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A METRIC-BASED EVALUATION

A.1 EVALUATION METRICS

We evaluate our method along two primary axes: (1) the semantic integrity of textual content, and (2)
the perceptual quality of the reconstructed images. Accordingly, we organize the metrics into two
groups.

OCR Metrics. To assess text restoration performance, we report:

e F; score, Precision, Recall and Accuracy (1), : character-level measures of OCR correct-
ness; higher is better.

* Normalized Edit Distance (1-NED) (1): inverse of edit distance, scaled to [0, 100]; higher
values indicate closer agreement with the ground truth.

Image-Quality Metrics. For perceptual fidelity, we adopt:

* Peak Signal-to-Noise Ratio (PSNR) (1): log-scaled pixel-level similarity to the reference
image.

* Structural Similarity Index (SSIM) (1): evaluates luminance, contrast, and structural
consistency in line with human perception, scaled to 0—100.

* Learned Perceptual Image Patch Similarity (LPIPS |Zhang et al.[ (2018a)) ({): deep-
feature distance reflecting perceptual differences, scaled to 0—100.

¢ Multi-Dimension Attention Network for No-Reference IQA (MANIQA Yang et al.
(2022)) (1): no-reference quality score based on attention-driven features, scaled to 0—100.

¢ CLIP-based Image Quality Assessment (CLIP-IQA Wang et al. (2023)) (1): semantic
fidelity metric leveraging CLIP embeddings, scaled to 0—100.

¢ Multi-Scale Image Quality Transformer (MUSIQ Ke et al. (2021)) (1): transformer-based
no-reference IQA that aggregates multi-resolution cues.

A.2 MISALIGNMENT BETWEEN METRICS AND HUMAN PERCEPTION

SR papers still default to PSNR, SSIM, and LPIPS. Although convenient, these scores often drift
from what people actually perceive—especially when the low-resolution input is heavily degraded.
Fig. /] offers four counter-examples that highlight three recurring failure modes.

Perceptual vs. Semantic Fidelity. In Figure[7] the “HOMER BREWING COMPANY” sign is recon-
structed cleanly by GLYPH-SR yet receives lower PSNR and SSIM than Real-ESRGAN, whose
output contains aliasing and hallucinated glyphs.

Metrics Can Be Misleading. Across multiple benchmarks we frequently observe visually superior
outputs that score lower on PSNR/SSIM/LPIPS (see red vs. blue values in Figure[7). This misalign-
ment—echoed by prior studies Blau & Michaeli| (2018); Jinjin et al.| (2020); |Gu et al.| (2022); |Yu
et al.|(2024a)—underscores the danger of metric-only evaluation. For text-aware SR, side-by-side
inspection or user studies remain indispensable.
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Figure 7: Each triplet shows (left) the input LR image, (middle) a strong baseline, and (right) GLY PH-
SR. Despite GLYPH-SR producing visibly sharper text, its PSNR/SSIM/LPIPS scores (blue) are
often lower than those of the baseline (red). The gap exposes a growing consensus: traditional metrics
alone do not capture human perception of text-laden imagery.
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B EXPERIMENT DETAILS

B.1 REPRODUCIBILITY STATEMENT

Synth Dataset:

https://drive.google.

usp=drive_link

Pretrained Model:

https://drive.google.

usp=drive_link

Code:

https://drive.google.

usp=drive_link

Results:

https://drive.google.

usp=drive_link

com/drive/folders/1eYMvZQg-930kI2v1Y1dXLPHDycBkuvdu?

com/drive/folders/1hrZ5JRbVLcRSFpbL-uPxe9iLddylAFgk?

com/drive/folders/1A75nhOQEG1hcEhzUJx075X8LETO71R3K?

com/drive/folders/1CArNuMOAI50z3TGsR66u218RLV5UdHYa?

Data Generation & Fine-Tuning Workflow

1. Stage 1 — Scene Description Extraction
dataset_generater/make_dataset_get_desc.py
./datasets/descriptions/ containing: {id, image_path, ocr_text, caption}.

2. Stage 2 — Augmented Prompt Synthesis
third_party/make_dataset_with_nunchaku/
make_dataset_with_augmentation.py
Invokes the Nunchaku augmentation engine to expand each record with synthetic corruptions
(blur, noise, JPEG artifacts) and with diversity-enhanced textual prompts. The output is a
paired folder structure: . /datasets/aug/{hqg, 1q}.

