quality to secure text fidelity, yet its fine-tuning footprint remains
compact and deployable. Further efficiency gains are compatible with our design (e.g., lighter LR-text
guiders and block caching for reusable guidance features).

Figure 24: Comparison with explicit attention injection. We investigated an alternative design that
explicitly injects OCR attention maps into the backbone. However, this explicit attention guidance
proves detrimental; instead of refining features, it interferes with the backbone’s pre-trained priors,
causing the model to focus on irrelevant noise (as shown in the Attention Map). In contrast, our
final GLYPH-SR (rightmost) harmonizes text guidance without such interference, demonstrating
successful restoration.
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