
Hardness of Noise-Free Learning for
Two-Hidden-Layer Neural Networks

Sitan Chen
UC Berkeley

sitanc@berkeley.edu

Aravind Gollakota
UT Austin

aravindg@cs.utexas.edu

Adam R. Klivans
UT Austin

klivans@cs.utexas.edu

Raghu Meka
UCLA

raghum@cs.ucla.edu

Abstract

We give superpolynomial statistical query (SQ) lower bounds for learning two-
hidden-layer ReLU networks with respect to Gaussian inputs in the standard
(noise-free) model. No general SQ lower bounds were known for learning ReLU
networks of any depth in this setting: previous SQ lower bounds held only for ad-
versarial noise models (agnostic learning) [KK14, GGK20, DKZ20] or restricted
models such as correlational SQ [GGJ+20, DKKZ20]. Prior work hinted at the
impossibility of our result: Vempala and Wilmes [VW19] showed that general SQ
lower bounds cannot apply to any real-valued family of functions that satisfies a
simple non-degeneracy condition. To circumvent their result, we refine a lifting
procedure due to Daniely and Vardi [DV21] that reduces Boolean PAC learning
problems to Gaussian ones. We show how to extend their technique to other learn-
ing models and, in many well-studied cases, obtain a more efficient reduction. As
such, we also prove new cryptographic hardness results for PAC learning two-
hidden-layer ReLU networks, as well as new lower bounds for learning constant-
depth ReLU networks from label queries.

1 Introduction

In this paper we extend a central line of research proving representation-independent hardness results
for learning classes of neural networks. We will consider arguably the simplest possible setting:
given samples (x1, y1), . . . , (xn, yn) where for every i ∈ [n], xi is sampled independently from
some distribution D over Rd and yi = f(xi) for an unknown neural network f : Rd → R, the goal
is to output any function f̂ for which Ex∼D[(f(x) − f̂(x))2] is small. This model is often referred
to as the realizable or noise-free setting.

This problem has long been known to be computationally hard for discrete input distributions. For
example, if D is supported over a discrete domain like the Boolean hypercube, then we have a vari-
ety of hardness results based on cryptographic/average-case assumptions [KS09, DLSS14, DSS16,
DV20, DV21].

Over the last few years there has been a very active line of research on the complexity of learning
with respect to continuous distributions, the most widely studied case being the assumption that D is
a standard Gaussian in d dimensions. A rich algorithmic toolbox has been developed for the Gaus-
sian setting [JSA15, ZSJ+17, BG17, LY17, Tia17, GKM18, GLM18, BJW19, ZYWG19, DGK+20,
LMZ20, DK20, ATV21, CKM20, SZB21, VSS+22], but all known efficient algorithms can only
handle networks with a single hidden layer, that is, functions of the form f(x) =

∑k
i=1 λiσ(⟨wi, x⟩).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

This motivates the following well-studied question:

Are there fundamental barriers to learning neural networks with two hidden layers? (1)

Two distinct lines of research, one using cryptography and one using the statistical query (SQ)
model, have made progress towards solving this question.

In the cryptographic setting, [DV21] showed that the existence of a certain class of pseudorandom
generators, specifically local pseudorandom generators with polynomial stretch, implies superpoly-
nomial lower bounds for learning ReLU networks with three hidden layers.

For SQ learning, work of [GGJ+20] and [DKKZ20] gave the first superpolynomial correlational SQ
(CSQ) lower bounds for learning even one-hidden-layer neural networks. Notably, however, there
are strong separations between SQ and CSQ [APVZ14, ADHV19, CKM20], and the question of
whether a general SQ algorithm exists remained an interesting open problem. In fact, Vempala and
Wilmes [VW19] showed that general SQ lower bounds might be impossible to achieve for learn-
ing real-valued neural networks. For any family of networks satisfying a simple non-degeneracy
condition (see Section 1.1), they gave an algorithm that succeeded using only polynomially many
statistical queries. As such, the prevailing conventional wisdom was that noise was required in the
model to obtain full SQ lower bounds.

