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Abstract

Reinforcement learning utilizing kernel ridge regression to predict the expected1

value function represents a powerful method with great representational capac-2

ity. This setting is a highly versatile framework amenable to analytical results.3

We consider kernel-based function approximation for RL in the infinite horizon4

average reward setting, also referred to as the undiscounted setting. We propose5

an optimistic algorithm, similar to acquisition function based algorithms in the6

special case of bandits. We establish novel no-regret performance guarantees for7

our algorithm, under kernel-based modelling assumptions. Additionally, we derive8

a novel confidence interval for the kernel-based prediction of the expected value9

function, applicable across various RL problems.10

1 Introduction11

Reinforcement learning (RL) has demonstrated substantial practical success across a variety of12

application domains, including gaming [1, 2, 3], autonomous driving [4], microchip design [5], robot13

control [6], and algorithmic search [7]. This empirical success has prompted deeper investigations14

into the analytical understanding of RL, especially in complex environments. Over the past decade,15

significant advances have been made in establishing theoretically grounded algorithms for various16

settings. In this work, we focus on the infinite horizon average reward setting, also known as the17

undiscounted setting [8, 9]. The infinite horizon setting is particularly well-suited for applications18

that involve continuing operations not divided into episodes such as load balancing and stock market19

operations. In contrast to the episodic setting [10] and the discounted setting [11], theoretical under-20

standing of RL algorithms is relatively limited for the average reward setting. For the infinite horizon21

setting, we develop a computationally efficient algorithm and establish its theoretical performance22

guarantees.23

There is a natural progression in the complexity of RL models corresponding to the structural24

complexity of the Markov Decision Process (MDP). This progression ranges from tabular models to25

linear, kernel-based, and deep learning-based models. The kernel-based structure is an extension of26

linear structure to an infinite-dimensional linear model in the feature space of a positive definite kernel,27

resulting in a highly versatile model with great representational capacity for nonlinear functions. In28

addition, the closed-form expressions for the prediction and the uncertainty estimate in kernel-based29

models allow the development of algorithms based on nonlinear function approximation that are30

amenable to theoretical analysis. Kernel-based models also serve as an intermediate step towards31

understanding the deep learning-based models [see, e.g., 12] based on the Neural Tangent (NT) kernel32

approach [13].33
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The infinite-horizon average-reward setting has been extensively explored under the tabular struc-34

ture [14, 8, 15]. Under the performance measure of regret, defined as the difference in the total reward35

achieved by a learning algorithm over T steps and that of the optimal stationary policy, performance36

bounds of O(poly(|S|, |A|)
√
T ) have been established [see, e.g., 16], where S and A represent the37

state and action spaces, respectively, and the regret grows polynomial with their sizes. It is assumed38

for these results that the MDP is weakly communicating, a condition necessary for achieving sublinear39

regret [17]. Averaged over T steps, the regret diminishes as T increases, thereby offering what is40

known as a no-regret performance guarantee. The applicability of the tabular setting is limited, as41

many real-world problems feature very large or potentially infinite state-action spaces. Consequently,42

recent literature has explored the use of function approximation in RL, particularly through linear43

models [18, 19, 20, 9]. This approach represents the value function or the transition model via a44

linear transformation applied to a predefined feature mapping. In the linear setting, regret bounds of45

O((dT )
3
4 ) have been established [9], where d represents the ambient dimension of the linear feature46

map. Kernel-based models can be considered as linear models in the feature space of the kernel.47

That, however, is often infinite dimensional (d = ∞). As such, the results with linear models do not48

translate to the kernel-based settings, necessitating novel analytical techniques. Also, for a discussion49

on further limitations of the linear models, see [21].50

In this work, we propose the first RL algorithm in the infinite horizon average reward setting with51

non-linear function approximation using kernel-ridge regression. This is one of the most flexible52

models that lends well to theoretical analysis. Our algorithm, referred to as Kernel-based Upper53

Confidence Bound (KUCB-RL), utilizes kernel ridge regression to build predictor and uncertainty54

estimates for the expected value function. Inspired by the principle of optimism in the face of55

uncertainty and equipped with these statistics, KUCB-RL builds an upper confidence bound on the56

state-action value function over a future window of w steps. This bound serves as a proxy qt, at57

each step t, for the state-action value function over this future window. At each step t with the58

current state st, the action is selected greedily with respect to this proxy: at = arg maxa∈A qt(st, a).59

This approach resembles the acquisition function based algorithms such as GP-UCB and GP-TS,60

using Upper Confidence Bound and Thompson sampling, respectively, in the context of kernel-based61

bandits, also known as Bayesian optimization [22, 23]. Kernel-based bandit setting corresponds to62

the degenerate case of |S| = 1. In comparison, in the RL setting, the action is selected based on63

the current state, and the reward depends on both the state and the action. A kernel-based model64

is used to provide predictions for the expected value function, which varies due to the Markovian65

nature of the temporal dynamics. This makes the RL problem significantly more challenging than the66

bandit problem where the predictions are derived for a fixed reward function. To address this latter67

challenge, we derive a novel kernel-based confidence interval that is applicable across RL problems.68

1.1 Contributions69

To summarize, our contributions are as follows. We develop a kernel based optimistic al-70

gorithm for the infinite horizon average reward setting, referred to as KUCB-RL. We estab-71

lish no-regret guarantees for the proposed learning algorithm, which is the first for this set-72

ting to the best of our knowledge. Specifically, in Theorem 2, we prove a regret bound of73

O
(

T
w +

(
w + w√

ρ

√
γ(T ; ρ) + log(Tδ )

)√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
, at a 1 − δ con-74

fidence level, where ρ is the parameter of kernel ridge regression and γ(T ; ρ) is the maximum75

information gain, a kernel specific complexity term (see Section 2). This regret bound translates to76