3. Stage 3 — Negative/HQ Pairing
dataset_generater/make_dataset_Neg_ HQ.py
Generates explicit (LQ, HQ) pairs and the associated prompt metadata required by GLYPH-
SR. Final training files are placed under . /datasets/final/.

4. Stage 4 — Fine-Tuning
train_GLYPH_SR.py

python3 train_ GLYPH_SR.py \

——data_

——cfg

Inference Workflow

root ./datasets/ \
GLYPH-SR/ model_configs/model_config.yaml

1. Create the checkpoint directory.
Download every model file from the Pre-trained Checkpoints link and place them in a newly
created folder named CKPT_PTH at the project root.

2. Patch all path references.
Edit the three files listed below so that each points to the new directory, e.g.
CKPT_PTH/<checkpoint_name>.pth:

* GLYPH-SR/model_configs/model_config.yaml
* GLYPH-SR/run_GLYPHgR.py
* GLYPH-SR/CKPT_PTH.py

3. Run command.

Verify correct loading by launching a single-image run:

python3 run_GLYPH_SR.py ——img_path ./image.jpg
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Successful execution confirms that all checkpoints are discovered and that GLYPH-SR is
ready for inference.

B.2 SETUP

All experiments were conducted on a workstation equipped with three NVIDIA RTX 6000 Ada GPUs
(48 GB each), all utilized concurrently for training and inference, an Intel Xeon W9-3475X CPU (36
cores, 72 threads), and 256GB RAM. The system runs Ubuntu 24.04.2 LTS and uses a 3.7TB NVMe
SSD for storage. The models were implemented in PyTorch 2.5.1 with CUDA 11.8.

B.2.1 EVALUATION DATASETS

ICDAR2017 (International Conference on Document Analysis and Recognition). The IC-
DAR2017 Robust Reading Challenge dataset consists of scene-text images designed to test text
detection and recognition systems under real-world conditions. It includes both high- and low-quality
images that exhibit various degradations such as blur, low resolution, and noise. This diversity makes
it well-suited for fine-tuning vision-language models to enhance OCR robustness. In our pipeline,
ICDAR2017 is used to fine-tune LLaVA-NeXT, enabling it to better handle degraded scene-text
images and produce more accurate token-level guidance.

SCUT-CTW1500 (Curved Text in the Wild). SCUT-CTW1500 is a large-scale scene-text de-
tection benchmark featuring 1,500 images with over 10,000 annotated curved text instances. The
dataset includes a wide variety of natural scenes such as street views, signboards, and shop names,
with text appearing in arbitrary orientations, lengths, and curvature. It is especially known for its
high diversity in text shape and layout, which makes it well-suited for evaluating the robustness of
text detection and SR models in processing long and curved text lines. SCUT-CTW1500 is widely
used for benchmarking models designed to process irregular and multi-oriented scene-text under
real-world conditions.

CUTESO (Curve Text). CUTESO0 is a compact yet challenging dataset containing 80 high-resolution
images, specifically curated to evaluate curved text detection and recognition systems. The dataset
features a range of naturally curved and perspective-distorted text instances embedded in complex
backgrounds such as logos, signs, and posters. Despite its small size, CUTES0 is frequently used in
literature to benchmark the generalization ability of text-focused models on non-horizontal and non-
linear text structures. Its emphasis on difficult geometric deformations makes it a useful supplement
to larger datasets for testing text-specific visual models under challenging conditions.

SVT (Street View Text). SVT is a benchmark dataset collected from Google Street View, consisting
of 647 images with approximately 2,000 annotated text instances. It features naturally occurring
scene-text with various distortions, backgrounds, lighting conditions, and orientations. Despite its
relatively small size, SVT is widely used in the literature for benchmarking the performance of
OCR and text SR models under real-world conditions. Its challenging scenarios make it suitable for
evaluating model generalization and robustness in unconstrained environments.

B.2.2 PRE-TRAINED MODELS

LLaVA-NeXT. We employ LLaVA-NeXT Liu et al.|(2024) as the vision—language front-end that
extracts semantic context from low-resolution inputs. LLaVA-NeXT couples a CLIP-ViT visual
encoder with a 7-B parameter LLM and is instruction-tuned on a large multimodal corpus, yielding
state-of-the-art performance in fine-grained grounding, captioning, and region-level reasoning. Within
our pipeline it automatically produces (i) image-level captions (IMG prompts) and (ii) spatially aligned
OCR strings (OCR prompts); both streams are fed as high-level conditions to the diffusion backbone.