The main contribution of this paper is to answer Question 1 by giving both general SQ lower bounds
and cryptographic hardness results (based on the Learning with Rounding or LWR assumption) for
learning ReLU networks with two hidden layers and polynomially bounded weights. We note that
our SQ lower bound is the first of its kind for learning ReLU networks of any depth. We also show
how to extend our results to the setting where the learner has label query access to the unknown
network.

Reference Num. hidden layers Model of hardness

[DKKZ20, GGJ+20] 1 Correlational SQ

[DV21] 3
Cryptographic

(assuming existence of local PRGs)

This work 2 Full SQ

This work 2
Cryptographic

(assuming hardness of LWR)

Table 1: Summary of known and new superpolynomial lower bounds for learning noise-free shallow
ReLU networks over Gaussian inputs up to sufficiently small (but non-negligible) error. (Definitions
and terminology may be found in Appendix A.)

SQ Lower Bound We state an informal version of our main SQ lower bound:
Theorem 1.1 (Full SQ lower bound for two hidden layers (informal), see Theorem 3.1). Any SQ al-
gorithm for learning poly(d)-sized two-hidden-layer ReLU networks over N (0, Idd) up to squared
loss 1/poly(d) must use at least dω(1) queries, or have query tolerance that is negligible in d.

We stress that this bound holds unconditionally, independent of any cryptographic assumptions. This
simultaneously closes the gap between the hardness result of [DV21] and the positive results on one-
hidden-layer networks [JSA15, ZSJ+17, GLM18, ATV21, DK20] and goes against the conventional
wisdom that one cannot hope to prove full SQ lower bounds for learning real-valued functions in
the realizable setting.

We also note that unlike previous CSQ lower bounds which are based on orthogonal function fam-
ilies and crucially exploit cancellations specific to the Gaussian distribution, our Theorem 1.1 and
other hardness results in this paper extend to any reasonably anticoncentrated product distribution
over Rd; see Remark C.5.

Cryptographic Lower Bound While Theorem 1.1 rules out most known approaches for prov-
ably learning neural networks (e.g. method of moments/tensor decomposition [JSA15, ZSJ+17,

2

GLM18, BJW19, DGK+20, DK20, ATV21], noisy gradient descent [BG17, LY17, Tia17, GKM18,
ZYWG19, LMZ20], and filtered PCA [CKM20]), it does not preclude the existence of a non-SQ
algorithm for doing so. Indeed, a number of recent works [BRST21, SZB21, ZSWB22, DK21]
have ported algorithmic techniques like lattice basis reduction [LLL82], traditionally studied in the
context discrete settings like cryptanalysis, to learning problems over continuous domains for which
there is no corresponding SQ algorithm.

Our next result shows however that under a certain cryptographic assumption, namely hardness
of Learning with Rounding (LWR) with polynomial modulus [BPR12, AKPW13, BGM+16], no
polynomial-time algorithm can learn two-hidden-layer neural networks from Gaussian examples.
The LWR problem is a close cousin of the well-known Learning with Errors (LWE) problem
[Reg09], except with deterministic rounding in place of random additive errors.

Definition 1.2. Fix moduli p, q ∈ N, where p < q, and let n be the security parameter. For any
w ∈ Zn

q , define fw : Zn
q → Zp/p by fw(x) = 1

p⌊w · x⌉p = 1
p⌊

p
q (w · x mod q)⌉, where ⌊t⌉ is

the closest integer to t. In the LWRn,p,q problem, the secret w is drawn randomly from Zn
q , and we

must distinguish between labeled examples (x, y) where x ∼ Zn
q and either y = fw(x) or y is drawn

independently from Unif(Zp/p). LWE is similar, except that y ∈ Zq/q is either 1
q ((w·x+e) mod q)

for some e ∈ Zq sampled from a carefully chosen noise distribution, or is drawn from Unif(Zq/q).