O
(
d

1
2T

3
4

)
in the special case of a linear model, recovering the best existing results [9] in depen-77

dence on T and improving by a factor of d
1
4 . When applied to very smooth kernels with exponential78

eigendecay such as the Squared Exponential (SE) kernel, we obtain a regret of Õ(T
3
4 ), with the79

notation Õ hiding logarithmic factors. For one of the most general cases, the kernels with polynomial80

eigendecay with parameter p > 1 (See Definition 1), that includes, for example, the Matérn family81

and NT kernels, we show that our regret bound translates to Õ(T
3p+5
4p+4 ), which constitutes a no-regret82

guarantee. To highlight the significance of this result, we point out that no-regret guarantees for83

GP-UCB in the degenerate case of bandits were established only recently in [24], while the initial84

studies of GP-UCB (as well as GP-TS) [22, 23] did not provide no-regret guarantees for the case85

of polynomial eigendecay. As part of our analysis, in Theorem 1, we develop a novel confidence86

interval applicable across kernel-based RL problems that contributes to the eventual improved results.87
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1.2 Related Work88

The vast RL literature can be categorized across various dimensions. In addition to the average89

reward, episodic, and discounted settings, as well as tabular, linear, and kernel-based structures90

mentioned above, other notable distinctions among settings include model-based versus model-free91

approaches, and offline versus online versus settings where the existence of a generative model is92

assumed (allowing the learning algorithm to sample the state-action of its choice at each step, rather93

than following the Markovian trajectory). Covering the entire breadth of RL literature is challenging.94

Here, we will focus on highlighting and providing comparisons with the most closely related works,95

particularly in terms of their setting and structure.96

The kernel-based MDP structure has been considered in several recent works under the episodic97

setting [12, 25, 26, 27]. The regret bound proven in [12] for the episodic setting applies only to98

very smooth kernels such as SE kernel. [25] addressed this limitation by extending the results to99

Matérn and NT families of the kernels, albeit with a sophisticated algorithm that actively partitions100

the state-action domain into possibly many subdomains, using only the observations within each101

subdomain to obtain kernel-based prediction and uncertainty estimates. Their work is also based on a102

particular assumption that relates the kernel eigenvalues to the size of the domain. The work of [26]103

is most closely related to ours in terms of kernel-related assumptions. Specifically, our Assumption 4104

is identical to Assumption 1 of [26]. They establish a regret bound of O(Hγ(N ; ρ)
√
N) for the105

episodic MDP setting, where N is the number of episodes, γ(N ; ρ) is the maximum information106

gain, a kernel-related complexity term, H is the episode length and the value of ρ is a fixed constant107

close to 1. However, their regret bounds do not apply to general families of kernels, such as those108

with polynomially decaying eigenvalues (see Section 2.2 for the definition) including Matérn and NT109

kernels, as for this family of kernels γ(N ; ρ) possibly grows faster than
√
N . As a result, a no-regret110

guarantee cannot be established in many cases of interest. In comparison, the infinite horizon setting111

considered in this work is more challenging than the episodic setting as evident when comparing these112

settings with linear modeling. For this more challenging setting, we establish no-regret guarantees.113

A key element of our improved results is the novel confidence interval we utilize in our analysis114

(Theorem 1). This result is general and can be used across RL problems, for example, improving the115

results of [26] as well.116

In the tabular case, a lower bound of Ω(
√
D|S||A|T ) on regret was established in [14] in the117

infinite-horizon average-reward setting, where D is the diameter of the MDP. For ergodic MDPs,118

[8] shows a regret bound of Õ(
√
t3mix|S||A|T ), where tmix is the mixing time of an ergodic MDP.119

Furthermore, under the broader assumption of weakly communicating MDPs, which is necessary120

for low regret [28], the best existing regret bound of model-free algorithms is Õ(|S|5|A|2
√
T ),121

achieved by the recent work of [15]. Several works have studied linear function approximation in the122

infinite horizon average reward setting under strong assumptions of uniformly mixing and uniformly123

excited feature conditions [18, 19, 20]. Notably, [20] achieved a regret bound of Õ
(

1
σ

√
t3mixT

)
124

under the linear bias function assumption, where σ is the smallest eigenvalue of policy-weighted125

covariance matrix. Under the much less restrictive setting of Bellman optimality equation assumption126

(Assumption 1) for linear MDP, [9] provides an algorithm with regret guarantee of Õ((dT )3/4). We127

also consider our kernel-based approach under this general assumption on MDP. Furthermore, for128

examples of infeasible algorithms in the literature, see [9], Algorithm 1. There also exists a separate129

model-based approach to the problem where the transition probability distribution (model) is learned130

and used for planning, usually requiring high memory and computational complexity and utilizing131

substantially different techniques and assumptions. While this approach is studied under tabular132

settings [17, 14] and linear settings [29], it is not clear whether model-based approaches can be133

feasibly constructed in the kernel-based setting, due to the space complexity of a kernel-based model.134

Our work is also related to the simpler problem of kernelized bandits [22, 23, 30, 31]. Our construction135

of the confidence interval for the RL setting has been inspired the previous works on bandits, utilizing136

novel analysis introduced in [24]. Bandit settings can be considered a degenerate case of the RL137

framework with |S| = 1. In comparison, the temporal dependencies of MDP introduce substantial138

challenges, and the confidence intervals used in the bandit setting cannot be directly applied.139

We summarize the most closely related work with a focus on model-free feasible algorithms in Table 1.140

We present the existing regret bounds for feasible algorithms under various assumptions on MDP141

and its structure (tabular, linear, kernel-based). The assumptions include weakly communicating142
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MDP [See 32, Section 8.3.1], Bellman optimality equation (our Assumption 1), and uniform mixing143

assumption [see 9, Assumption 3]. For a formal definition of linear MDP, see [9], Assumption 2, and144

for the linear bias function case, see [9], Assumption 4.145

Table 1: Summary of the existing regret bounds in the infinite horizon average reward setting under
various cases with respect to MDP structure (tabular, linear, kernel based) and assumptions.

Algorithm Regret MDP Assumption Structure

UCB-AVG [15] Õ(|S|5|A|2
√
T ) Weakly Communicating Tabular

OLSVI.FH [9] Õ((dT )3/4) Bellman Optimality Eq. Linear
MDP-Exp2 [9] Õ(

√
t3mix|S||A|T ) Uniform Mixing Linear Bias Func.