JuggernautXL (SDXL-based). For image generation we adopt JuggernautXL, a publicly released
checkpoint built on SDXL-base 1.0 and further fine-tuned for improved sharpness and color fidelity.
The underlying SDXL architecture is trained on billions of image—text pairs and natively supports
1024 x 1024 resolution.
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B.2.3 KEY HYPER-PARAMETERS

* Vision-Language Encoder. A frozen LLaVA-NeXT produces 2 048-dimensional multi-
modal embeddings that act as cross-attention keys; because the encoder is not fine-tuned, it
adds zero trainable parameters.

* First Stage (VAE). A 256 x 256 auto-encoder (4 latent channels, 4 x down-sampling) maps
RGB images to a 64 x 64 x 4 latent grid.

* Denoising and Sampling. We use the standard 1000-step DDPM schedule wrapped
by RESTORE-EDM sampling (default: 50 inference steps, classifier-free guidance scale
annealed from 7.5 to 4.0).

B.2.4 SYNTHETIC TRAINING DATA

To train the TS-ControlNet, we curate a purpose-built synthetic dataset with four mutually exclusive
partitions: Positive/High-Quality, Positive/Low-Quality, Negative/High-Quality, and Negative/Low-
Quality. Each split is created by selectively degrading either global content or localized glyph
regions while keeping spatial layout and annotations intact. This design lets the network disentangle
text-specific cues from general image priors.

...................................................................................

“id": "/SVT_image_x4/00_18.jpg"
: "OCR": "Days Inn & Suites"

- "prompt": "The image depicts a street scene with a focus on a

: sign for a hotel named **Days Inn & Suites.** ..... The image has
: a casual, everyday quality to it, likely intended to show the
location of the hotel for travelers or passersby."

{ «jd": "/SVT_image_x4/00_19.jpg“

o
.

"OCR": "Comfort Inn"

: "prompt": "The image shows a sign for a hotel or motel named
**Comfort Inn.** The sign is rectangular with rounded corners

: and is mounted on a vertical pole. ..... The focus is on the sign,
: and the image is taken from a slightly lower angle, which makes

Figure 8: Step 1: JSONL metadata—id, OCR text, and scene prompt—generated by LLAVA-NEXT.

Step 1: Prompt-Metadata Extraction. Using a pretrained LLAVA-NEXT encoder and YAML-
defined prompt templates, we batch-process scene-text images and record three fields in JSONL:
image 1d, OCR text, and a scene-level prompt. Figure[]illustrates the resulting metadata, produced
by make_dataset_get_desc.py.

Step 2: Stylistic Augmentation. We prepend each prompt with a style token (e.g., sunset glow,
cinematic bokeh) viamake_dataset_with_augmentation.py. The enriched prompts drive
a Flux-based diffusion model equipped with ControlNet and LoRA modules to generate visually
diverse high-quality samples (Fig.[9).

18



Under review as a conference paper at ICLR 2026

"prompt": "Fujifilm Pro 400H color palette , The text
**Quality Hotel™ is displayed in white capital letters on
a light blue awning above the entrance to the hotel
building. The awning is supported by wooden brackets
and casts a slight shadow on the facade of the building,
creating a clear contrast against the beige stone wall.
Flanking the entrance are two rectangular, realistic

: photograph, 35 mm film style, soft natural lighting.”

"prompt": "sunset glow , The text **Quality Hotel** is
displayed in white capital letters on a light blue awning
above the entrance to the hotel building. The awning is
supported by wooden brackets and casts a slight
shadow on the facade of the building, creating a clear
contrast against the beige stone wall. Flanking the
entrance are two ) istic pl graph, 35

: mm film style, soft natural lighting."

QUALITY/
HOTEL

QUALITY, " QUALITY
HOTEL - |MYTEL

Positive High Quality Image Negative High Quality Image

"prompt": "golden hour warmth , The text **MARIL
BORO** appears as a green, block-capital sign affixed
to the storefront of a brick building, bathed by sunlight,
and surrounded by a clear blue sky, realistic
photograph, 35 mm film style, soft natural lighting.”

"prompt": "Fujifilm Pro 400H color palette , The text
**MARIL BORO** appears as a green, block-capital sign
affixed to the storefront of a brick building, bathed by
sunlight, and surrounded by a clear blue sky, realistic
photograph, 35 mm film style, soft natural lighting.”

Positive High Quality Image Negative High Quality Image

Positive High Quality Image

mage

Negativengh Quality |

Figure 10: Step 3: Positive vs. intentionally corrupted (negative) high-quality pairs.

