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A METRIC-BASED EVALUATION

A.1 EVALUATION METRICS

We evaluate our method along two primary axes: (1) the semantic integrity of textual content, and (2)
the perceptual quality of the reconstructed images. Accordingly, we organize the metrics into two
groups.

OCR Metrics. To assess text restoration performance, we report:

e F; score, Precision, Recall and Accuracy (1), : character-level measures of OCR correct-
ness; higher is better.

* Normalized Edit Distance (1-NED) (1): inverse of edit distance, scaled to [0, 100]; higher
values indicate closer agreement with the ground truth.

Image-Quality Metrics. For perceptual fidelity, we adopt:

* Peak Signal-to-Noise Ratio (PSNR) (1): log-scaled pixel-level similarity to the reference
image.

* Structural Similarity Index (SSIM) (1): evaluates luminance, contrast, and structural
consistency in line with human perception, scaled to 0—100.

* Learned Perceptual Image Patch Similarity (LPIPS |Zhang et al.[ (2018a)) ({): deep-
feature distance reflecting perceptual differences, scaled to 0—100.

¢ Multi-Dimension Attention Network for No-Reference IQA (MANIQA Yang et al.
(2022)) (1): no-reference quality score based on attention-driven features, scaled to 0—100.

¢ CLIP-based Image Quality Assessment (CLIP-IQA Wang et al. (2023)) (1): semantic
fidelity metric leveraging CLIP embeddings, scaled to 0—100.

¢ Multi-Scale Image Quality Transformer (MUSIQ Ke et al. (2021)) (1): transformer-based
no-reference IQA that aggregates multi-resolution cues.

A.2 MISALIGNMENT BETWEEN METRICS AND HUMAN PERCEPTION

SR papers still default to PSNR, SSIM, and LPIPS. Although convenient, these scores often drift
from what people actually perceive—especially when the low-resolution input is heavily degraded.
Fig. O] offers four counter-examples that highlight three recurring failure modes.

Perceptual vs. Semantic Fidelity. In Figure[9] the “HOMER BREWING COMPANY” sign is recon-
structed cleanly by GLYPH-SR yet receives lower PSNR and SSIM than Real-ESRGAN, whose
output contains aliasing and hallucinated glyphs.

Metrics Can Be Misleading. Across multiple benchmarks we frequently observe visually superior
outputs that score lower on PSNR/SSIM/LPIPS (see red vs. blue values in Figure[9). This misalign-
ment—echoed by prior studies Blau & Michaeli| (2018); Jinjin et al.| (2020); |Gu et al.| (2022); |Yu
et al.|(2024a)—underscores the danger of metric-only evaluation. For text-aware SR, side-by-side
inspection or user studies remain indispensable.
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Figure 9: Each triplet shows (left) the input LR image, (middle) a strong baseline, and (right) GLY PH-
SR. Despite GLYPH-SR producing visibly sharper text, its PSNR/SSIM/LPIPS scores (blue) are
often lower than those of the baseline (red). The gap exposes a growing consensus: traditional metrics
alone do not capture human perception of text-laden imagery.
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B EXPERIMENT DETAILS

B.1 REPRODUCIBILITY STATEMENT

Synth Dataset:

https://drive.google.

usp=drive_link

Pretrained Model:

https://drive.google.

usp=drive_link

Code:

https://drive.google.

usp=drive_link

Results:

https://drive.google.

usp=drive_link

com/drive/folders/1eYMvZQg-930kI2v1Y1dXLPHDycBkuvdu?

com/drive/folders/1hrZ5JRbVLcRSFpbL-uPxe9iLddylAFgk?

com/drive/folders/1A75nhOQEG1hcEhzUJx075X8LETO71R3K?

com/drive/folders/1CArNuMOAI50z3TGsR66u218RLV5UdHYa?

Data Generation & Fine-Tuning Workflow

1. Stage 1 — Scene Description Extraction
dataset_generater/make_dataset_get_desc.py
./datasets/descriptions/ containing: {id, image_path, ocr_text, caption}.

2. Stage 2 — Augmented Prompt Synthesis
third_party/make_dataset_with_nunchaku/
make_dataset_with_augmentation.py
Invokes the Nunchaku augmentation engine to expand each record with synthetic corruptions
(blur, noise, JPEG artifacts) and with diversity-enhanced textual prompts. The output is a
paired folder structure: . /datasets/aug/{hqg, 1q}.

3. Stage 3 — Negative/HQ Pairing
dataset_generater/make_dataset_Neg_ HQ.py
Generates explicit (LQ, HQ) pairs and the associated prompt metadata required by GLYPH-
SR. Final training files are placed under . /datasets/final/.

4. Stage 4 — Fine-Tuning
train_GLYPH_SR.py

python3 train_ GLYPH_SR.py \

——data_

——cfg

Inference Workflow

root ./datasets/ \
GLYPH-SR/ model_configs/model_config.yaml

1. Create the checkpoint directory.
Download every model file from the Pre-trained Checkpoints link and place them in a newly
created folder named CKPT_PTH at the project root.

2. Patch all path references.
Edit the three files listed below so that each points to the new directory, e.g.
CKPT_PTH/<checkpoint_name>.pth:

* GLYPH-SR/model_configs/model_config.yaml
* GLYPH-SR/run_GLYPHgR.py
* GLYPH-SR/CKPT_PTH.py

3. Run command.

Verify correct loading by launching a single-image run:

python3 run_GLYPH_SR.py ——img_path ./image.jpg
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Successful execution confirms that all checkpoints are discovered and that GLYPH-SR is
ready for inference.

B.2 SETUP

All experiments were conducted on a workstation equipped with three NVIDIA RTX 6000 Ada GPUs
(48 GB each), all utilized concurrently for training and inference, an Intel Xeon W9-3475X CPU (36
cores, 72 threads), and 256GB RAM. The system runs Ubuntu 24.04.2 LTS and uses a 3.7TB NVMe
SSD for storage. The models were implemented in PyTorch 2.5.1 with CUDA 11.8.

B.2.1 EVALUATION DATASETS

ICDAR2017 (International Conference on Document Analysis and Recognition). The IC-
DAR2017 Robust Reading Challenge dataset consists of scene-text images designed to test text
detection and recognition systems under real-world conditions. It includes both high- and low-quality
images that exhibit various degradations such as blur, low resolution, and noise. This diversity makes
it well-suited for fine-tuning vision-language models to enhance OCR robustness. In our pipeline,
ICDAR2017 is used to fine-tune LLaVA-NeXT, enabling it to better handle degraded scene-text
images and produce more accurate token-level guidance.