KUCB-RL (Algorithm 1) O
(
T

3p+5
4p+4

)
Bellman Optimality Eq. Kernel-based

2 Problem Formulation146

In this section, we overview the background on infinite horizon average reward (undiscounted) MDPs147

and kernel based modelling.148

2.1 Infinite Horizon Average Reward MDP149

An undiscounted MDP is described by the tuple (S,A, r, P ) where S is a state space with a possibly150

infinite number of elements, A is a finite action set, r : S ×A → [0, 1] is the reward function, and151

P (·|s, a) is the unknown transition probability distribution over S of the next state when action a is152

selected at state s. Throughout the paper we use the notation z = (s, a) for the state-action pairs, and153

Z = S ×A.154

The learner interacts with the MDP through T steps, starting from an arbitrary initial state s1 ∈ S.155

At each step t, the learner observes state st and takes an action at resulting in a reward r(st, at).156

The next state st+1 is revealed as a sample drawn from the transition probability distribution:157

st+1 ∼ P (·|st, at).158

The goal of the learner is to compete against any fixed stationary policy. A stationary policy159

π : S → A is a possibly random mapping from the states to actions. The long-term average reward160

of a stationary policy π, starting from state s ∈ S, is defined as:161

Jπ(s) = lim inf
T→∞

1

T
E

[
T∑

t=1

r(st, at)

∣∣∣∣∣ s1 = s,∀t ≥ 1, at = π(st), st+1 ∼ P (·|st, at)

]
.

We assume that the MDP belongs to the broad class of MDPs where the following form of Bellman162

optimality equation holds:163

Assumption 1 (Bellman optimality equation) There exists J⋆ ∈ R and bounded measurable func-164

tions v⋆ : S → R and q⋆ : S ×A → R such that the following conditions are satisfied for all states165

s ∈ S and actions a ∈ A :166

J⋆ + q⋆(s, a) = r(x, a) + Es′∼P (·|s,a) [v
⋆(s′)] , v⋆(s) = max

a∈A
q⋆(s, a). (1)

This assumption was also used for the linear MDP case in [9]. By applying the Bellman optimality167

equation, it can be shown that a policy π⋆(s) = arg maxa∈A q
⋆(s, a), which deterministically selects168

actions that maximize q⋆ in the current state, is the optimal policy, with Jπ⋆

(s) = J⋆, for all s [9].169

It was shown in ([32], Chapter 9), that for finite state setting Assumption 1 follows from the weakly170

communicating MDP assumption. Also, Assumption 1 holds under several other common conditions171

([33], Section 3.3).172

The learner’s performance is measured by regret, which is defined as the loss in total reward compared173

to the optimal stationary policy for the total reward of the learner. Specifically, let π⋆ = arg maxπ J
π .174

4



The regret is defined as175

R(T ) =

T∑
t=1

(J⋆ − r(st, at)). (2)

We emphasize that under Assumption 1, for any initial state s1 ∈ S, Jπ⋆

(s1) = J⋆, that is reflected176

in our regret definition.177

For any value function v : S → R, throughout the paper, we use the notation178

[Pv](z) = Es′∼P (·|z)[v(s
′)]

for the expected value function of the next state.179

2.2 Kernel-Based Models And The RKHS180

Consider a positive definite kernel k : Z × Z → R. Let Hk be the reproducing kernel Hilbert181

space (RKHS) induced by k, where Hk contains a family of functions defined on Z . Let ⟨·, ·⟩Hk
:182

Hk ×Hk → R and ∥ · ∥Hk
: Hk → R denote the inner product and the norm of Hk, respectively.183

The reproducing property implies that for all f ∈ Hk, and z ∈ Z , ⟨f, k(·, z)⟩Hk
= f(z). Mercer184

theorem implies that k can be represented using a possibly infinite dimensional feature map:185

k(z, z′) =

∞∑
m=1

λmφm(z)φm(z′), (3)

where λm > 0, and
√
λmφm ∈ Hk form an orthonormal basis of Hk. In particular, any f ∈ Hk can186

be represented using this basis and weights wm ∈ R as187

f =

∞∑
m=1

wm

√
λmφm,

where ∥f∥2Hk
=
∑∞

m=1 w
2
m. A formal statement and the details are provided in Appendix 8. We188

refer to λm and φm as (Mercer) eigenvalues and eigenfunctions of kernel k, respectively.189

2.3 Kernel-Based Prediction190

Kernel-based models provide powerful predictors and uncertainty estimators which can be leveraged191

to guide the RL algorithm. In particular, consider a fixed unknown function f ∈ Hk. Assume a t× 1192

vector of noisy observations yt = [yi = f(zi) + εi]
t
i=1 at observation points {zi}ti=1 is provided,193

where εi are independent zero mean noise terms. Kernel ridge regression provides the following194

predictor and uncertainty estimate, respectively [see, e.g., 34],195

f̂t(z) = k⊤t (z)(Kt + ρI)−1yt,

σ2
t (z) = k(z, z)− k⊤t (z)(Kt + ρI)−1kt(z), (4)

where kt(z) = [k(z, z1), . . . , k(z, zt)]
⊤ is a t× 1 vector of the kernel values between z and observa-196

tions, Kt = [k(zi, zj)]
t
i,j=1 is the t× t kernel matrix, I is the identity matrix appropriately sized to197

math Kt, and ρ > 0 is a free regularization parameter.198

Confidence bounds of the form |f(z)− f̂t(z)| ≤ β(δ)σt(z) are established, for a confidence interval199

width multiplier β(δ) at a confidence level 1− δ, which depends on the assumptions on the setting200

and the noise. We will establish such confidence interval specific to the RL setting, in Theorem 1,201

and utilize it in our regret analysis.202

2.4 Kernel-Based Modelling in RL203

In our RL setting, we use a kernel-based model to predict the expected value function. In particular,204

for a given transition probability distribution P (s′|·, ·) and a value function v : S → R, we define205

f = [Pv] and use past observations to form predictions and uncertainty estimates for f , as detailed206

in the following section. The value functions vary due to the Markovian nature of the temporal207

dynamics. To effectively use the confidence intervals established by the kernel-based models on f ,208

we require the following assumption.209

Assumption 2 We assume P (s′|·, ·) ∈ Hk, for some positive definite kernel k, and ∥P (s′|·, ·)∥Hk
≤210