Theorem 1.3 (Cryptographic hardness result (informal), see Theorem 4.1). Suppose there exists a
poly(d)-time algorithm for learning poly(d)-sized two-hidden-layer ReLU networks over N (0, Idd)
up to squared loss 1/ poly(d). Then there exists a quasipolynomial-time algorithm for LWR with
polynomial modulus (i.e., in the regime where n = d, p, q = poly(n), and q/p = poly(n)).

Note that here we may actually improve the LWR hardness assumption required from quasipolyno-
mial to any mildly superpolynomial function of the security parameter (see Remark 4.2).

Under LWR with polynomial modulus, we also show the first hardness result for learning one hidden
layer ReLU networks over the uniform distribution on {0, 1}d (see Theorem 4.3).

We discuss existing hardness evidence for LWR as well as its relation to more standard assump-
tions like LWE in Appendix A.3. From a negative perspective, Theorem 1.3 suggests that the
aforementioned lattice-based algorithms for continuous domains are unlikely to yield new learn-
ing algorithms for two-hidden-layer networks, because even their more widely studied discrete
counterparts have yet to break LWR. From a positive perspective, in light of the prominent role
LWR and its variants have played in a number of practical proposals for post-quantum cryptography
[CKLS18, BGML+18, JZ16, DKRV18], Theorem 1.3 offers a new avenue for stress-testing these
schemes.

Query Learning Lower Bound One additional benefit of our techniques is that they are flexible
enough to accommodate other learning models beyond traditional PAC learning. To illustrate this,
for our final result we show hardness of learning neural networks from label queries. In this setting,
the learner is much more powerful: rather than sample or SQ access, they are given the ability to
query the value f(x) of the unknown function f at any desired point x in Rd, and the goal is still to
output a function f̂ for which E[(f(x) − f̂(x))2] is small. The expectation here is with respect to
some specified distribution, which we will take to be N (0, Idd).

In recent years, this question has received renewed interest from the security and privacy communi-
ties in light of model extraction attacks, which attempt to reverse-engineer neural networks found in
publicly deployed systems [TJ+16, MSDH19, PMG+17, JCB+20, RK20, JWZ20, DG21]. Recent
work [CKM21] has shown that in this model, there is an efficient algorithm for learning arbitrary
one-hidden-layer ReLU networks that is truly polynomial in all relevant parameters. We show that
under plausible cryptographic assumptions about the existence of simple pseudorandom function
(PRF) families (see Section 5) which may themselves be based on standard number theoretic or
lattice-based cryptographic assumptions, such a guarantee is impossible for general constant-depth
ReLU networks.

Theorem 1.4 (Label query hardness (informal), see Theorem 5.1). If either the decisional Diffie–
Hellman or the Learning with Errors assumption holds, then the class of poly(d)-sized constant-
depth ReLU networks from Rd to R is not learnable up to small constant squared loss ε over
N (0, Idd) even using label queries over all of Rd.

3

Note that the connection between PRFs and hardness of learning from label queries over discrete
domains is a well-known connection dating back to Valiant [Val84]. To our knowledge, however,
Theorem 1.4 is the first hardness result for query learning over continuous domains.

1.1 Discussion and Related Work

Hardness for learning neural networks. There are a number of works [BR89, Vu06, KS09,
LSSS14, GKKT17, DV20] showing hardness for distribution-free learning of various classes of
neural networks.

As for hardness of distribution-specific learning, several works have established lower bounds with
respect to the Gaussian distribution. Apart from the works [GGJ+20, DKKZ20, DV21] from the
introduction which are most closely related to the present work, we also mention the works of
[KK14, GKK19, GGK20, DKZ20] which showed hardness for agnostically learning halfspaces and
ReLUs, [Sha18] which showed hardness for learning periodic activations with gradient-based meth-
ods, [SVWX17] which showed lower bounds against SQ algorithms for learning one-hidden-layer
networks using Lipschitz statistical queries and large tolerance, and [SZB21] which showed lattice-
based hardness of learning one-hidden-layer networks when the labels yi have been perturbed by
bounded adversarially chosen noise. Our approach has similarities to the “Gaussian lift” as studied
by Klivans and Kothari [KK14]. Their approach, however, required noise in the labels, whereas we
are interested in hardness in the strictly realizable setting. We also remark that [DGKP20, AAK21]
showed correlational SQ lower bounds for learning random depth-ω(log n) neural networks over
Boolean inputs which are uniform over a halfspace.