SCUT-CTW1500 (Curved Text in the Wild). SCUT-CTW1500 is a large-scale scene-text de-
tection benchmark featuring 1,500 images with over 10,000 annotated curved text instances. The
dataset includes a wide variety of natural scenes such as street views, signboards, and shop names,
with text appearing in arbitrary orientations, lengths, and curvature. It is especially known for its
high diversity in text shape and layout, which makes it well-suited for evaluating the robustness of
text detection and SR models in processing long and curved text lines. SCUT-CTW1500 is widely
used for benchmarking models designed to process irregular and multi-oriented scene-text under
real-world conditions.

CUTESO (Curve Text). CUTESO0 is a compact yet challenging dataset containing 80 high-resolution
images, specifically curated to evaluate curved text detection and recognition systems. The dataset
features a range of naturally curved and perspective-distorted text instances embedded in complex
backgrounds such as logos, signs, and posters. Despite its small size, CUTES0 is frequently used in
literature to benchmark the generalization ability of text-focused models on non-horizontal and non-
linear text structures. Its emphasis on difficult geometric deformations makes it a useful supplement
to larger datasets for testing text-specific visual models under challenging conditions.

SVT (Street View Text). SVT is a benchmark dataset collected from Google Street View, consisting
of 647 images with approximately 2,000 annotated text instances. It features naturally occurring
scene-text with various distortions, backgrounds, lighting conditions, and orientations. Despite its
relatively small size, SVT is widely used in the literature for benchmarking the performance of
OCR and text SR models under real-world conditions. Its challenging scenarios make it suitable for
evaluating model generalization and robustness in unconstrained environments.

B.2.2 PRE-TRAINED MODELS

LLaVA-NeXT. We employ LLaVA-NeXT Liu et al.|(2024) as the vision—language front-end that
extracts semantic context from low-resolution inputs. LLaVA-NeXT couples a CLIP-ViT visual
encoder with a 7-B parameter LLM and is instruction-tuned on a large multimodal corpus, yielding
state-of-the-art performance in fine-grained grounding, captioning, and region-level reasoning. Within
our pipeline it automatically produces (i) image-level captions (IMG prompts) and (ii) spatially aligned
OCR strings (OCR prompts); both streams are fed as high-level conditions to the diffusion backbone.

JuggernautXL (SDXL-based). For image generation we adopt JuggernautXL, a publicly released
checkpoint built on SDXL-base 1.0 and further fine-tuned for improved sharpness and color fidelity.
The underlying SDXL architecture is trained on billions of image—text pairs and natively supports
1024 x 1024 resolution.
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B.2.3 KEY HYPER-PARAMETERS

* Vision-Language Encoder. A frozen LLaVA-NeXT produces 2 048-dimensional multi-
modal embeddings that act as cross-attention keys; because the encoder is not fine-tuned, it
adds zero trainable parameters.

* First Stage (VAE). A 256 x 256 auto-encoder (4 latent channels, 4 x down-sampling) maps
RGB images to a 64 x 64 x 4 latent grid.

* Denoising and Sampling. We use the standard 1000-step DDPM schedule wrapped
by RESTORE-EDM sampling (default: 50 inference steps, classifier-free guidance scale
annealed from 7.5 to 4.0).

B.2.4 SYNTHETIC TRAINING DATA

To train the TS-ControlNet, we curate a purpose-built synthetic dataset with four mutually exclusive
partitions: Positive/High-Quality, Positive/Low-Quality, Negative/High-Quality, and Negative/Low-
Quality. Each split is created by selectively degrading either global content or localized glyph
regions while keeping spatial layout and annotations intact. This design lets the network disentangle
text-specific cues from general image priors.

...................................................................................

“id": "/SVT_image_x4/00_18.jpg"
: "OCR": "Days Inn & Suites"

- "prompt": "The image depicts a street scene with a focus on a

: sign for a hotel named **Days Inn & Suites.** ..... The image has
: a casual, everyday quality to it, likely intended to show the
location of the hotel for travelers or passersby."

{ «jd": "/SVT_image_x4/00_19.jpg“

o
.

"OCR": "Comfort Inn"

: "prompt": "The image shows a sign for a hotel or motel named
**Comfort Inn.** The sign is rectangular with rounded corners

: and is mounted on a vertical pole. ..... The focus is on the sign,
: and the image is taken from a slightly lower angle, which makes

Figure 10: Step 1: JSONL metadata—id, OCR text, and scene prompt—generated by LLAVA-
NEXT.

Step 1: Prompt-Metadata Extraction. Using a pretrained LLAVA-NEXT encoder and YAML-
defined prompt templates, we batch-process scene-text images and record three fields in JSONL:
image id, OCR text, and a scene-level prompt. Figure ﬂlfl illustrates the resulting metadata,
produced by make_dataset_get_desc.py.

Step 2: Stylistic Augmentation. We prepend each prompt with a style token (e.g., sunset glow,
cinematic bokeh) viamake_dataset_with_augmentation.py. The enriched prompts drive
a Flux-based diffusion model equipped with ControlNet and LoRA modules to generate visually
diverse high-quality samples (Fig. [TT).
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"prompt": "Fujifilm Pro 400H color palette , The text
**Quality Hotel™ is displayed in white capital letters on
a light blue awning above the entrance to the hotel
building. The awning is supported by wooden brackets
and casts a slight shadow on the facade of the building,
creating a clear contrast against the beige stone wall.
Flanking the entrance are two rectangular, realistic

: photograph, 35 mm film style, soft natural lighting.”

"prompt": "sunset glow , The text **Quality Hotel** is
displayed in white capital letters on a light blue awning
above the entrance to the hotel building. The awning is
supported by wooden brackets and casts a slight
shadow on the facade of the building, creating a clear
contrast against the beige stone wall. Flanking the
entrance are two ) istic pl graph, 35

: mm film style, soft natural lighting."