1 for all s′ ∈ S.211
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2.5 Eigendecay and Information Gain212

Our regret bounds are presented in terms of maximum information gain which is a kernel-specific213

complexity term. Specifically, for a kernel k and a set of observation points {zi}ti=1, we define the214

maximum information gain γ(t; ρ) as follows215

γ(t; ρ) = sup
{zi}t

i=1⊂Z

1

2
log det

(
I +

Kt

ρ

)
,

where Kt is the kernel matrix defined in Section 2.3. Several works have established upper bounds216

on γ(t; ρ). In the special case of a d-dimensional linear kernel, we have γ(t; ρ) = O(d log(t)).217

For kernels with exponential eigendecay, including SE, γ(t; ρ) = O(polylog(t)). For kernels with218

polynomial eigendecay, which represent a crucial case due to challenges in establishing no-regret219

guarantees in RL and bandits, and include kernels of both practical and theoretical interest such as220

the Matérn family and NT kernels, we first provide the definition below and then the bound on γ.221

Definition 1 A kernel k is said to have a p-polynomial eigendecay if ∀m ≥ 1, λm ≤ Cm−p, for222

some p > 1, C > 0 where λm are the Mercer eigenvalues of the kernel in decreasing order.223

For kernels with p-polynomial eigendecay, we have [35, Corollary 1]:224

γ(t; ρ) = O

((
t

ρ

) 1
p
(
log

(
1 +

t

ρ

))1− 1
p

)
.

3 KUCB-RL Algorithm225

In this section, we introduce our main algorithm, Kernel-based Upper Confidence Bound in Reinforce-226

ment Learning (KUCB-RL). The algorithm’s structure is similar to acquisition-based kernel bandit227

algorithms such as GP-UCB [22], where each action is chosen as the maximizer of an acquisition228

function. We construct an optimistic proxy qt for the state-action value function. At each step t,229

given the current state st, the action at is selected as the maximizer of qt(st, a) over a. This proxy230

qt is derived using past observations of transitions, employing kernel ridge regression to provide a231

prediction and uncertainty estimate for the state-action value function over a future window of size232

w ∈ N. The proxy is established as an upper confidence bound, following the principle of optimism233

in the face of uncertainty. The value functions are computed in batches of w steps, and the derived234

policies are unrolled over the subsequent w steps. The details are presented next.235

We define a fixed window size, w ∈ N, which represents the future interval that the algorithm will236

consider. For a given t0 where (t0 mod w) = 0, including t0 = 0, we initialize vt0+w+1(s) =237

0,∀s ∈ S , reflecting the algorithm’s consideration of the reward within this future window of size w.238

Subsequently, we recursively obtain proxies qt and vt for all steps t ∈ {t : t0 + 1 ≤ t ≤ t0 + w}.239

Let ft denote [Pvt+1], f̂t represent the kernel ridge predictor of [Pvt+1], and σt be its uncertainty240

estimator. The predictor and the uncertainty estimator are derived using the data set Dt0 , which241

contains observations of past transitions up to t0. We use the notation Dt = {(sj , aj , sj+1)}j≤t242

for the past transitions, and also define vt+1,t0 = [vt+1(s2), vt+1(s3), · · · , vt+1(st0+1)]
⊤, for the243

values of the proxy value function at the history of state observations. We then have244

f̂t(z) = k⊤t0(z) (Kt0 + ρI)
−1

vt+1,t0 ,

σ2
t (z) = k(z, z)− k⊤t0(z) (Kt0 + ρI)

−1
kt0(z),

where kt(z) = [k(z, z1), k(z, z2), · · · , k(z, zt))]⊤ denotes the vector of kernel values between z245

and (zj = (sj , aj))j≤t in the history of observations, and Kt = [k(zi, zj)]
t
i,j=1 denotes the kernel246

matrix.247

Equipped with the kernel ridge predictor and uncertainty estimator, we define qt as an upper confi-248

dence bound for f , as follows:249

qt = Π[0,w]

(
r + f̂t + β(δ)σt

)
, (5)

where 1 − δ represents a confidence level, and β(δ) is a confidence interval width multiplier; the250

specific value of which is given in Theorem 2. The notation Π[a,b](·) is used for projection on [a, b]251
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Algorithm 1 Kernel-based Upper Confidence Bound Reinforcement Learning (KUCB-RL)
Require: Regularization parameter ρ, window size w, confidence interval width multiplier β, confi-

dence level 1− δ, S,A, r.
1: for t = 0, 1, 2, · · · do
2: if (t mod w) = 0 then
3: Let vt+w+1 = 0;
4: for h = 1, 2, · · · , w do
5: Compute qt+w+1−h and vt+w+1−h using equations (5) and (6).
6: end for
7: end if
8: Select at = arg maxa∈A qt(st, a); Observe st+1 ∼ P (·|st, at) and receive r(st, at).
9: end for

interval. This step is natural since with the assumption r : Z → [0, 1] the value over a window of252

size w can not be more than w. We also define253

vt(s) = max
a∈A

qt(s, a), ∀s ∈ S. (6)

By iteratively updating from t = t0 + w to t = t0 + 1, we compute the values of qt and vt for all t254

from t0 + 1 to t0 + w. Then, we unroll the learned policy over the subsequent w steps, as the greedy255

policy with respect to qt:256

at = arg max
a∈A

qt(st, a). (7)

A pseudocode is provided in Algorithm 1.257

4 Regret Bounds for KUCB-RL258

In this section, we provide analytical results on the performance of KUCB-RL. We prove the first259

sublinear regret bounds in undiscounted RL setting under general assumptions based on kernel-based260

modelling. We first derive a novel confidence interval that is broadly applicable to the kernel-based261