There have also been works on hardness of learning from label queries over discrete domains and
for more “classical” concept classes like Boolean circuits [Fel09, CGV15, Val84, Kha95, AK95].

SQ lower bounds for real-valued functions. A recurring conundrum in the literature on SQ lower
bounds for supervised learning has been whether one can show SQ hardness for learning real-valued
functions. SQ lower bounds for Boolean functions are typically shown by lower bounding the sta-
tistical dimension of the function class, which essentially corresponds to the largest possible set of
functions in the class which are all approximately pairwise orthogonal. Indeed, the content of the
hardness results of [GGJ+20, DKKZ20] was to prove lower bounds on the statistical dimension
of one-hidden-layer networks. Unfortunately, for real-valued functions, statistical dimension lower
bounds only imply CSQ lower bounds. As discussed in [GGJ+20], the class of d-variate Hermite
polynomials of degree-ℓ is pairwise orthogonal and of size dO(ℓ), which translates to a CSQ lower
bound of dΩ(ℓ). Yet there exist SQ algorithms for learning Hermite polynomials in far fewer queries
[APVZ14, ADHV19].

Further justification for the difficulty of proving SQ lower bounds for real-valued functions came
from [VW19], which observed that for any real-valued learning problem satisfying a seemingly in-
nocuous non-degeneracy assumption—namely that for any pair of functions f, g in the class, the
probability under the input distribution D that f(x) = g(x) is zero—there is an efficient “cheating”
SQ algorithm (see Proposition 4.1 therein). The SQ lower bound shown in the present work circum-
vents this proof barrier by exhibiting a family of neural networks for which any pair of networks
agrees on a set of inputs with Gaussian measure bounded away from zero.

Open question. All known positive results for one hidden layer that run in time polynomial in all
parameters require various assumptions on the underlying network. This leaves open the tantalizing
possibility of strengthening our results to apply to worst-case one hidden layer networks.

1.2 Technical Overview

Our work will build on a recent approach of Daniely and Vardi [DV21], who developed a simple
and clever technique for lifting discrete functions to the Gaussian domain entirely in the realizable
setting. Our main contributions are to (1) make their lifting procedure more efficient so that two
hidden layers suffice and (2) show how to apply the lift in a variety of models beyond PAC. For the
purposes of this overview we will take the domain of our discrete functions to be {0, 1}d, but our
techniques extend to Zd

q with q = poly(d).

4

Daniely–Vardi (DV) lift. At a high level, the DV lift is a transformation mapping a Boolean ex-
ample (x, y) labeled by a hard-to-learn Boolean function f to a Gaussian example (z, ỹ) labeled
by a (real-valued) ReLU network fDV that behaves similarly to f in that fDV(z) approximates
f(sign(z)), where for us sign(t) denotes 1[t > 0] and is applied elementwise. The key idea is to use
a continuous approximation s̃ign of the sign function, and to pair it with a “soft indicator” function
bad : Rd → R+ that is large whenever sign(z) ̸= s̃ign(z), and that can be implemented as a one-
hidden-layer network independent of the target function. One can show that whenever f is realizable
as an L-hidden-layer network over {0, 1}d, the function fDV(z) = ReLU(f(s̃ign(z))−bad(z)) can
be implemented as an (L+ 2)-hidden-layer network satisfying

fDV(z) = ReLU(f(sign(z))− bad(z)).