Step 3: Negative High-Quality Pairs. The make_dataset_Neg_HQ.py script corrupts text

regions at the glyph level while leaving global detail untouched, yielding hard negative examples.

Corruptions are verified with the SUPIR pipeline

=

(20245) Fig T0)
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Figure 11: Step 4: Four synthetic subsets used for text-aware SR training.

Step 4: Final Dataset Assembly. All positive and negative images are merged into the four target
splits shown in Fig.[T1]
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C EXPERIMENT RESULTS
C.1 COMPARE CHARACTER GENERATION TO OTHER MODELS.

Table 2: Quantitative comparison of OCR performance on images degraded by various factors and
restored using six SR models, evaluated across three benchmark datasets and three OCR systems.
Red and blue denote the best and second-best results, respectively.

| OpenOCR | GOT-OCR | LLaVA-NeXT

| Precision Recall Fjscore 1-NED  Accuracy | Precision Recall Fjscore I-NED  Accuracy | Precision Recall Fjscore 1-NED  Accuracy
SVT(x4)
BSRGAN 57.03 5119 5396 2804 3695 69.63 5068 5866 3129 4150 84.60 5755 6850 1582  52.09
DiffBIR 4149 3631 3873 2021 2401 4834 37.65 4233 2447 2685 6320 3516 4519 1334 29.19
DiffTSR 39.55 1281 1935 1427 1071 5176 1439 2251 1597 12,68 7898 1794 2923 549 17.12
InvSR 5556 6022 5779 2753 40.64 6544 5705 6096  31.65  43.84 7867 5538 6500 1595  48.15
PiSA-SR 60.16 6679 6330 2671 4631 6684 6370 6523 3374 4840 8320  57.14 6775 1544 5123
Real-ESRGAN 5941 5889 5915  30.16  42.00 7505 61.04 6732 3350  50.74 8370 6399 7253 1625  56.90
StableSR 6208 5783  59.88 3032 4273 7379 5613 6376 3471 46.80 8470 6556 7391 1681  58.62
SUPIR 5816 58.67 5841 2017 4126 6454 5948 6190 2681  44.83 7454 5328 6214 1586  45.07
GLYPH-SR (ours) 6133 7514 6754 2217  50.99 68.07 7579 7172 2837 5591 7922 6807 7322 1949 5776
SCUT-CTW1500(x4)
BSRGAN 4641 1680 2467 2986  14.07 5671 13.54 2186 2370 1227 7896 2256 3510 1725 2128
DiffBIR 3818 1826 2471 3385  14.09 3643 1770 2382 3071 1352 5493 2131 3071 2094 1814
DiffTSR 4586 1260 1977 2583 1097 50.84 948 1598  18.64 8.69 7282 1414 2369 1130 1343
InvSR 4537 2193 2957 3439 1735 4740 1831 2641 2817 1522 66.15 2333 3450 1834 2084
PiSA-SR 49.11 3027 3746 4032 23.04 5625 2450 3414 3347 2058 7118 3196 4411 2323 2830
Real-ESRGAN 5295 2222 3131 3369 1856 5950 1741 2694 2649 1557 7994 2965 4325 2012 2759
StableSR 5358 1677 2555 3002 14.64 57.67 1206 1995 2218  11.08 7931 3225 4586 2107 2975
SUPIR 3995 1184 1826 2573 1005 4516 1093 17.61 2140 9.65 6260 1513 2437 1432 1387
GLYPH-SR (ours) 4882 3146 3826 3775 23.66 4745 3027 3696 3609  22.67 6359 3237 4290 2586 2731
CUTE(x4)
BSRGAN 68.84  77.89  73.09 5463 5759 69.44 4695 5602 4537 3891 9254 7686 8397  39.00 7237
DiffBIR 6490 7337 6888 4801 5253 6148 4049 4882 4345 3230 88.12 7639  81.84 3853  69.26
DiffTSR 6494 5765 6108 5195 4397 6780 3653 4748 4554 3113 9259 6122 7371 3066 5837
InvSR 7019 7487 7246 5354 56381 7279 4500 5562 4391 3852 90.87 7941 8475 3715 7354
PiSA-SR 7136 7424 7277 5028 5720 7029 4491 5480 4270 3774 9330 7418 8265 3800 7043
Real-ESRGAN 7143 7614 7371 5332 5837 7181 4977 5879 4531 41.63 93.03 7695 8423 3637 7276
StableSR 69.71 7474 7214 5176 5642 7464 4640 5722 4236 40.08 89.66  77.12 8292 3802  70.82