RL problems. We then utilize this result to establish bounds on the regret of KUCB-RL.262

4.1 Confidence Intervals for Kernel Based RL263

The analysis of our algorithm utilizes confidence intervals of the form |ft(z)− f̂t(z)| ≤ β(δ)σt(z),264

where ft = [Pvt] denotes the expected value of a value function vt, and f̂t and σt represent the265

kernel ridge predictor and the uncertainty estimate of ft. Here, β(δ) represents the width multiplier266

for the confidence interval at a 1− δ confidence level. Similar confidence intervals are established267

in kernel ridge regression for a fixed function f in the RKHS of a specified kernel k [see, e.g.,268

36, 22, 23, 37, 24]. In the RL context, specific considerations are required as both ft = [Pvt] and269

the observation noise depend on the value function vt that varies due to the Markovian nature of270

the temporal dynamics. We note that in this setting, for a given value function v : S → R, the271

observation noise is captured by v(st+1) − [Pv](st, at). A possible approach involves deriving272

confidence intervals that apply to a class V of value functions. Such results appear in some of the273

existing work [26, 25]. The result most closely related to our is [26], which derives its confidence274

interval under the exact same kernel related assumptions as our work, but for the episodic MDP275

setting. With the same assumptions, the confidence interval that we establish is different from the276

one in [26]. In particular, their confidence interval is applicable to a specific value of kernel ridge277

regression parameter ρ, constrained by their proof techniques. Inspired by [24], which established a278

confidence interval for kernel ridge regression (not within the RL context) but allowed for a judicious279

selection of ρ, we prove a new confidence interval suitable for the RL setting that allows tuning280

parameter ρ. As a result, we obtain the first improved no-regret algorithms in this setting.281

Theorem 1 (Confidence Bound) Consider v : S → R, a conditional probability distribution282

P (s|z), s ∈ S , z ∈ Z , and two positive definite kernels k : Z ×Z → R and k′ : S ×S → R, where283

Z = S × A is compact subset of Rd. Let f = [Pv] and assume ∥v∥Hk′ ≤ Cv, v(s) ≤ w,∀s ∈ S,284

and ∥f∥Hk
≤ Cf , for some Cv, w, Cf > 0. A dataset {(zi, s′i)}ni=1 ⊂ (Z × S)n is provided such285
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that s′i ∼ P (·|zi). Let λm, m = 1, 2, · · · denote the Mercer’s eigenvalues of k′ in a decreasing order286

and ψm denote the corresponding eigenfunctions, with ψm ≤ ψmax for some ψmax > 0.287

Let f̂n and σn be the kernel ridge predictor and the uncertainty estimate of f using the observations:288

f̂n(z) = k⊤n (z)(ρI +Kn)
−1vn, σ2

n(z) = k(z, z)− k⊤n (z)(ρI +Kn)
−1kn(z),

where vn = [v(s′1), v(s
′
2), · · · , v(s′n))]⊤ is the vector of observations.289

For all z ∈ Z and v : ∥v∥Hk′ ≤ Cv , the following holds, with probability at least 1− δ,290

|f(z)− f̂n(z)| ≤ β(δ)σn(z),

with291

β(δ) = Cf +
w
√
ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

+
2Cvψmax√

ρ

(
n

∞∑
m=M+1

λm

) 1
2

.

We can simplify the presentation of β under the following assumption.292

Assumption 3 For kernel k′, we assume M
∑∞

m=M+1 λm = o(1) for any M ∈ N.293

This is a mild assumption. For example p-polynomial eigendecay profile with p > 1, that applies to a294

large class of common kernels including SE, Matérn and NT kernels satisfies this assumption.295

Remark 1 Under Assumption 3, the expression of β in Theorem 2 can be simplified as296

β(δ) = O
(
Cf +

w
√
ρ

√
log(

n

δ
) + γ(ρ;n)

)
.

Remark 1 can be observed by selecting M = n in the expression of β(δ), which provides a297

straightforward presentation of the confidence interval width multiplier. The proof of Theorem 1298

involves the Mercer representation of v in terms of ψm. The expression of the prediction error299

|f(z) − f̂v(z)| is then decomposed into error terms corresponding to each ψm. We derive a high-300

probability error bound for the first M elements, which corresponds to the second term in the301

expression of β(δ), and bound the remaining m > M elements based on Mercer eigenvalues. This302

corresponds to the third term in the expression of β(δ). A detailed proof is provided in Appendix 6.303

Theorem 1 is presented in a self-contained way, making it broadly applicable across various RL304

settings. In the following section, we apply this theorem within the analysis of the infinite horizon305

average reward setting to obtain a no-regret algorithm that is the first no-regret algorithm within this306

setting and under general kernel-related assumptions.307

4.2 Regret Analysis of KUCB-RL308

The weakest assumption regarding value functions is realizability, which suggests that the optimal309

value function v⋆ either belong to the an RKHS or are at least well-approximated by its elements.310

In the degenerate case of bandits with |S| = 1, realizability alone is sufficient for provably efficient311

algorithms [22, 23, 37]. However, for general MDPs, realizability is inadequate, necessitating stronger312

assumptions [10, 38, 26]. Building on these works, our main assumption involves a closure property313

for all value functions within the following class:314

V =

{
s→ min

{
w,max

a∈A

{
r(s, a) + ϕ⊤(s, a)θ + β

√
ϕ⊤(s, a)Σ−1ϕ(s, a)

}}}
, (8)

where β ∈ R and β > 0, ∥θ∥ ≤ ∞, and Σ is an ∞×∞ matrix operator such that Σ ⪰ ρI for some315

ρ > 0, and ϕ = [ϕ1, ϕ2, · · · ], where ϕm =
√
λmφm, and λm and φm are the Mercer eigenvalues316

and eigenfunctions corresponding to a kernel k defined on Z ×Z . We assume V is a subset of the317

RKHS of a kernel k′ defined on S × S .318

Assumption 4 (Optimistic Closure) For any v ∈ V and for some positive constant Cv, we have319

∥v∥k′ ≤ Cv .320
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This technical assumption is the same as Assumption 1 in [26]. The optimistic closure assumption in321

the kernel-based setting is strictly weaker than the ones explored in the context of generalized linear322

function approximation [39].323

Theorem 2 Consider the undiscounted MDP setting described in Section 2. Run KUCB-RL given324

in Algorithm 1 for T steps. Under Assumptions 1, 2, 3, and 4, the regret of KUCB-RL, defined in325

Equation (2), satisfies, with probability at least 1− δ326

R(T ) = O

(
T

w
+

(
w +

w
√
ρ

√
γ(T ; ρ) + log

(
T

δ

))√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
.