QUALITY/
HOTEL

QUALITY, " QUALITY
HOTEL - |MYTEL

Positive High Quality Image Negative High Quality Image

"prompt": "golden hour warmth , The text **MARIL
BORO** appears as a green, block-capital sign affixed
to the storefront of a brick building, bathed by sunlight,
and surrounded by a clear blue sky, realistic
photograph, 35 mm film style, soft natural lighting.”

"prompt": "Fujifilm Pro 400H color palette , The text
**MARIL BORO** appears as a green, block-capital sign
affixed to the storefront of a brick building, bathed by
sunlight, and surrounded by a clear blue sky, realistic
photograph, 35 mm film style, soft natural lighting.”

Positive High Quality Image Negative High Quality Image

Positive High Quality Image

mage

Negativengh Quality |

Figure 12: Step 3: Positive vs. intentionally corrupted (negative) high-quality pairs.

Step 3: Negative High-Quality Pairs. The make_dataset_Neg_HQ.py script corrupts text

regions at the glyph level while leaving global detail untouched, yielding hard negative examples.

Corruptions are verified with the SUPIR pipeline

=

(20245) Fig. [1D).
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Figure 13: Step 4: Four synthetic subsets used for text-aware SR training.

Step 4: Final Dataset Assembly. All positive and negative images are merged into the four target
splits shown in Fig.[13]
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C EXPERIMENT RESULTS

C.1 COMPARE CHARACTER GENERATION TO OTHER MODELS.

We compare our model’s character generation ability against standard OCR models across difficulty
levels. The results in Table [2| show significant improvements, especially under hard conditions. For
evaluation, LLaVA-NeXT and our model were prompted using the following instructions: "Please
perform OCR on this image." Additionally, both predicted and ground truth texts were normalized by
removing non-alphabetic characters and ignoring case sensitivity before computing the metrics.

Fig. [I§] provides a qualitative comparison between GLYPH-SR and baselines at magnification factors
of x4, x8, and an extreme x 16. GLYPH-SR continuously reconstructs glyph outlines, stroke widths,
and kerning while remaining true to the underlying truth, while harmonizing color and brightness with
the surrounding background area. This visual evidence corroborates the quantitative gap observed
in Table [T} models that optimize solely for perceptual metrics (e.g. DiffBIR, Real-ESRGAN) or for
edge contrast fall short on OCR fidelity once the scale factor exceeds x8.

C.2 ABLATION STUDY

In this ablation, we test an alternative to our binary ping-pong policy: several static '"Mixing'' policies.
These policies use a constant mixing ratio Ay = C' (where C' € {0.1,0.3,0.5,0.7,0.9}) to blend the
text and image guidance at every step, rather than alternating. The results in Table 4 demonstrate that
this static mixing leads to an unstable and sub-optimal trade-off.

As detailed in Table[5] increasing w generally improves perceptual metrics (e.g., CLIP-IQA, MUSIQ)
by strengthening the generative prior. However, we observed a distinct trade-off where excessive
guidance (w > 7.5) leads to a degradation in OCR performance.

The control scale modulates the influence of our Text-SR Fusion ControlNet. As presented in Table|[6]
we identified severe failure modes associated with high values of sctrr.. When the scale exceeds 1.0,
the strong injection of control features disrupts the natural image statistics of the diffusion backbone,
leading to over-conditioning.

C.3 SENSITIVITY TO UPSTREAM VLM/OCR ERRORS

We assess how errors in upstream text guidance (OCR/VLM) propagate to GLYPH-SR. Because
our method deliberately conditions on token-level strings and locations, corrupted guidance could
degrade both readability and overall perceptual quality. We simulate three error modes and measure
their impact on OCR and IQA metrics.

1. Random Character Corruption: Replace n% € {30, 50,90} of characters in the OCR string
with uniformly sampled alternatives (random noise).

2. Plausible Character Swaps (“Swap”’): Systematically replace characters with visually confusable
counterparts from a curated set (e.g., 0<>0, I+>1, T<>7).

3. Missed Detections (“Drop”’): Remove a portion of OCR-recognized characters to emulate
detection/recognition failures.

Table [/] reports OpenOCR/GOT-OCR F} and MANIQA/CLIP-IQA. Parentheses show absolute
changes w.r.t. the uncorrupted baseline.

All error modes substantially hurt both axes: readability (OpenOCR/GOT-OCR F7) and perceived
image quality (MANIQA/CLIP-IQA). Even moderate noise (50%) reduces OpenOCR F} by 16.79,pp
and MANIQA by 16.62 points. Plausible swaps and missed detections also trigger large drops,
indicating that quantity (how many tokens are wrong), nature (plausible vs. random), and absence
(drops) all impair glyph integrity and global appearance. This validates our design choice to use a
strong, LR-aware OCR/VLM and to treat guidance quality as a first-order factor in text-aware SR.

To investigate the trade-off mechanism empirically, we visualized the internal noise prediction maps
€p across diffusion timesteps, as shown in Fig. We compared the feature map evolution under
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Table 2: Quantitative comparison of OCR performance on images degraded by various factors and
restored using six SR models, evaluated across three benchmark datasets and three OCR systems.
Red and blue denote the best and second-best results, respectively.

| OpenOCR | GOT-OCR | LLaVA-NeXT
Precision Recall Fjscore 1-NED Accuracy | Precision Recall Fjscore I-NED Accuracy | Precision Recall Fjscore 1-NED  Accuracy