This property allows us to generate synthetic Gaussian labeled examples (z, fDV(z)) from Boolean
labeled examples (x, f(x)), and thereby reduce the problem of learning f to that of learning fDV.

Improving the DV lift. Our first technical contribution is to introduce a more efficient lift which
only requires one extra hidden layer. Our starting point is to observe that a variety of hard-to-learn
Boolean functions f like parity and LWR take the form f(x) = σ(h(x)) for some ReLU network
h whose range T over Boolean inputs is a discrete subset of [0,poly(d)] of polynomially bounded
size, and for some function σ : T → [0, 1]. For such compressible functions (see Definition 2.1),
one can write f(x) = σ(h(x)) =

∑
t∗∈T σ(t

∗)1[h(x) = t∗]. Again, we would like to implement
lifted function f△ : Rd → R using s̃ign and bad so that it approximates f(sign(z)) except when
bad indicates that s̃ign ̸= sign. To this end, we might hope to implement, say,

f△(z) =
∑
t∗∈T

σ(t∗)1[h(s̃ign(z)) = t∗]1[∀j : bad(zj) ≪ 1].

Here we now view bad as a univariate function, and whenever it is small, we can be sure s̃ign =
sign. Suppose that we could build a one-hidden-layer network N(s1, . . . , sd; t) that behaves like
1[t = 0]1[∀j : sj ≪ 1]. Then we could realize f△ as an (L+ 1)-hidden-layer network:

f△(z) =
∑
t∗∈T

σ(t∗)N(bad(z1), . . . ,bad(zd); h(s̃ign(z))− t∗).

While many natural attempts to build such an N run into difficulties, we construct a suitably relaxed
version of N that turns out to suffice for the reduction. To gain some intuition for our construction,
the starting observation is that the following inclusion-exclusion type formula vanishes identically
whenever any of the sj is 1:

ψ(s1, s2, s3)− ψ(1, s2, s3)− ψ(s1, 1, s3)− ψ(s1, s2, 1)

+ ψ(s1, 1, 1) + ψ(1, s2, 1) + ψ(s1, 1, 1)− ψ(1, 1, 1).

For a suitable choice of ψ, one might hope to build N out of such a formula by taking sj = bad(zj)
for every j. But the natural generalization of this expression to d inputs would have size 2d,
which runs the risk of rendering the resulting SQ lower bounds vacuous. Our final construction
(Lemma 2.6) instead resembles a truncated inclusion-exclusion type formula of only quasipolyno-
mial size, which may be of independent interest. Since the SQ lower bounds for Boolean functions
that we build on are exponential, by a simple padding argument we still obtain a superpolynomial
SQ lower bound for our lifted functions.

Hard one-hidden-layer Boolean functions and LWR. To use this lift for Theorems 1.1 and 1.3,
we need one-hidden-layer networks that are compressible and hard to learn over uniform Boolean
inputs. For SQ lower bounds, we can simply start from parities, for which there are exponential
SQ lower bounds, and which turn out to be easily implementable by compressible one-hidden-layer
networks. For cryptographic hardness, Daniely and Vardi [DV21] used certain one-hidden-layer
Boolean networks that arise from the cryptographic assumption that local PRGs exist (see Section
A.4.1 therein). Unfortunately, these functions are not compressible. For this reason, we work instead
with LWR: it turns out that the LWR functions are compressible and, conveniently, the hardness
assumption directly involves uniform discrete inputs.

5

Hardness beyond PAC. While the DV lift is a priori only for showing hardness of example-based
PAC learning, we can extend it to the SQ and label query models by simple simulation arguments.