The proof of Theorem 2 utilizes standard methods from the analysis of optimistic algorithms in327

RL and bandits, such as the elliptical potential lemma, leverages the confidence interval proven in328

Theorem 1, and also incorporates novel techniques. For example, Algorithm 1 updates the observation329

set every w steps, requiring us to characterize and bound the effect of this delay in the proof. A330

straightforward application of the elliptical potential lemma results in loose bounds that do not331

guarantee no-regret. We establish a tighter bound on this term, contributing to the improved regret332

bounds. The details are provided in Appendix 7.333

We next instantiate our regret bounds for some special cases. In the linear case, with a choice334

of w = T
1
4 d

−1
4 and replacing the bound on γ(T ; ρ), we obtain R(T ) = Õ(d

1
2T

3
4 ), recovering335

the existing results in their dependence on T and improving by a factor of d
1
4 . For kernels with336

exponential eigendecay, with a choice of w = T
1
4 and replacing the bound on γ(T ; ρ), we obtain337

R(T ) = Õ(T
3
4 ). We formalize the result with p-polynomial kernels in the following remark as it338

may be of broader interest.339

Remark 2 Under the setting of Theorem 2, with a p-polynomial kernel, with the choice of parameters,340

w = T
p−1
4p+4 and ρ = T

1
p+1 , we obtain the following no-regret guarantee R(T ) = Õ(T

3p+5
4p+4 ).341

In the case of a Matérn kernel with smoothness parameter ν, where p = 1 + 2ν
d , the regret bound342

translates to R(T ) = O
(
T

3ν+4d
4ν+4d

)
.343

5 Discussion and Limitations344

We proposed KUCB-RL in the infinite horizon average reward setting and proved no-regret guarantees345

with general kernels, including those with polynomial eigendecay such as Matérn and NT kernels.346

To highlight the significance of our results, we note that in the case of episodic MDPs, the existing347

work of [12, 26] do not provide no-regret guarantees with general kernels. The work of [25] utilizes348

sophisticated domain partitioning techniques and relies on a specific assumption about the scaling of349

kernel eigenvalues with the size of the domain. We achieve improved rates on regret leveraging a350

confidence interval proven in Theorem 1, which is applicable across various RL problems. We next351

point out two main limitations of our work.352

Regarding optimality, we can juxtapose our results with the Ω(T
ν+d
2ν+d ) lower bounds proven in [40],353

for the degenerate case of bandits with Matérn kernel. Sophisticated algorithms, such as the sup354

variation of optimistic algorithms and those based on sample or domain partitioning [41, 31, 30],355

achieve this lower bound up to logarithmic factors in the case of bandits. However, a no-regret356

Õ(T
ν+2d
2ν+2d ) guarantee, though suboptimal, for standard acquisition-based algorithms like GP-UCB357

has been provided only recently [24]. While we offer the first no-regret Õ(T
3ν+4d
4ν+4d ) guarantee in the358

much more complex setting of RL, we cannot determine whether our results are improvable. This359

remains an area for future investigation.360

Although RKHS elements of common kernels can approximate almost all continuous functions on361

compact subsets of Rd [22], the optimistic closure assumption is somewhat limiting. A rigorous362

approach involves relaxing this assumption and finding an RKHS element that serves as an upper363

confidence bound on a function of interest f within the same RKHS. While this method appears to rea-364

sonably address the assumption, it is a technically involved problem that invites further contributions365

from researchers in the field.366
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6 Proof of Theorem 1494

In this section, we prove the confidence bound. Let us use the notation495

αn(z) = k⊤n (z)(ρI +Kn)
−1, (9)

and εi = v(s′i)− f(zi), εn = [ε1, ε2, · · · , εn]⊤, fn = [f(z1), f(z2), · · · , f(zn)]⊤.496

This allows us to rewrite the prediction error as497

f(z)− f̂n(z) = f(z)− α⊤
n (z)vn

= f(z)− α⊤
n (z)(fn + εn)

=
(
f(z)− α⊤

n (z)fn

)
− α⊤

n (z)εn. (10)
The first term on the right-hand side represents the prediction error from noise-free observations, and498

the second term is the prediction error due to noise. The first term is deterministic (not random) and499

can be bounded following the standard approaches in kernel-based models, for example using the500

following result from [37]:501

Lemma 1 (Proposition 1 in [37]) We have502

σ2
n(z) = sup

f :∥f∥H≤1

(f(z)− α⊤
n (z)fn)

2 + ρ ∥αn(z)∥2ℓ2 .

Based on this lemma, the first term on the right hand side of (10) can be deterministically bounded by503

Cfσn(z) :504

|f(z)− α⊤
n (z)fn| ≤ Cfσn(z).

The challenging part in Equation (10) is the second term, which is the noise-dependent term α⊤
n (z)εn.505

Next, we provide a high probability bound on this term.506

We leverage the Mercer representation of v and write:507

v(s) =

∞∑
m=1

wmλ
1
2
mψm(s).

