
A FEDPOP DETAILS

For completeness, we present the pseudo code of FedPop with SHA as population constructor in
Algorithm 1. We set the number of active clients at each communication round to 10, random seeds
to {1, 2, 3, 4, 5}. We execute 3 times elimination and set the number of initial HP-configurations to
27 for SHA following (Khodak et al., 2021). The power-law decay used in the computation of the
weighted sum for the validation scores list {si} (Section 3.4) is described as following:

s =

∑R
r=1 0.9

r · sri∑R
r=1 0.9

r
, (1)

where r is index of score in the score list, R is the length of the validation score list.

Algorithm 1: FedPop with SHA as population constructor.
Input: Number of active clients per round K, number of HP-configurations Nc, maximum

communication budget for each HP-configuration Rc, perturbation interval for FedPop-G Tg , model
weight w, Nc server HP-vectors α = {α1, ...,αNc}, Nc client HP-vectors β = {β0

1 , ...,β
0
Nc
},

elimination rate ηsha ∈ N , elimination rounds {R0 = 0, R1, ..., RE}
Copy the model weights wi ← w for all Nc tuning processes.
for elim. step t← 1 to E do

for comm. round r ← Rt−1 to Rt do
for i← 1 to Nc do

// in parallel
if len(βi) == 1 then

Randomly sample {βk
i }Kk=1 inside ∆-ball of β0

i .
for Client k ← 1 to K do

// in parallel
wk

i ← Loc(βk
i ,wi, T

k)
ski ← Val(wk

i , V
k)

βi ← FedPop-L (βi, {ski }Kk=1,K)
wi ← Agg(αi,wi, {wk

i }Kk=1)

si ← 1
K

∑K
k=1 s

k
i

if r%Tg = 0 then
{αi,βi,wi}Nc

i=1 ← FedPop-G ({αi,βi,wi, si}Nc
i=1, Nc)

{α,β,w} ← {{αi,βi,wi} : si ≤ 1
ηsha

-quantile({si}Nc
i=1)}

Nc ← Nc
ηsha

return w

A.1 THE NUMBER OF TRIED α AND β

In this section, we provide the computation of the numbers of tried α and β shown in Table 1 of the
main paper. Specifically, we set Nc = 5 for RS and Nc = 27 for SHA, where each tuning process is
assigned with one HP-configuration, i.e., one α and one β. For FedEx wrapped with RS, we follow
the settings provided in the original paper and assign each tuning process one HP-configuration and
27 additional β, which leads to in total (27× 5 =)135 tried β. For FedPop wrapped with RS, we
provide the computation of the numbers in the following:

of tried α = Nc +
1

ρ
Nc ·

Rc

Tg
,

of tried β = Nc ·K + Tg
K

ρ
.

(2)

Following the experimental settings described in the main paper, we observe that FedPop experi-
ments more HP-vectors compared with other methods.

1

A.2 ANNEALING PROCESS OF ϵ AND pre

In this section, we describe the cosine annealing process for the values of perturbation intensity ϵ
and resampling probability pre described in the Section 3.4 of the main paper. For ϵ, we apply

ϵ =

{
ϵ0
2 · (1 + cos(π r

r0
)), r < r0

0, r ≥ r0
(3)

where ϵ0 is set to 0.1 for all experiments. For ϵ used in FedPop-L, we set r0 = 0.2Tg . Specifically,
we stop the local search of β after the first 0.2Tg communication rounds of a newly initialized
(perturbed) HP-configuration to save local computation costs at each client. We observe that this
early-stopping of FedPop-L leads to comparable results as executing FedPop-L for all rounds.
Therefore, we apply this strategy to save local computational costs without performance decrease.
For ϵ used in FedPop-G, we set r0 = Rc.

For pre, we apply

pre =
p0re
2

· (1 + cos(π
r

Rc
)) (4)

where p0re is set to 0.1 for all experiments.