2 Compressing the Daniely–Vardi Lift

In this section we show how to refine the lifting procedure of Daniely and Vardy [DV21] such that
whenever the underlying discrete functions satisfy a property we term compressibility, we obtain
hardness under the Gaussian for networks with just one extra hidden layer.
Definition 2.1. Let q > 0 be a modulus.1 We call an L-hidden-layer ReLU network f : Zd

q → [0, 1]
compressible if it is expressible in the form f(x) = σ(h(x)), where

• h : Zd
q → T is an (L− 1)-hidden-layer network such that |h(x)| ≤ poly(d) for all x;

• h has range T = h(Zd
q) such that T ⊆ Z and |T | ≤ poly(d); and

• σ : T → [0, 1] is a mapping from h’s possible output values to [0, 1].
Remark 2.2. To see why such an f is an L-hidden-layer network in z, consider the function σ :
T → R. Because T ⊆ Z and |T | ≤ poly(d), σ is expressible as (the restriction to T of) a piecewise
linear function on R whose size and maximum slope are poly(d), and hence as a poly(d)-sized
one-hidden-layer ReLU network from R to R. By composition, x 7→ σ(h(x)) can be represented by
an L-hidden-layer network.

We now formally state a theorem which captures our “compressed” version of the DV lift. The
version of this theorem for L+ 2 layers is implicit in [DV21]. In technical terms, our improvement
consists of removing the single outer ReLU present in their construction. Thus, while our construc-
tion still has three linear layers, it has only two non-linear layers. By a standard padding argument,
we also obtain Corollary C.6, which lets us work with polynomial-sized neural networks.
Theorem 2.3 (Compressed DV lift). Let q = poly(d) be a modulus. Let C be a class of compressible
L-hidden-layer poly(d)-sized ReLU networks mapping Zd

q to [0, 1]. Let m = m(d) = ωd(1) be a
size parameter that grows slowly with d. There exists a class C△ of (L+1)-hidden-layer dΘ(m)-sized
ReLU networks mapping Rd to [0, 1] such that the following holds:

Suppose there is an efficient algorithm A capable of learning C△ over N (0, Idd) up to squared loss
d−Θ(m). Then there is an efficient algorithm B capable of weakly predicting C over Unif(Zd

q) with
advantage d−Θ(m) over guessing the constant 1/2 in the following sense: given access to labeled
examples (x, f(x)) for x ∼ Unif(Zd

q) and an unknown f ∈ C, B satisfies E
[(
B(x) − f(x)

)2]
<

E
[(

1
2 − f(x)

)2]− d−Θ(m), where the probability is taken over both x and the internal randomness
of B. We refer to C△ as the lifted class corresponding to C.

The proof of Theorem 2.3 leverages certain one-hidden-layer gadgets. The first two gadgets are
inherent to the original DV lift (extended to work with general Zq as opposed to just {0, 1}), while
the third is one of our main technical contributions and essential to obtaining an improvement in
depth. Proofs are deferred to Appendix C.

Start by letting I0, I1, . . . , Iq−1 be a partition of R into q consecutive intervals each of mass 1/q
under N (0, 1) (e.g., when q = 2, I0 = (−∞, 0) and I1 = (0,∞)). Note that these intervals will
have differing lengths, which we denote by |Ij |, and the shortest ones will be the ones closest to
the origin. Still, by Gaussian anti-concentration, we know that each |Ij | ≥ Θ(1/q). Let thresq :
R → Zq be the piecewise constant function that takes on value k on Ik. Clearly, when t ∼ N (0, 1),
thresq(t) ∼ Unif(Zq). Let R1, . . . , Rq be intervals such that Rk ⊆ Ik−1 ∪ Ik and Rk contains the
boundary point between Ik−1 and Ik, and such that each Rk has mass δ/q for some δ ≪ 1 to be
picked later. Let S1, . . . , Sq be slightly larger intervals such that Rk ⊂ Sk for each k ∈ [q − 1], and
each Sk has mass 2δ/q. By Gaussian anti-concentration again, each |Sk| ≥ Θ(δ/q). Notice that by
construction, Pz∼N (0,1)[z ∈ ∪kRk] = δ and Pz∼N (0,1)[z ∈ ∪kSk] = 2δ.
Lemma 2.4. Let δ > 0, q > 0, and intervals Ik, Rk, Sk for k ∈ Zq be as above. There exists a
one-hidden-layer ReLU network N1 : R → R with O(q) units and weights of magnitude O(q/δ)
such that N1(t) = thresq(t) if t /∈ ∪kRk.