We rewrite the observation vector vn as the sum of a noise term and the noise-free part f :508

v(s′i) = (v(s′i)− f(zi))︸ ︷︷ ︸
Observation noise

+ f(zi)︸ ︷︷ ︸
Noise-free observation

Using the notation ψm(z) = Es′∼P (·|z)ψ(s
′), we can rewrite f(zi) as follows:509

f(zi) = Es∼P (·|z′
i)
[v(s)]

= Es∼P (·|zi)

[ ∞∑
m=1

wmλ
1
2
mψm(s)

]

=

∞∑
m=1

wmλ
1
2
mEs∼P (·|zi)[ψm(s)]

=

∞∑
m=1

wmλ
1
2
mψm(zi). (11)

Using this representation, we can rewrite the second term of 10) as follows510

n∑
i=1

αi(z)εi =

n∑
i=1

αi(z)

( ∞∑
m=1

wmλmψm(s′i)−
∞∑

m=1

wmλmψm(zi)

)

=

∞∑
m=1

wmλm

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
=

M∑
m=1

wmλm

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
+

∞∑
m=M+1

wmλm

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
.
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We decomposed the noise-related error term into an infinite series corresponding to each eigenfunction511

ψm, m = 1, 2, · · · , and partitioned that into the first M elements and the rest. We now can use512

Corollary 1 in [24] that is a confidence interval for kernel ridge regression. In particular, with513

probability at least 1− δ/M , we have514

n∑
i=1

αi(z)(ψm(s′i)− ψm(zi)) ≤
ψmaxσn(z)√

ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

.

Summing up over the first M elements, and using a probability union bound, with probability at least515

1− δ, we have516

M∑
m=1

wmλm

n∑
i=1

ζi(z)(ψm(s′i)− ψm(zi)) ≤
M∑

m=1

wmλm
ψmaxσn(z)√

ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

≤ wσn(z)√
ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

.

For the rest of the elements m > M , we have517

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
≤ 2ψmax

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)

≤ 2ψmax

∞∑
m=M+1

wmλ
1
2
m

(
n

n∑
i=1

α2
i (z)

) 1
2

≤ 2σn(z)ψmax
√
n

√
ρ

∞∑
m=M+1

wmλ
1
2
m

≤ 2σn(z)ψmax
√
n

√
ρ

(( ∞∑
m=M+1

w2
m

)( ∞∑
m=M+1

λm

)) 1
2

≤ 2Cvσn(z)ψmax√
ρ

(
n

∞∑
m=M+1

λm

) 1
2

.

The first inequality holds by definition of ψmax. The second inequality is based on the Cauchy-518

Schwarz inequality. The third inequality uses Lemma 1. The fourth inequality utilizes the Cauchy-519

Schwarz inequality again, and the last inequality results from the upper bound on the RKHS norm520

of v.521

Putting all the terms together, with probability 1− δ,522

|f(z)− f̂n(z)| ≤Cf +
w
√
ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

+
2Cvψmax√

ρ

(
n

∞∑
m=M+1

λm

) 1
2

σn(z),

that completes the proof.523

7 Proof of Theorem 2524

To analyze the performance of KUCB-RL, we first define an event E that all the confidence intervals525

used in the algorithm hold true.526

E =
{
|ft(z)− f̂t(z)| ≤ β(δ)σt(z), ∀t ∈ [T ]

}
, (12)
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where527

β(δ) = O
(
w +

w
√
ρ

√
log(

n

δ
) + γ(ρ;T )

)
.

By Theorem 1, we have Pr[E ] ≥ 1− δ/2. We note the under Assumption 4, ∥v∥ ≤ Cv .528

For a bounded function v : S → R, we define its span as span(v) = sups,s′∈S |v(s)− v(s′)|.529

Under Assumption 2, we have ∥Pv∥Hk
= O(span(v)). See [42], Lemma 3. Since vt is upper530

bounded by w by construction, we have ∥Pvt∥ = O(w) that replaces Cf in Theorem 1.531

We condition the rest of the proof on event E .532

Consider t0 such that (t0 mod w) = 0 we bound the regret over window t ∈ [t0 + 1, t0 + w],533

denoted by Rt0(w). In addition let V ⋆
w(s) denote the optimum achievable total reward over a window534

of size w starting with initial state s, and V π
w (s) denote the total reward over a window of size w535

achieved by KUCB-RL starting with initial state s.536

Rt0(w) = wJ⋆ −
t0+w∑

t=t0+1

r(st, at) = wJ⋆ − V ⋆
w(st0+1) + V ⋆

w(st0+1)−
t0+w∑

t=t0+1

r(st, at).

The first term is bounded by the span of v∗.537

Lemma 2 For any s, |wJ⋆ − V ⋆
w(s)| ≤ span(v∗).538

Proof follows the exact same lines as in the proof of Lemma 13 in [9].539

We next bound the second term in Rt0(w). We first prove that V ⋆
w(s) ≤ vt0(s).540

Lemma 3 Under event E , we have V ⋆
w(s) ≤ vt0(s), ∀s ∈ S.541

Proof 1 (Proof of Lemma 3) We can prove this by induction. Note that V ⋆
0 (s) = vt0+w+1(s) = 0.542

For any j ∈ [w], we have543

V ⋆
j (s)− vt0+w+1−j = max

a∈A
Q⋆

j (s, a)−max
a∈A

qt0+w+1−j(s, a)

≤ max
a∈A

{Q⋆
j (s, a)− qt0+w+1−j(s, a)}

= max
a∈A

{[PV ⋆
j+1](s, a)− [Pvt0+w−j ](s, a)}

= max
a∈A

{Es′∼P (·|s,a)[V
⋆
j+1(s

′)− vt0+w−j(s
′)]}

≤ 0.

The first inequality is due to rearrangement of max, and the second inequality is by the induction544

assumption. We thus have V ⋆
w(s) ≤ vt0(s).545

We now bound the difference between vt0(st0+1) and sum of the reward over the window starting at546

step t0 + 1: vt0+1(st0+1)− V π
w (st0+1). We note that vt0+w(st0+w) = V π

0 (st0+w) = 0 and547

vt0+j(st0+j)− V π
w−j(st0+j) = qt0+j(st0+j , at0+j)−Qπ

w−j(st0+j , at0+j)

≤ [Pvt0+j+1](st0+j , at0+j)− [PV π
w−j ](st0+j , at0+j) + 2β(δ)σt0(st0+j , at0+j)

= vt0+j+1(st0+j+1)− V π
w−j−1(st0+j+1) + 2β(δ)σt0(st0+j , at0+j)

+ ([Pvt0+j+1](st0+j , at0+j)− vt0+j+1(st0+j+1))

+
(
V π
w−j−1(st0+j+1)− [PV π

w−j ](st0+j , at0+j)
)
.