A.3 LOCAL SEARCH SPACE FOR βk
i

In this section, we describe the process of the selection criterion of local search space for βk
i in

the i-th HP-configuration. Following previous work (Khodak et al., 2021), we sample βk
i inside a

∆-ball centered by β0
i . Specifically, for hyperparameters sampled from discrete distribution, e.g.,

epoch num, we define the search space as its neighboring discrete values, i.e., {xj−1, xj , xj+1},
where j is the index of the current value. For hyperparameters sampled from continuous distribution,
e.g., learning rate, we define the search space as [xj − 0.2(b− a), xj + 0.2(b− a)], where a and
b are the upper- and lower-bound of the original distribution.

B EXPERIMENTAL DETAILS

B.1 VISUALIZATION OF BENCHMARK DATASETS

In this section, we show example images in different domains from the adopted benchmark datasets,
i.e., PACS (Figure 1a), OfficeHome (Figure 1b), and DomainNet (Figure 1c). We can see that there
exists strong appearance variation and distribution shifts across different domains, e.g., in PACS
and DomainNet there exists both photo-like realistic pictures (Photo) and highly abstract human
sketches (Sketch). Therefore, by assigning data from one of the domains to each client, we are able
to simulate the experimental setting with features distribution shift in FL.

B.2 IMANGENET-1K EXPERIMENTAL SETUP

In this section, we provide more details for our analysis on ImageNet-1K (Deng et al., 2009) dataset.
We first split the original training set into training and validation set with a ratio of 9:1 for our ex-
periment and use the original validation set as the testing set since the original test set is unlabelled.
Afterwards, we split the training and validation set using the Dirichlet distribution with coefficient
of 1.0. Here, we split the data into 100 subsets and assigning each subset to one client, leading to
100 clients joining the FL. We set the active clients per communication round as 10 and use the same
hyperparameter search space as other datasets. For the centralized training, we adopt the hyperpa-
rameters used in the PyTorch repository https://github.com/pytorch/examples/tree/main/imagenet.

B.3 HYPERPARAMETER SEARCH SPACE

For all optimization, we use stochastic gradient descent (SGD) optimizer. We sample all hyper-
parameters from Uniform distribution (U), where U{...} indicates discrete distribution and U [a, b]

2

https://github.com/pytorch/examples/tree/main/imagenet

(a) PACS (Li et al., 2017) (b) OfficeHome (Venkateswara et al., 2017)

(c) DomainNet (Peng et al., 2019)

Figure 1: Example images from the selected cross-silo FL benchmark datasets with non-IID features.
Best viewed in color.

indicates continuous distribution. The HP-distributions used for server HP-vector (α) is listed in the
following:

log10lr : U [−1, 1]

momentum : U [0, 0.9]

log10(1− γ) : U [−4,−2]

where γ is the multiplicative factor of lr decay. The HP-distributions used for client local HP-vector
(β) is listed in the following:

log10lr : U [−4, 0]

momentum : U [0, 1.0]

log10(λ) : U [−5,−1]

epoch : U{1, .., 5}
log2(batch) : U{3, .., 7}

dropout : U [0, 0.5]

where λ is the weight decay for SGD optimizer. All experiments are executed in the GPU GeForce
GTX TITAN X with 12GB memory.

B.4 MODEL ARCHITECTURE

In this section, we provide details about the model architecture used for different benchmark
datasets.

3

Table 1: Model architecture for shakespeare.

Layer Details
1 Embedding(95, 8)
2 LSTM(8, 256)
3 FC(256, 10)

Table 2: Model architecture for CIFAR-10.

Layer Details

1 Conv2D(3, 32, 3, 1, 1)
ReLU(), MaxPool2D(2, 2)

2 Conv2D(32, 64, 3, 1, 1)
ReLU(), MaxPool2D(2, 2)

3 Conv2D(64, 64, 3, 1, 1)
ReLU(), MaxPool2D(2, 2)

4 Dropout(p)

5 FC(1024, 64)
ReLU()

6 FC(64, 10)

Table 3: Model architecture for FEMNIST.