1Our results are stronger when q is taken to be a large polynomial in the dimension, but the Boolean q = 2
case is illustrative of all the main ideas.

6

Lemma 2.5. Let δ > 0, q > 0, and intervals Ik, Rk, Sk for k ∈ Zq be as above. There exists a
one-hidden-layer ReLU network N2 : R → [0, 1] with O(q) units and weights of magnitude O(q/δ)
such that

N2(t) is


= 1 if t ∈ ∪kRk

= 0 if t ∈ R \ ∪kSk

≥ 0 otherwise
.

Note that when q = 2, N1 and N2 play the role of “s̃ign” and “bad” from the technical overview.

To motivate the third gadget, recall from the technical overview that one might hope to build
N3(s1, . . . , sd; t) that behaves like 1[t = 0]1[∀j : sj ≪ 1]. Slightly more generally, one can
show that it would suffice to build a one-hidden-layer network N3 with the following properties:

N3(s1, . . . , sd; t) =


0 if ∃j : sj = 1

0 if t ∈ Z \ {0}
1 if ∀j : sj = 0 and t = 0

(2)

Unfortunately, most natural attempts to construct N3 with such ideal properties run into difficulties
and appear to require two hidden layers (see Appendix D for discussion).

The key idea that lets us make progress is to restrict attention to those possibilities for (s1, . . . , sd) =
(N2(z1), . . . , N2(zd)) that are the most likely. Specifically, if m = ωd(1) is the size parameter
from Theorem 2.3, then by setting δ in Lemmas 2.4 and 2.5 appropriately, we can ensure that with
overwhelming probability over z ∼ N (0, Id), no more than m of the N2(zj) are simultaneously 1.
Accordingly, we focus on constructing N3 such that

N3(s1, . . . , sd; t) =


0 if between 1 and m of the si are 1
0 if t ∈ Z \ {0}
1 otherwise

. (3)

Our construction for N3 has size dΘ(m), and satisfies the first and second properties exactly. It also
“approximately” satisfies the third in the sense that it takes on a nonzero value with nonnegligible
probability over its inputs. As we will see, this turns out to be enough for the reduction to go through.
And even though the size of N3 is slightly superpolynomial in the dimension, because the SQ lower
bounds for Boolean functions that we build on are exponential, by a simple padding argument we
will still obtain a superpolynomial SQ lower bound for our lifted functions.
Lemma 2.6 (Main lemma). Letm = m(d) = ωd(1) be a size parameter. There exists a one-hidden-
layer neural network N3 : Rd × R → R such that

(a) N3(s1, . . . , sd; t) = 0 for any t ∈ R if between 1 and m of the sj are 0
(b) N3(s1, . . . , sd; t) = 0 for any s1, . . . , sd ∈ [0, 1]d if t ∈ Z \ {0}
(c) N3 has size at most d2m
(d) N3(0, . . . , 0, s; 0) = s for any s ∈ [0, 1d] (there are d− 1 zeroes in front of s).

Proof sketch of Theorem 2.3. For each f ∈ C given by f = σ ◦ h, let f△ ∈ C△ be given by

f△(z) =
∑
t∗∈T

σ(t∗)N3(N2(z1), . . . , N2(zd); h(N1(z))− t∗), (4)

where N1 and N2 are from Lemmas 2.4 and 2.5, with the δ parameter set to d−10m, and N3 is from
Lemma 2.6. This is an (L+1)-hidden layer network since h◦N1 andN2 each have at most L hidden
layers, and N3 adds an additional layer. By Lemma 2.6(c), the size of this network is S = dΘ(m).
Note that for z such that N2(z1), . . . , N2(zd) < 1, we have N1(z) = thresq(z), and the only t∗ for
which one of the summands in Eq. (4) is potentially nonzero is the one given by t∗ = h(thresq(z)).
So in this case f△ simplifies to

f△(z) = f(thresq(z)) N3(N2(z1), . . . , N2(zd); 0). (5)