SVT(x4)
LR 6141 4028 4865 2637 3214 7570 5991 6689 3460 5025 8327 60.50 7008 1350 5394
HR 7473 8786 8076  27.69  61.73 SLIS 8297 8206 3480 6958 87.68 8214 8482 1777 7365
BSRGAN 5703 5119 5396 2804 3695 69.63 5068 5866 3129 4150 8460 5755 6850 1582 5209
DiffBIR 4149 3631 3873 2021 2401 4834 37.65 4233 2447 2685 6320 3516 4519 1334 29.19
DiffTSR 3955 1281 1935 1427 1071 5176 1439 2251 1597 1268 7898 1794 2923 549 17.12
InvSR 5556 6022 5779 27.53  40.64 6544 5705 6096 3165  43.84 7867 5538 6500 1595 4815
MARCONet 0.00 000 000 003 0.00 1250 012 025 2.02 0.12 000 000 000 008 0.00
MARCONet++ 5508 4585 5005 27.74 3337 68.58 5314 5988 3249 4273 8176 5519 6590 1501  49.14
PISA-SR 60.16 6679 6330 2671 4631 6684 6370 6523 3374 48.40 8320 5714 6775 1544 5123
Real-ESRGAN 5941 5889 5915 3016  42.00 7505 61.04 6732 3350 5074 8370 6399 7253 1625 5690
SwinlR 5821 5143 5461 2831 3756 7241 5659 6353 3402 4655 83.54 6486 73.03 1622 5751
StableSR 6208 5783 5988 3032 4273 7379 5613 6376 3471 46.80 8470 6556 7391 1681  58.62
SUPIR 5816 58.67 5841 2017 4126 64.54 5948 6190 2681 4483 7454 5328 6214 1586 4507
TAIR 4211 2013 2723 2081 15.76 4660 2226 3013 23.61 17.73 6371 2188 3258 1004 1946
GLYPH-SR (ours) 6133 7514 6754 2217 5099 68.07 7579 7172 2837 5591 7922 68.07 7322 1949 5176
SCUT-CTW1500(x4)
LR 4986 857 1463 2156  7.89 6144 1457 2355 2451 13.35 80.62 3340 4723 2173 3091
HR 7257 6873 7059 5636 5455 7574 6533 7015 5207 5402 87.67 6989 7777 3527  63.63
BSRGAN 4641 1680 2467 2986 14.07 5671 1354 2186 2370 1227 7896 2256 3510 1725 2128
DiffBIR 3808 1826 2471 3385 14.09 3643 1770 2382 3071 1352 5493 2131 3071 2094 1814
DiffTSR 4586 1260 1977 2583 1097 50.84 948 1598 1864  8.69 7282 1414 2369 1130 1343
InvSR 4537 2193 2957 3439 1735 4740 1831 2641 2817 1522 66.15 2333 3450 1834 2084
MARCONet 1765 007 013 0.71 0.07 1383 029 057 2.55 0.29 4167 001 022 0.20 0.11
MARCONet++ 4702 1498 2272 2705 1282 5482 1270 2063 2207 1150 7492 2124 3310 1593 1983
PiSA-SR 49.11 3027 3746 4032 23.04 5625 2450 3414 3347 2058 7LIS 3196 4411 2323 2830
Real-ESRGAN 5295 2222 3131 3369 1856 5950 1741 2694 2649 1557 7994 2965 4325 2012 2759
SwinlR 4975 1505 2310 2801  13.06 5940 1442 2321 2464 1313 8024 2614 3944 1758 2456
StableSR 5358 1677 2555 3002 1464 5767 1206 1995 2218 1108 7931 3225 4586 2107 2975
SUPIR 3995 1184 1826 2573 10.05 4516 1093 1761 2140 9.65 6260 1513 2437 1432 1387
TAIR 4643 2680 3398 3809 2047 50.58 2076 2944 3251 17.26 66.76 3029 4167 2332 2632
GLYPH-SR (ours) 4882 3146 3826 3775  23.66 4745 3027 3696 3609  22.67 6359 3237 4290 2586 2731
CUTE(x4)
LR 7241 6029 6580 5193 49.03 7566 5227 5058 5032 4475 9372 7951 8047 3843 7549
HR 7778 8038 7906 5161 6537 7533 5136 6108 4535 4397 95.17 7976 8678 3754  76.65
BSRGAN 68.84  77.89 7309 5463 5759 69.44 4695 5602 4537 3891 9254 7686 8397  39.00 7237
DIffBIR 6490 7337 6888 4801 5253 6148 4049 4882 4345 3230 8812 7639 8184 3853 6926
DffTSR 6494 5765 6108 5195  43.97 6780 3653 4748 4554 3LI13 9259 6122 7371 3066 5837
TnvSR 7019 7487 7246 5354 56581 7279 4500 5562 4391 3852 90.87 7941 8475 375 7354
MARCONet 1000 117 231 0.78 117 5455 238 456 374 233 10000 195  3.82 0.96 1.95
MARCONet++ 6834 7010 6921 5417 5292 7164 4384 5439 4430 3735 9309 7172 8102 3979  68.09
PiSA-SR 7136 7424 7277 5028 7029 4491 5480 4270 3774 9330 7418 8265 3800 7043
Real-ESRGAN 7143 7614 7371 5332 7181 4977 5879 4531 4163 93.03 7695 8423 3637 7276
SwinlR 7463 7282 7371 5177 7174 4541 5562 4640 3852 9192 7552 8292 3752 7082
StableSR 6971 7474 7214 5176 5642 7464 4640 5722 4236 40.08 89.66 7712 8292 3802 7082
SUPIR 68.78 7306 7085 4943 5456 6338 4390 5187 4238 3502 89.05 7617 8211 4024 69.65
TAIR 5000 4121 5521 3941 298 60.83 3476 4377 4146 2840 87.18 5738 6987 3523 5292
GLYPH-SR (ours) 6948 7708 7309 4700 5759 6828 4692 5562 3827 3852 9005 8051 8501 3978  73.93
SVT(x8)
LR 3462 484 849 892 443 5304 1882 2778 1986 1613 7978 2923 4279 865 27.22
HR 7473 8786 8076  27.69  61.73 8118 8297 8206 3480  69.58 87.68 8214 8482  17.77  73.65
BSRGAN 3575 9.8 1461 13.02 7.8 3654 799 1312 1468 7.02 7677 1534 2556 625 14.66
DiffBIR 2500 1254 1670 1656 .11 2923 1358 1855 1851 1022 4416 1493 2232 1021 1256
DiffTSR 2803 629 1028 1136 542 3151 646 1072 1498 5.67 6250 9.09 1587  4.60 8.62
InvSR 2034 1208 1702 1854 936 3780 1468 2115 1987 1182 5000 1373 2154 820 12,07
MARCONet 0.00 000 000 000 0.00 0.00 000 000 230 0.00 000 000 000 005 0.00
MARCONet++ 2803 629 1028 1241 542 3836 854 1397 1426 7.51 6296 1560 2232 662 14.29
PiSA-SR 3611 1157 1753 1453 9.61 4784 1606 2405 1983  13.67 7941 2477 3176 772 2328
Real-ESRGAN 3450 1193 1773 1617 9.73 4820 1535 2329 1945 1318 7668 1930 3083 7.14 18.23
SwinlR 3459 926 1461 1361 7.8 4563 1343 2075 1789 1158 7644 1904 3048 645 17.98
StableSR 4113 1405 2095 1750 1170 5045 1612 2443 1905 1392 7943 2971 4324 996 2759
SUPIR 4282 2766 3361 1529 2020 4300 3090 3596 1880 2192 5922 2668 3678 1128 2254
TAIR 3538 1548 2154 1668 12.07 4091 1646 2348 2145 1330 5187 1796 2668 1014 1539
GLYPH-SR (ours) 4852 49.06 4879 1906 3227 5732 5503 5616 2317 39.04 69.57 5053 5854 17.99 4138
SCUT-CTW1500(x8)
LR 2791 027 053 138 026 254 476 822 244 7305 547 1018 514 536
HR 7257 6873 7059 5636 5455 6533 7015 5217 5402 87.67 6989 7777 3527  63.63
BSRGAN 2010 179 337 7.67 172 188 354 731 1.80 6475 200 3588 2.10 1.98
DiffBIR 1566 281 476 1718 244 328 510 1605 2.62 2126 260 464 928 237
DiffTSR 2810 155 295 6.94 1.50 151 286 644 145 5194 149 290 237 147
InvSR 2115 LI0 2,09 7.13 1.06 Lis 217 717 110 5545 124 243 178 123
MARCONet 2000 007 013 0.59 0.07 031 061 228 031 4615 013 026 033 0.13
MARCONet++ 3553 121 235 427 L19 135 2.60 515 132 6742 133 2.60 1.03 132
PISA-SR 2550 448 761 17.41 396 392 692 1326 358 5045 520 943 6.82 4.95
Real-ESRGAN 277 272 502 982 257 307 564 991 2.90 6630 411 774 381 4.02
SwinlR 3632 193 6.60 1.87 252 468 9.01 2.40 6796 274 527 277 270
StableSR 3990 174 3 5.63 1.69 234 443 7.41 226 7137 395 749 3.68 3.89
SUPIR 1991 315 543 1412 279 364 626 133 323 3347 391 700 7.3 3.63
TAIR 2745 667 1074 2166 567 552 923 1845 484 3899 7.9 1214 1297 646
GLYPH-SR (ours) 2261 735 1109 2054 587 1038 1471 2010 794 3402 934 1467 1385 792
CUTE(x8)
LR 60.00 2930 3938 3833 2451 68.33 3631 4545 3191 9102 6281 6718 2999  59.14
HR 7778 8038 7906 5161 6537 75.33 61.08 4535 4397 95.17 7976 8678 3754 7665
BSRGAN 5833 5241 5521 47.56 3813 68.42 4657 4281 3035 9161 5820  7LIS 2840 5525
DiffBIR 61.58 5767 5956 4510 4241 58.73 4471 3897 2879 88.61 5858 7053 3010 5447
DiffTSR 60.76 4923 5439 4820 3735 62.16 4233 4104 2685 8623 5000 6330 2795 4630
InvSR 5580 5706 5642 4728 3930 60.98 4518 3950 2918 8743 6186 7246 56.81
MARCONet 10000 156 3.07 LIS 1.56 3333 456 465 233 10000 195  3.82 0.83 1.95
MARCONet++ 56.49 50.58 4826  33.85 67.57 4518 4053 2918 9051 59.09 7150  33.08  55.64
PiSA-SR 58.23 5272 5139 3580 61.61 4233 4176 2685 9226 6352 7524 3023 6031
Real-ESRGAN 60.67 5918 50.53  42.02 70.00 49.27 32.68 9325 6179 7433 3LI1 5914
SwinlR 58.33 5230 4971 3541 64.66 45.18 29.18 60.33 7246 2855 5681
StableSR 60.06 5781 5168 40.66 61.22 45.18 29.18 6324 7387 3252 5856
SUPIR 57.69 5801 4346 40.86 59.83 4281 27.24 6123 7020 3516  54.09
TAIR 49.30 4281 3798 2724 54.10 4087 4020  25.68 5000 6220 3388  45.14
GLYPH-SR (ours) 6349 6383  63.66 4240  46.69 58.91 4565 3680 2957 6579 7371 3512 5837
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Table 3: Quantitative comparison of SR models on three scene-text datasets (SVT, SCUT-CTW 1500,
CUTESO) at x4 and x8 upscaling factors. Metrics include distortion-based (PSNR, SSIM, LPIPS))
and perceptual quality scores (MANIQA, CLIP-IQA, MUSIQ). Red and blue denote the best and
second-best results, respectively.