The inequality holds under event E . We obtained a recursive relationship for vt0+j(st0+j) −548

V π
w−j(st0+j). Iterating over j = w to j = 1, we get549

15



vt0+1(st0+1)− V π
w (st0+1) ≤

t0+w∑
t=t0+1

2β(δ)σt0(st, at) +

t0+w∑
t=t0+1

([Pvt+1](st, at)− vt+1(st+1))

+

t0+w∑
t=t0+1

(
V π
w+t0−t−1(st+1)− [PV π

w+t0−t](st, at)
)
.

The second and third terms are zero mean martingales with a span of 2w, which are Gaussian random550

variables with parameter w. Therefore, by Azuma-Hoeffding inequality [43], with probability at least551

1− δ/2,552

T∑
t=1

([Pvt+1](st, at)− vt+1(st+1)) +

T∑
t=1

(
V π
w+⌊t/w⌋−t−1(st+1)− [PV π

w+⌊t/w⌋−t](st, at)
)

≤ w

√
2T log

(
2

δ

)
.

We note that for each t ∈ [T ], we can present the corresponding t0 with t0 = ⌊t/w⌋. Summing up553

the regret over all windows of size w up to time t, we have, with probability 1− δ,554

R(T ) ≤ T span(v∗)
w

+ w

√
2T log

(
2

δ

)
+

T∑
t=1

σ⌊t/w⌋(zt). (13)

It thus remains to bound
∑T

t=1 σ⌊t/w⌋(zt).555

The sum of sequential standard deviations of a kernel based model is often bounded using the556

following result from [22] that is similar to the elliptical potential lemma in linear bandits [44].557

T∑
t=1

σ2
t−1(zt) ≤

2γ(T ; ρ)

log(1 + 1/ρ)
. (14)

This result however is not directly applicable here due to the ⌊t/w⌋ subscript in σ⌊t/w⌋ rather σt−1.558

A loose approach would be to partition the sequence into w sequences, each for one j ∈ [w] of the559

form σwi+j , i = 1, 2, · · ·T/w. For each of those sequences, (14) is applicable and we get560

T/w∑
i=1

σ2
w(i−1)+j(zwi+j) ≤

2γ(T/w; ρ)

log(1 + 1/ρ)
. (15)

Using this bound we have561

T∑
t=1

σ2
⌊t/w⌋(zt) =

w∑
j=1

T/w∑
i=1

σ2
w(i−1)+j(zwi+j)

≤ 2wγ(T/w; ρ)

log(1 + 1/ρ)
. (16)

We use this loose bound and the following lemma to obtain a tight bound on the sum of standard562

deviations.563

Lemma 4 (Proposition A.1 in [45]) For any sequence of points {zj}Tj=1, for any z and t′ < t564

1 ≤ σ2
t′(z)

σ2
t (z)

≤ 1 +

t∑
j=t′+1

σ2
t′(zj).
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We thus can write565

T∑
t=1

σ⌊t/w⌋(st, at) ≤
T∑

t=1

σt(st, at)

√√√√1 +

t∑
j=[t/w]+1

σ2
[t/w](sj , aj)

≤

√√√√ T∑
t=1

σ2
t (st, at)

√√√√T + w

T∑
t=1

σ2
⌊t/w⌋(st, at)

≤

√
2γ(T ; ρ)

log(1 + 1/ρ)

(
T +

2w2γ(T/w; ρ)

log(1 + 1/ρ)

)
(17)

The first inequality is by Lemma 4. The second inequality is by Cauchy-Schwarz inequality.566

Replacing this bound on standard deviations in (13), we get567

R(T ) = O
(
T

w
+

(
w +

w
√
ρ

√
γ(T ; ρ) + log

(n
δ

))√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
.

(18)

The proof of the regret bound is complete.568

8 Mercer Theorem and the RKHSs569

Mercer theorem [46] provides a representation of the kernel in terms of an infinite dimensional570

feature map [e.g., see, 47, Theorem 4.49]. Let Z be a compact metric space and µ be a finite Borel571

measure on Z (we consider Lebesgue measure in a Euclidean space). Let L2
µ(Z) be the set of572

square-integrable functions on Z with respect to µ. We further say a kernel is square-integrable if573 ∫
Z

∫
Z
k2(z, z′) dµ(z)dµ(z′) <∞.

Theorem 3 (Mercer Theorem) Let Z be a compact metric space and µ be a finite Borel measure574

on Z . Let k be a continuous and square-integrable kernel, inducing an integral operator Tk :575

L2
µ(Z) → L2

µ(Z) defined by576

(Tkf) (·) =
∫
Z
k(·, z′)f(z′) dµ(z′) ,

where f ∈ L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(λm, φm)}∞m=1577

such that λm > 0, and Tkφm = λmφm, form ≥ 1. Moreover, the kernel function can be represented578

as579

k (z, z′) =

∞∑
m=1

λmφm(z)φm (z′) ,

where the convergence of the series holds uniformly on Z × Z .580

According to the Mercer representation theorem [e.g., see, 47, Theorem 4.51], the RKHS induced581

by k can consequently be represented in terms of {(λm, φm)}∞m=1.582

Theorem 4 (Mercer Representation Theorem) Let {(λm, φm)}∞i=1 be the Mercer eigenvalue583

eigenfeature pairs. Then, the RKHS of k is given by584

Hk =

{
f(·) =

∞∑
m=1

wmλ
1
2
mφm(·) : wm ∈ R, ∥f∥2Hk

:=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {
√
λmφm}∞m=1 form an585

orthonormal basis for Hk.586
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