SUPIR 6878  73.06 7085 4943  54.86 6338 4390 5187 4238 3502 89.05 7617 8211 4024  69.65
GLYPH-SR (ours) 69.48 7708 73.09 4700 5759 6828 4692 5562 3827 3852 90.05  80.51 8501  39.78  73.93
SVT(x8)
BSRGAN 3575 908 1461  13.02 7.88 36.54 799 1302 1468 7.02 7677 1534 2556 625 14.66
DiffBIR 2500 1254 1670 1656 9.11 2923 1358 1855 1851 1022 4416 1493 2232 1021 12.56
DiffTSR 2803 629 1028 1136 542 3151 646 1072 1498 5.67 6250 9.09 1587  4.60 8.62
InvSR 2934 1208 17.12 1854 936 3780 1468 2115 1987 1182 5000 1373 2154 820 12.07
PiSA-SR 3611 1157 17.53 1453 9.61 4784 1606 2405 1983  13.67 7941 2477 3776 172 238
Real-ESRGAN 3450 1193 1773 1617 9.73 4820 1535 2329 1945 138 7668 1930 3083 7.14 18.23
StableSR 4113 1405 2095 1750 1170 5045 1612 2443 1905 1392 7943 2971 4324 996 27.59
SUPIR 4282 27.66 3361 1529 2020 4300 3090 3596 1880  21.92 5922 2668 3678 1128 2254
GLYPH-SR (ours) 4852 49.06 4879 1916 3227 5732 5503 5616  23.17  39.04 69.57 5053 5854  17.99 4138
SCUT-CTW1500(x8)
BSRGAN 2910 179 337 7.67 172 3106 188 354 731 1.80 6475 200 3.8 2.10 1.98
DiffBIR 1566 281 476 17.18 244 1146 328 510  16.05 262 2126 260 464 9.28 237
DiffTSR 2810 155 295 6.94 1.50 2833 151 2.86 6.44 145 5194 149 290 237 147
InvSR 21.15 L10 2.09 7.13 1.06 1866 115 217 7.17 1.10 55.45 124 243 178 1.23
PiSA-SR 2550 448 761 1741 3.96 2921 392 692 1326 3.58 5045 520 943 6.82 4.95
Real-ESRGAN 3277 272 502 9.82 257 3474 307 564 9.91 2.90 6630 411 774 3.81 4.02
StableSR 3990 174 333 5.63 1.69 4055 234 443 7.41 226 7137 395 749 3.68 3.89
SUPIR 1991 315 543 1412 2.79 2241 364 626 1313 323 3347 391 7.00 7.13 3.63
GLYPH-SR (ours) 2261 735 1109 2054 5.87 2524 1038 1471  20.10 7.94 3412 934 1467 1385 792
CUTE(x8)
BSRGAN 5833 5241 5521 4756 38.13 6842 3529 4657 4281 3035 91.61 5820 7118 2840 5525
DiffBIR 6158 5767 5956 4510 4241 5873 3610 4471 3897 2879 88.61 5858  70.53  30.10 5447
DiffTSR 60.76 4923 5439 4820 3735 6216 3209 4233 4104 2685 8623 5000 6330 2795 4630
InvSR 5580 5706 5642 4728 3930 6098 3589 4518 3950  29.18 8743 6186 7246 3541 5681
PiSA-SR 5823 48.17 5272 5139 35.80 61.61 3224 4233 4176 2685 9226 6352 7524 3023 6031
Real-ESRGAN 60.67 5775 5918 5053 4202 70.00 3801 4927 4281  32.68 9325 6179 7433 3111 59.14
StableSR 60.06 5573  57.81 5168  40.66 6122 3580 4518 4335 2918 8879 6324 7387 3252 5856
SUPIR 57.69 5833 5801 4346  40.86 59.83 3333 4281 3598 2724 8225 6123 7020 3516  54.09
GLYPH-SR (ours) 6349  63.83  63.66 4240  46.69 5891 3725 4565 3680 2957 8380 6579 7371 3512 5837

We compare our model’s character generation ability against standard OCR models across difficulty
levels. The results in Table 2] show significant improvements, especially under hard conditions. For
evaluation, LLaVA-NeXT and our model were prompted using the following instructions: "Please
perform OCR on this image." Additionally, both predicted and ground truth texts were normalized by
removing non-alphabetic characters and ignoring case sensitivity before computing the metrics.
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Table 3: Quantitative comparison of SR models on three scene-text datasets (SVT, SCUT-CTW 1500,
CUTESO) at x4 and x8 upscaling factors. Metrics include distortion-based (PSNR, SSIM, LPIPS|)
and perceptual quality scores (MANIQA, CLIP-IQA, MUSIQ). Red and blue denote the best and
second-best results, respectively.