Dataset SR model PSNR SSIM LPIPS| MANIQA CLIP-IQA MUSIQ
LR 3012 8721 3358 2045 17.06 2631
HR . : , 23.64 25.51 41.63
BSRGAN 2809 8316 3534 38.16 39.63 66.25
DiffBIR 2196 6394 4355 47.82 58.66 71.18
DiffTSR 2606 7842 4495 2134 27.69 4624
InvSR 2478 7658 3861 1678 57.30 70.81
PiSA-SR 2658 8204 34113 37.41 4430 61.87

SVT(x4) MARCONet 1840  69.07 5891 30.92 2443 27.26
MARCONet++ 2773 8433 3475 2931 19.82 4920
Real-ESRGAN 2967 8858  30.68 31.16 28.58 5114
SwinlR 3048 8638 3529 2632 4450 34,55
StableSR 3054 87.00 3373 2475 3218 24.44
SUPIR 276 6715  45.14 1236 1842 67.55
TAIR 2480 7372 4031 2931 19.82 4920
GLYPH-SR (ours)  22.89  67.19 4220 47.75 59.40 70.99
LR 19.16 5544 4791 28.92 31.16 25.82
HR : , y 64.23 77.42 70.87
BSRGAN 2022 6459 3212 51.41 47.44 67.52
DiffBIR 1791 5634 3620 6237 61.90 71.19
DiffTSR 1899 5859 4134 35.39 30.59 55.83
InvSR 1832 6071  32.99 57.75 55.04 69.25
PiSA-SR 2007 6399  31.18 56.31 53.05 68.19