Layer Details

1 Conv2D(3, 32, 3, 1, 1)
ReLU(), MaxPool2D(2, 2)

2 Conv2D(32, 64, 3, 1, 1)
ReLU(), MaxPool2D(2, 2)

3 Conv2D(64, 64, 3, 1, 1)
ReLU(), MaxPool2D(2, 2)

4 Dropout(p)

5 FC(9216, 1024)
ReLU()

6 Dropout(p)
6 FC(1024, 62)

Following (Khodak et al., 2021), we use a 6-layer CNN with its details listed in Table 2, 3, and 1, for
CIFAR-10, FEMNIST, and shakespeare dataset, respectively. For the convolutional layer (Conv2D),
we list parameters with the sequence of input and output dimensions, kernel size, stride, and padding.
For the max-pooling layer (MaxPool2D), we list kernel and stride. For the dropout layer (Dropout),
we list dropout probability (hyperparameter in hyp-vector β). For the fully-connected layer (FC),
we list input and output dimensions. For the Batch Normalization layer (BN), we list the channel
dimension. For the embedding layer (Embedding), we list the number of embedding and embedding
dimension. For the LSTM layer (LSTM), we list the input dimension and hidden dimension.

For the classification models on OfficeHome, PACS and DomainNet datasets, we use the widely
adopted the backbone ResNet18 (He et al., 2016) and change the output dimension of the last fully-
connected layer (FC) to match the number of categories in the dataset.

C ADDITIONAL RESULTS

C.1 PERTURBATION INTENSITY IN FEDPOP

In this section, we analyze the impact of initial perturbation intensity used in FedPop, i.e., ϵ0.
Hereby, we select ϵ0 from {10−2, 10−1.5, 10−1, 10−0.5, 100}. As shown in Figure 2, we observe
that using smaller values of ϵ0 leads to stable performance and smaller accuracy variations, where
FedPop always outperforms the baseline SHA.

Figure 2: Effects analysis of initial perturbation intensity ϵ0 in FedPop.

4

Figure 3: Effects analysis for Tg (evolutionary update frequency for FedPop-G) on CIFAR-10.

(a) IID CIFAR-10 (b) NIID CIFAR-10

Figure 4: Convergence Analysis on CIFAR-10.

C.2 PERTURBATION INTERVAL Tg FOR FEDPOP-G

In this section, we provide the results of FedPop with different choices of Tg for the perturbation
interval of FedPop-G. We conduct the experiments on FedPop and SHA on i.i.d. CIFAR-10
and non-i.i.d. CIFAR-10. We select Tg from {5%, 10%, 15%, 20%} of Rc (total communication
budget of each HP-configuration). From the box plot in Figure 3, we observe that applying only
limited numbers of FedPop-G already leads to promising results. Most importantly, FedPop,
executing FedPop-G with different frequency, always outperforms the baseline method, indicating
its promising performance.

C.3 CONVERGENCE ANALYSIS

In Figure 4, we display the convergence analysis of FedPop compared with the baseline RS and
FedEx on both IID and NIID CIFAR-10 benchmarks. Hereby, we assume a federated system al-
lowing a larger tuning budget, where we set (Rt, Rc) = (15000, 1500) and report the average local
testing results of the active clients after communication round r. We observe that FedPop already
outperforms the other methods after 10% of the total budget, indicating its promising convergence
rate. Besides, we also observe a reduced performance variation in FedPop, which further substan-
tiates the benefits of evolutionary updates in stabilizing the overall tuning procedure.

REFERENCES

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. Advances in Neural Information Processing Systems, 34:19184–19197, 2021.

5

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018–5027, 2017.

6

	FedPop Details
	The number of tried and
	Annealing process of and pre
	Local search space for ik

	Experimental Details
	Visualization of Benchmark Datasets
	ImangeNet-1k Experimental Setup
	Hyperparameter Search Space
	Model Architecture

	Additional Results
	Perturbation Intensity in FedPop
	Perturbation Interval Tg for FedPop-G
	Convergence Analysis