Dataset SR model PSNR SSIM LPIPS] MANIQA CLIP-IQA MUSIQ
BSRGAN 28.09 83.16 3534 38.16 39.63 66.25
DiffBIR 2196 6394 4355 47.82 58.66 71.18
DiffTSR 26.06 7842 4495 21.34 27.69 46.24
InvSR 2478  76.58 38.61 46.78 57.30 70.81
SVT(x4) PiSA-SR 26.58 82.04  34.13 37.41 44.30 61.87
Real-ESRGAN 29.67 88.58  30.68 31.16 28.58 51.14
StableSR 30.54 87.00  33.73 24.75 32.18 24.44
SUPIR 2276  67.15 45.14 42.36 48.42 67.55
GLYPH-SR (ours) 22.89 67.19 4220 47.75 59.40 70.99
BSRGAN 2022 6459 3212 51.41 4744 67.52
DiffBIR 1791  56.34  36.20 62.37 61.90 71.19
DiffTSR 1899 5859  41.34 35.39 30.59 55.83
InvSR 18.32  60.71 32.99 57.75 55.94 69.25
SCUT-CTW1500(x4)  PiSA-SR 2007 6399  31.18 56.31 53.05 68.19
Real-ESRGAN 20.85 67.46  36.81 40.81 43.43 52.66
StableSR 19.24 5545 49.03 31.04 43.61 24.92
SUPIR 13.61 3298 52.15 57.35 51.68 66.96
GLYPH-SR (ours) 18.19  54.67 37.15 70.33 57.88 70.31
BSRGAN 2735 7976 31.83 44.22 55.73 69.13
DiffBIR 22.60  66.07 37.74 51.04 72.64 69.06
DiffTSR 2406 72.66 4274 33.94 38.47 58.74
InvSR 2441 7555 32.93 50.30 67.78 70.66
CUTE80(x4) PiSA-SR 2583  77.41 31.49 45.82 61.81 66.18
Real-ESRGAN 28.14 8230 3201 38.20 48.71 60.65
StableSR 2623  79.51 30.45 36.26 49.74 60.09
SUPIR 2242 6620 3933 47.50 62.62 68.26
GLYPH-SR (ours) 23.03 69.54  37.03 49.77 65.93 69.96
BSRGAN 25.13 7371 45.64 37.14 37.58 62.83
DiffBIR 22.89 6520  50.07 45.54 53.20 64.11
DiffTSR 2445 7619 4632 21.39 26.39 43.96
InvSR 2282 7134 41.84 32.51 50.83 51.69
SVT(x8) PiSA-SR 2612 77.64  50.83 34.02 18.39 30.24
Real-ESRGAN 2569 80.28  41.92 28.38 17.86 43.01
StableSR 26.38 7815  50.20 23.16 23.38 16.22
SUPIR 2123  59.08 51.46 40.17 45.06 65.20
GLYPH-SR (ours) 21.77 6136  47.85 47.40 56.78 69.93
BSRGAN 17.32 4850  47.86 46.21 37.83 66.05
DiffBIR 1578 4347  50.05 54.75 49.89 63.16
DiffTSR 14.83  40.25 54.50 35.49 31.88 50.43
InvSR 11.81  30.68 65.88 29.65 29.62 40.29
SCUT-CTW1500(x8)  PiSA-SR 1722  47.63 48.90 41.77 36.75 58.95
Real-ESRGAN 17.65 5234 5214 28.37 20.95 39.99
StableSR 17.00 4350  66.02 20.93 20.92 16.62
SUPIR 1263  26.51 58.63 55.46 47.02 65.55
GLYPH-SR (ours) 1627  41.31 52.58 61.94 48.21 63.43
BSRGAN 23.84 7255  39.14 42.07 54.31 67.33
DiffBIR 2277 6536  41.79 47.53 62.09 64.62
DiffTSR 22.67 70.41 42.80 33.55 42.95 57.47
InvSR 21.83 7076  38.05 37.66 62.43 57.69
CUTES0(x8) PiSA-SR 2336 7052 4771 30.71 30.80 45.16
Real-ESRGAN 2401 7558  39.60 35.17 36.46 56.55
StableSR 794 3566  79.75 26.00 40.42 34.48
SUPIR 20.64 61.31 43.76 46.38 61.67 67.04
GLYPH-SR (ours) 21.19 65.15  42.31 47.75 65.85 68.85
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Figure 12: Qualitative comparison of scene-text SR under various degradation scales (x4, x6, x8).
While prior methods often blur or hallucinate characters, GLYPH-SR accurately restores readable,
coherent text. Zoom in for detail.
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Figure 13: Qualitative comparison of text-centric SR results at x4, x8 and x 16 scales.