SCUT-CTW1500(x4)  MfARCONet 1480 4089  66.30 3334 16.54 2878
MARCONet++ 1908 5877  41.60 34.65 1958 4361
Real-ESRGAN 2085 6746 3681 4081 4343 52.66
SwinIR 1991 5845  47.11 33.85 46.07 39.36
StableSR 1924 5545  49.03 31.04 4361 24.92
SUPIR 1361 3298 5215 57.35 51.68 66.96
TAIR 18.19  60.04 3446 65.38 47.05 67.08
GLYPH-SR (ours)  18.19  54.67  37.15 70.33 57.88 70.31
LR 2644 7835  36.69 28.93 36.80 37.64
HR . i . 1012 5571 60.81
BSRGAN 2735 7976 31.83 4422 55.73 69.13
DiffBIR 2260 6607 3774 51.04 72.64 69.06
DiffTSR 2406 7266 4274 33.94 3847 58.74
InvSR 2441 7555 3293 50.30 6778 70.66

CUTER0G4) PiSA-SR 2583 7741 3149 4582 61.81 66.18
MARCONet 1617 6352 5618 33.58 26.69 31.06
MARCONet++ 2516 7775 3491 31.88 34.90 54.15
Real-ESRGAN 2814 8230 3201 38.20 1871 60.65
SwinIR 2718 7795  38.02 31.87 59.32 47.94
StableSR 2623 7951 3045 36.26 49774 60.09
SUPIR 242 6620 3933 4750 62.62 68.26
TAIR 2082  69.03 4127 5825 49776 72.06
GLYPH-SR (ours)  23.03 6954  37.03 4977 65.93 69.96
LR 2615 7890 4854 19.81 44.07 22.96
HR . - - 23.64 25.51 1163
BSRGAN 2513 7371 45.64 37.14 3758 62.83
DiffBIR 2289 6520 5007 4554 5320 64.11
DiffTSR 2445 7619 4632 21.39 26.39 43.96
InvSR 2282 7134 4184 3251 50.83 51.69
PiSA-SR 2612 7764 50.83 34.02 1839 3024

SVT(x8) MARCONet 1868 6949 5871 30.84 2476 27.02
MARCONet++ 2515 7611 4444 20.97 8.4 38.06
Real-ESRGAN 2569 8028  41.92 2838 17.86 4301
SwinIR 2648 7816  48.01 22.05 26.68 3033
StableSR 2638 7815 5020 23.16 2338 16.22
SUPIR 2123 5908 5146 40.17 45.06 65.20
TAIR 2272 6824 4486 31.99 29.49 5427
GLYPH-SR (ours)  21.77 6136  47.85 47.40 56.78 69.93
LR 1704 4370 63.73 16.39 26.19 17.71
HR ) , , 6423 77.42 70.87
BSRGAN 1732 4850  47.86 4621 37.83 66.05
DiffBIR 1578 4347 50,05 5475 49.89 63.16
DiffTSR 1483 4025 5450 35.49 31.88 50.43
VSR 1181 30'2§ gggg 295 296 gg.?
PiSA-SR 17. 47, . 1.77 75 95

SCUT-CTW1500(x8)  MfARCONet 1493 4072 6671 33.56 1620 28.95
MARCONet++ 1679 4404  57.88 1475 8.06 3027
Real-ESRGAN 17.65 5234  52.14 2837 20.95 39.99
SwinIR 1739 4542 6126 19.00 2414 25.64
StableSR 1700 4350  66.02 20.93 2092 16.62
SUPIR 1263 2651  58.63 55.46 47,02 65.55
TAIR 1602 4570 4573 63.60 36.57 66.38
GLYPH-SR (ours) 1627 4131  52.58 61.94 4821 63.43
LR 2325 7152 4761 17.29 2258 17.32
HR . : . 4012 5571 60.81
BSRGAN 2384 7255  39.14 4207 5431 67.33
DiffBIR 271 6536 4179 47.53 62.09 64.62
DiffTSR 2267 7041  42.80 33.55 4295 57.47
InvSR 2183 7076  38.05 37.66 62.43 57.69

CUTESO(S PiSA-SR 2336 7052 4771 30.71 30.80 4516

(x8) MARCONGet 1637 6364 5608 33.66 26.69 30.88
MARCONet++ 2279 7085 4334 21.03 272 4424
Real-ESRGAN 2401 7558  39.60 35.17 36.46 56.55
SwinIR 2382 7122 4771 0272 40,40 39.44
StableSR 794 3566 7975 26.00 40.42 34.48
SUPIR 2064 6131 4376 4638 61.67 67.04
TAIR 2049 6769 4235 37.11 36.84 55.06
GLYPH-SR (ours)  21.19  65.15  42.31 47.75 65.85 68.85
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Figure 14: Qualitative comparison.

two distinct conditions: a baseline with accurate text guidance versus a perturbed setting with high
guidance error (OCR error). As observed in the heatmaps, the introduction of incorrect conditioning
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Figure 15: Qualitative comparison of text-focused SR on the Real-Text dataset. Each block shows
a LQ input (left) and the outputs of four representative SR methods: BSRGAN, DiffBIR, InvSR,
and the proposed GLYPH-SR (right). GLYPH-SR consistently reconstructs sharper glyph bound-
aries, preserves accurate character shapes, and restores correct textual semantics across diverse
scenes—including license plates, bird labels, warning signs, Chinese characters, and directional
symbols—while competing methods often exhibit distortions, blurring, or hallucinated characters.
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Figure 16: Qualitative comparison of scene-text SR under various degradation scales (x4, x6, x8).
While prior methods often blur or hallucinate characters, GLYPH-SR accurately restores readable,
coherent text. Zoom in for detail.

generates significant spatial anomalies, which we term ‘prediction noise outliers’ (highlighted in
red boxes). Unlike the baseline, where noise predictions converge coherently, the high-error setting
exhibits persistent instability throughout the intermediate steps (e.g., Step 25).