Fig.[I3]provides a qualitative comparison between GLYPH-SR and baselines at magnification factors
of x4, x8, and an extreme x 16. GLYPH-SR continuously reconstructs glyph outlines, stroke widths,
and kerning while remaining true to the underlying truth, while harmonizing color and brightness with
the surrounding background area. This visual evidence corroborates the quantitative gap observed in
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Table[T} models that optimize solely for perceptual metrics (e.g. DiffBIR, Real-ESRGAN) or for edge
contrast fall short on OCR fidelity once the scale factor exceeds x8. GLYPH-SR achieves coherent
integration of text and imagery even under x16 SR.

C.2 ABLATION STUDY ON PING-PONG SCHEDULE
Table [] presents results for the CUTE80 benchmark at x4 and x8 scales under two evaluation

Table 4: Ablation on the scheduler policy evaluated on the CUTESO dataset.

(a) CUTESO (LR x 4) (b) CUTESO (LR x 8)
Scheduler Policy MANIQA CLIP-IQA MUSIQ OCRF; Scheduler Policy MANIQA CLIP-IQA MUSIQ OCRF;
Binary ping—pong 49.77 65.93 69.96 85.01 Binary ping—pong 47.75 65.85 68.85 73.71
Mixing (A\; = 0.1) 49.95 70.64 70.67 81.57 Mixing (\; = 0.1) 48.89 67.65 69.56 66.49
Mixing (\; = 0.3) 49.04 69.56 69.75 83.18 Mixing (\; = 0.3) 47.44 68.31 68.86 69.87
Mixing (A, = 0.5) 47.57 65.47 68.95 84.23 Mixing (A, = 0.5) 46.57 64.07 67.35 73.40
Mixing (A = 0.7) 47.86 68.91 68.83 81.84 Mixing (A = 0.7) 45.80 67.98 67.19 66.84
Mixing (\; = 0.9) 48.85 69.11 69.13 82.65 Mixing (A = 0.9) 45.58 67.66 67.18 68.88

protocols. The binary strategy yields higher CLIP-IQA and MUSIQ scores—reflecting superior
perceptual quality—while simultaneously boosting the OCR F; score (LLaVA-NeXT), supporting its
effectiveness at balancing text readability and image fidelity.

C.3 SENSITIVITY TO UPSTREAM VLM/OCR ERRORS

We assess how errors in upstream text guidance (OCR/VLM) propagate to GLYPH-SR. Because our
method deliberately conditions on tokenlevel strings and locations, corrupted guidance could degrade
both readability and overall perceptual quality. We simulate three error modes and measure their
impact on OCR and IQA metrics.

1. Random Character Corruption: Replace n% € {30, 50,90} of characters in the OCR string
with uniformly sampled alternatives (random noise).

2. Plausible Character Swaps (“Swap”’): Systematically replace characters with visually confusable
counterparts from a curated set (e.g., 0<>0, I+>1, T<>7).

3. Missed Detections (“Drop”): Remove a portion of OCRrecognized characters to emulate detec-
tion/recognition failures.

Table[3reports OpenOCR/GOTOCR F; and MANIQA/CLIPIQA. Parentheses show absolute changes
w.r.t. the uncorrupted baseline.

Table 5: Sensitivity to OCR/VLM guidance errors. Values in parentheses are absolute deltas from
the baseline (lower is worse).

Error rate/ Type  OpenOCR F} GOT-OCR F; MANIQA CLIP-IQA
Baseline 48.82 38.36 62.01 79.69
30% 38.36 (—10.46)  28.67(—9.69) 45.87(—16.14) 63.65 (—16.04)
50% 32.03 (—16.79) 26.35(—12.01) 4539(—16.62) 64.88 (—14.81)
90% 27.52(—21.30) 26.35(—12.01) 45.61(—16.40) 66.00 (—13.59)
Swap 39.88 (—8.94) 33.12(—5.24) 45.81(—16.20) 66.00 (—13.69)
Drop 41.85 (—6.97) 32.03(—6.33) 44.82(—17.19) 65.30(—14.39)