Based on these visual findings, we identify the mechanism by which incorrect text conditioning
degrades the entire image, including non-textual regions:
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LQ

GLYPH-SR

Figure

17: Qualitative Comparison of Handwriting SR. Visual comparison between the LQ input (top

row) and the output generated by GLYPH-SR (bottom row) on various handwritten texts.
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Figure 18: Qualitative comparison of text-centric SR results at x4, x8 and x 16 scales.
Table 4: Ablation on the scheduler policy evaluated on the CUTES80 dataset.
(a) CUTESO (LR x 4) (b) CUTESO (LR x 8)
Scheduler Policy MANIQA CLIP-IQA MUSIQ OCR Fy Scheduler Policy MANIQA CLIP-IQA MUSIQ OCR Fy
Binary ping—pong 49.77 65.93 69.96 85.01 Binary ping—pong 47.75 65.85 68.85 73.71
Mixing (A = 0.1)  49.95 70.64 70.67 8157 Mixing (A = 0.1)  48.89 67.65 69.56  66.49
Mixing (A, = 0.3)  49.04 69.56 6975  83.18 Mixing (A, = 0.3)  47.44 68.31 6886  69.87
Mixing (A, = 0.5)  47.57 65.47 6895  84.23 Mixing (A, = 0.5)  46.57 64.07 6735 7340
Mixing (\r = 0.7)  47.86 68.91 6883  81.84 Mixing (\; = 0.7)  45.80 67.98 67.19  66.84
Mixing (A, = 0.9)  48.85 69.11 69.13 8265 Mixing (A, = 0.9)  45.58 67.66 67.18  68.88

* Noise Dispersion: When incorrect conditioning is injected, the predicted noise values fail to
localize around the text regions. Instead, as shown in Fig.[22] high-variance noise artifacts
become spatially dispersed across the entire domain.
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Figure 19: Qualitative Comparison of Curved Text SR (Curved Stress Test). The figure compares the
low-quality (LQ) input (top row) with the output of GLYPH-SR (middle row) and a magnified view
(bottom row). The curvature of the text increases from left to right across the figure. GLYPH-SR
successfully reconstructs the intricate curved glyphs (e.g., "SEACREST BEACH’ and "STARBUCKS
COFFEE’) without introducing the shape distortion or blurring often seen in other SR methods. The
results demonstrate the robustness of GLYPH-SR in handling non-linear text layouts.
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Figure 20: Qualitative Comparison of High-Density Text SR (Dense Stress Test). This comparison
highlights the capability of GLYPH-SR (middle row) versus the LQ input (top row) in highly dense
and cluttered text environments. The density and complexity of the text increase from left to right
across the figure. GLYPH-SR excels at isolating and sharpening individual characters and lines of text,
even when tightly packed (e.g., the ' BROADFIELD HOTEL’ sign and the multi-line management
sign), proving its superior performance in complex, dense scenes where competing methods often
struggle with inter-line blurring.

Table 5: Ablation study on CFG scale w. Evaluated on CUTES80 (x4).

CFG Scale (w) OCR Metric (F1 Score 1) SR Metric (1)
OpenOCR GOT-OCR LLaVA-NeXT | MANIQA CLIP-IQA MUSIQ
2 75.54 57.62 87.53 41.26 55.96 65.23
4 74.63 57.22 88.50 4342 60.01 67.30
7.5*% 73.09 55.62 85.01 49.711 65.93 69.96
12 71.50 53.56 84.23 49.52 69.87 70.51
20 65.45 45.18 79.06 50.60 74.30 71.03

* Dissipation of Predictive Capacity: In diffusion models, the noise predictor € (2, t, ¢)
estimates a noise vector subject to a magnitude constraint at each timestep. When the
semantic condition ¢ conflicts with the visual features (due to erroneous OCR), the model
expends its finite predictive capacity attempting to resolve this ambiguity. Consequently, the
prediction energy is dissipated globally rather than being concentrated on glyph restoration.
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Figure 21: Performance Comparison under Extreme Degradation. We compare SR results with
extremely LR input images. Despite the inherent difficulty of achieving full restoration in these
Extreme LR scenarios, GLYPH-SR demonstrates a unique capability for semantic reconstruction. As
shown by the comparison against the LR input and the GT, GLYPH-SR successfully recovers partial
text structure and generates sharper outlines, showcasing its effectiveness even when input quality is
severely degraded.

Table 6: Ablation study on Control Scale scrrr. Evaluated on CUTESO (x4).

SOTRL OCR Metric (F1 Score 1) SR Metric (1)
OpenOCR GOT-OCR LLaVA-NeXT | MANIQA CLIP-IQA MUSIQ
1.0%* 73.09 55.62 85.01 49.77 65.93 69.96
2.0 69.21 56.02 81.84 26.36 66.95 49.92
3.0 4.56 6.04 25.17 37.17 45.28 49.21
10.0 0.00 0.00 0.00 35.22 25.26 27.18

Table 7: Sensitivity to OCR/VLM guidance errors. Values in parentheses are absolute deltas from
the baseline (lower is worse).

Error rate / Type  OpenOCR F} GOT-OCR F; MANIQA CLIP-IQA
Baseline 48.82 38.36 62.01 79.69
30% 38.36 (—10.46)  28.67(—9.69) 45.87(—16.14) 63.65(—16.04)
50% 32.03 (—16.79) 26.35(—12.01) 45.39(—16.62) 64.88 (—14.81)
90% 27.52 (—21.30) 26.35(—12.01) 45.61 (—16.40) 66.00 (—13.59)
Swap 39.88 (—8.94) 33.12(—5.24)  45.81 (—16.20) 66.00 (—13.69)
Drop 41.85(—6.97) 32.03(—6.33) 44.82(—17.19) 65.30(—14.39)

* Global Texture Degradation: This misallocation of predictive resources leaves insufficient
residual capacity for restoring fine-grained non-text textures. As a result, the background
is not merely neglected; it is actively degraded by incoherent noise updates driven by the
semantic conflict.
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Figure 22: Intermediate Feature Analysis under OCR Error Rates.

Consequently, we posit that text fidelity and background quality are positively correlated in our
framework. Precise text guidance acts as a stabilizing anchor, preventing noise dispersion and
ensuring a coherent denoising trajectory for both glyphs and scene textures.

As illustrated in Fig.[23] GLYPH-SR can deliver visually plausible SR results yet still hallucinates
glyphs in regions that were originally non-textual. This deficiency in text-region localization means
the reconstructed text may be ambiguous, incomplete, or entirely spurious. Furthermore, when
multiple words are present, the model tends to enhance only the most visually salient word and
overlook the rest. These failure cases underline the necessity for finer-grained attention mechanisms
and explicit supervision of glyph positions in future work.
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Figure 23: Failure cases where GLYPH-SR produces visually plausible SR outputs but incorrectly
generates text in non-textual regions.

C.4 COMPUTATIONAL FOOTPRINT AND PRACTICAL EFFICIENCY

Setup. We benchmark inference on a 4x SR task with 512x512 inputs. Times are mean =+ std.
over repeated runs. For methods that require a large VLM (SUPIR and GLYPH-SR), we used two
NVIDIA A6000 GPUs; reported peak VRAM is the sum across both devices.

Table 8: Compute comparison. For VLM-guided methods, #Params lists (restoration, VLM) in
millions.

Method #Params (M) Inference (s/sample) Peak VRAM (GB)
StableSR 153 79.98 £+ 0.22 10.10
DiffBIR 385 53.14 +1.41 9.64
SUPIR 18, 152 25.25 + 0.86 46.21
GLYPH-SR 13, 225 38.25 +1.28 43.56

GLYPH-SR trades extra parameters and memory for markedly better text fidelity: it couples a
restoration backbone with a powerful OCR/VLM to reason about low-resolution text. This design
improves accuracy but introduces a computational bottleneck. To mitigate the cost while keeping
readability gains, we will pursue:

* Lighter VLM Guidance. Replace the current general-purpose VLM with a compact, LR-text-
specialized guider (or distill the guider), reducing parameter count and latency with minimal loss
in guidance quality.

* Inference Optimization (“Block Caching”). Cache and reuse guidance features that repeat across
diffusion steps/tiles (e.g., projected text embeddings and cross-attention KV maps), skipping
redundant compute and lowering end-to-end runtime.

These directions aim to preserve GLYPH-SR’s strengths (“looks right and reads right”) while
improving deployability under realistic compute budgets.
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OCR metric: F; 1 SR metric
Dataset / Guider OpenOCR GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ
Ours 73.09 55.62 85.01 49.77 65.93 69.96
R-4B 72.77 55.21 84.75 40.78 57.20 65.57
PaliGemma-3B 70.53 51.45 84.52 42.11 59.61 65.83

Table 9: Compact/alternative guiders in GLYPH-SR.

Table [0 highlights a clear but controllable accuracy—efficiency trade-off. While GLYPH-SR employs
a high-capacity LLaVA-NeXT-8B guider by default to handle severe degradations, our ablation study
demonstrates that significantly lighter models can serve as efficient alternatives. Specifically, replacing
the 8B guider with the 4B model (R-4B) reduces the model size by 50%, yet the OpenOCR F; score
drops by a negligible 0.32 points (from 73.09 to 72.77). Even with the 3B model (PaliGemma-3B),
which represents a ~62.5% reduction in parameters, the model maintains robust text recognition
capabilities with a moderate decline of 2.56 points in OpenOCR. This quantitative evidence indicates
that practitioners with tighter deployment budgets can adopt these lighter guiders to substantially
reduce computational overhead (latency and VRAM) at only a modest performance cost, proving
GLYPH-SR’s adaptability to resource-constrained environments.

Table 10: Preliminary evaluation on CUTESO (x16) comparing the baseline GLYPH-SR with
proposed solution strategies. Red indicates improvement, and Blue indicates degradation compared
to the baseline.

Method OpenOCR GOT-OCR ManiQA ClipIQA
LR 12.41 12.41 14.12 29.11
GLYPH-SR (Baseline) 9.63 11.72 38.52 54.68
GLYPH-SR + [1] 13.77 12.41 35.75 49.68
(+4.14) (+0.69) (277 (-5.00)
GLYPH-SR + CoT 10.33 13.09 42.15 59.99
(+0.70) (+1.37) (+3.63) (+5.31)

We conducted a proof-of-concept experiment on the CUTES80 dataset under an extreme downscaling
factor of x16, a setting where severe degradation renders text nearly illegible and prone to detec-
tion failures. As summarized in Table[I0] integrating the dual-stage restoration framework [26]
significantly improved OpenOCR performance (+4.14), demonstrating its effectiveness in mitigating
hallucinations and recovering structural details despite detection errors. Furthermore, refining the
inference process with Chain-of-Thought (CoT) prompting notably enhanced perceptual quality
metrics (ManiQA and ClipIQA) while boosting recognition accuracy, confirming its capacity to
effectively balance the trade-off between fidelity and perception. These results empirically verify the
robust extendability of GLYPH-SR even under extreme degradation scenarios.

Trainable parameters. Although the full model size is large due to the VLM, our fine-tuning
recipe is lightweight. We freeze the diffusion backbone and update only two components:

1. TS-ControlNet branch (~=54.8M parameters) that handles text-guidance fusion.

2. VLM LoRA adapter (=5.9M parameters) with low rank (r=8), lora_alpha of 32, and
dropout of 0.05.

To minimize memory further, the large frozen VLM is loaded in 4-bit quantization (nf4 with double
quantization via BitsAndBytes).
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Table 11: Trainable parameter counts (millions). Despite using a VLM, GLYPH-SR keeps trainable
parameters modest via freezing and LoRA.

Metric GLYPH-SR PiSA-SR StableSR DiffBIR SUPIR DiffTSR

Trainable (M) 60.7 0.38 152.67 37895  3865.64 55.31

Inference latency. The OCR/VLM guider is the main overhead driver. Out of a total per-image
latency of 38.25 + 1.28 seconds (Sec. [C.4), the VLM component accounts for ~ 8.46 seconds.
Notably, while integrating the VLM increases total parameter count, the latency impact is not
proportional. In practice, we retain training practicality with only 60.7M trainable parameters and
observe that the rise in inference time is moderate relative to the parameter growth, yielding a
favorable trade-off between accuracy (readability and IQA) and compute.

Implication. These results align with our compute study (Table [8): GLYPH-SR deliberately
expends parameters on guidance quality to secure text fidelity, yet its fine-tuning footprint remains
compact and deployable. Further efficiency gains are compatible with our design (e.g., lighter LR-text
guiders and block caching for reusable guidance features).

Input Image Focus Area

Figure 24: Comparison with explicit attention injection. We investigated an alternative design that
explicitly injects OCR attention maps into the backbone. However, this explicit attention guidance
proves detrimental; instead of refining features, it interferes with the backbone’s pre-trained priors,
causing the model to focus on irrelevant noise (as shown in the Attention Map). In contrast, our
final GLYPH-SR (rightmost) harmonizes text guidance without such interference, demonstrating
successful restoration.
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