All error modes substantially hurt both axes: readability (OpenOCR/GOTOCR F7) and perceived
image quality (MANIQA/CLIPIQA). Even moderate noise (50%) reduces OpenOCR Fj by 16.79 pp
and MANIQA by 16.62 points. Plausible swaps and missed detections also trigger large drops,
indicating that quantity (how many tokens are wrong), nature (plausible vs. random), and absence
(drops) all impair glyph integrity and global appearance. This validates our design choice to use a
strong, LRaware OCR/VLM and to treat guidance quality as a firstorder factor in textaware SR.
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Figure 14: Failure cases where GLYPH-SR produces visually plausible SR outputs but incorrectly
generates text in non-textual regions.

As illustrated in Fig.[T4] GLYPH-SR can deliver visually plausible SR results yet still hallucinates
glyphs in regions that were originally non-textual. This deficiency in text-region localization means
the reconstructed text may be ambiguous, incomplete, or entirely spurious. Furthermore, when
multiple words are present, the model tends to enhance only the most visually salient word and
overlook the rest. These failure cases underline the necessity for finer-grained attention mechanisms
and explicit supervision of glyph positions in future work.

C.4 COMPUTATIONAL FOOTPRINT AND PRACTICAL EFFICIENCY

Setup. We benchmark inference on a 4x SR task with 512x512 inputs. Times are mean =+ std.
over repeated runs. For methods that require a large VLM (SUPIR and GLYPH-SR), we used two
NVIDIA A6000 GPUs; reported peak VRAM is the sum across both devices.

Table 6: Compute comparison. For VLMguided methods, #Params lists (restoration, VLM) in
millions.

Method #Params (M) Inference (s/sample) Peak VRAM (GB)
StableSR 153 79.98 £+ 0.22 10.10
DiffBIR 385 53.14 £ 1.41 9.64
SUPIR 18,152 25.25 + 0.86 46.21
GLYPH-SR 13, 225 38.25 +1.28 43.56

GLYPH-SR trades extra parameters and memory for markedly better text fidelity: it couples a
restoration backbone with a powerful OCR/VLM to reason about lowresolution text. This design
improves accuracy but introduces a computational bottleneck. To mitigate the cost while keeping
readability gains, we will pursue:

 Lighter VLM Guidance. Replace the current generalpurpose VLM with a compact, LRtextspe-
cialized guider (or distill the guider), reducing parameter count and latency with minimal loss in
guidance quality.

26



Under review as a conference paper at ICLR 2026

¢ Inference Optimization (“Block Caching’). Cache and reuse guidance features that repeat
across diffusion steps/tiles (e.g., projected text embeddings and crossattention KV maps), skipping
redundant compute and lowering endtoend runtime.

These directions aim to preserve GLYPH-SR’s strengths (“looks right and reads right”) while
improving deployability under realistic compute budgets.

Trainable parameters. Although the full model size is large due to the VLM, our fine-tuning

recipe is lightweight. We freeze the diffusion backbone and update only two components:

1. TS-ControlNet branch (~=54.8M parameters) that handles text-guidance fusion.

2. VLM LoRA adapter (=5.9M parameters) with low rank (r=8), lora_alpha of 32, and
dropout of 0.05.

To minimize memory further, the large frozen VLM is loaded in 4-bit quantization (nf4 with double
quantization via BitsAndBytes).

Table 7: Trainable parameter counts (millions). Despite using a VLM, GLYPH-SR keeps trainable
parameters modest via freezing and LoRA.

Metric GLYPH-SR PiSA-SR SeeSR StableSR DiffBIR SUPIR DiffTSR

Trainable (M) 60.7 0.38 489.04 152.67 378.95  3865.64 55.31

Inference latency. The OCR/VLM guider is the main overhead driver. Out of a total per-image
latency of 38.25 + 1.28 seconds (Sec. @, the VLM component accounts for ~ 8.46 seconds.
Notably, while integrating the VLM increases total parameter count, the latency impact is not
proportional. In practice, we retain training practicality with only 60.7M trainable parameters and
observe that the rise in inference time is moderate relative to the parameter growth, yielding a
favorable trade-off between accuracy (readability and IQA) and compute.

Implication. These results align with our compute study (Table [): GLYPH-SR deliberately
expends parameters on guidance quality to secure text fidelity, yet its fine-tuning footprint remains
compact and deployable. Further efficiency gains are compatible with our design (e.g., lighter LR-text
guiders and block caching for reusable guidance features).
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