Further, for z such that between 1 and m of the N2(zj) are 1, we know that
ψ(N2(z1), . . . , N2(zd); t) = 0 identically (for all t ∈ R), so in this case f△(z) = 0. And finally, for

7

z such that more thanm of theN2(zj) are 1, we have no guarantees on the behavior of f△, but as we
now show, we have set parameters such that this case occurs only with negligible probability, and we
can pretend that 0 is still a valid label in this case. Indeed, by standard Gaussian anti-concentration,
for each coordinate zj we have Pzj [N2(zj) = 1] = Pzj [zj ∈ ∪kRk] = δ = d−10m. The number of
coordinates j for which N2(zj) = 1 thus follows a binomial distribution B(d, d−10m), which has a
decreasing pdf with unique mode at ⌊(d+ 1)d−10m⌋ = 0. Thus the probability of having at least m
1s is at most

d∑
i=m

(
d

i

)
(d−10m)i(1− d−10m)d−i ≤ (d−m+ 1)

(
d

m

)
d−10m2

≤ ddmd−10m2

≤ d−9m2

(6)

for sufficiently large d. This is negligibly small not only in d but also in S = dΘ(m).

We now describe the reduction. For each labeled example (x, y) that the discrete learner B receives,
where x ∼ Unif(Zd

q) and y = f(x) for an unknown f ∈ C, B forms a labeled example (z, ỹ) for the
Gaussian learner A as follows. For each coordinate j ∈ [d], zj is drawn from N (0, 1) conditioned
on zj ∈ Ixj . Notice that this way thresq(z) = x, and the marginal distribution on z is exactly Nd.
The modified label is given by

ỹ = ỹ(y, z) =


0 if more than m of the N2(zj) are 1
0 if between 1 and m of the N2(zj) are 1
y N3(N2(z1), . . . , N2(zd); 0) otherwise

(7)

Note that in the bottom two cases, ỹ = f△(z) exactly; in the top case ỹ is in general inconsistent with
f△, but as we have seen, this case occurs with negl(S) probability. In particular, with overwhelming
probability, no poly(S)-time algorithm will ever see non-realizable samples.

So B can feed these new labeled examples (z, ỹ) to A. Suppose A outputs a hypothesis f̂ : Rd → R
such that Ez∼Nd

[(f̂(z) − f△(z))2] ≤ ε. We need to show B can convert this hypothesis into
a nontrivial one for its discrete problem. We first define a “good region” G ⊆ Rd where f△
is guaranteed to be nonzero and nontrivially related to the original f by saying z ∈ G iff
N2(z1), . . . , N2(zd−1) = 0, and N2(zd) ∈ (1

2d ,
1
d). Observe that when z ∈ G, by Eq. (5) and

Lemma 2.6(d) we have

f△(z) = f(thresq(z))N3(N2(z1), . . . , N2(zd−1), N2(zd); 0)

= f(x)N3(0, . . . , 0, N2(zd); 0)

= yN2(zd), (8)

where we use the fact that thresq(z) = x, so that f(thresq(z)) = f(x) = y.

One can show that G has non-negligible probability mass. The discrete learner B can now adapt f̂
as follows. Given a fresh test point x ∼ Unif(Zd

q), the learner forms z = z(x) such that for each
coordinate j ∈ [d], zj is drawn from N (0, 1) conditioned on zj ∈ Ixk

. If z ∈ G, then B predicts

ŷ = f̂(z)
N2(zd)

(recall that when z ∈ z, N2(zd) >
1
2d), and otherwise it simply predicts ỹ = 1

2 . By
exploiting the fact that this is a good prediction at least on the region G, it is not hard to show that
B’s overall square loss is non-negligibly better than random.

3 Statistical Query Lower Bound

We prove a superpolynomial SQ lower bound (for general queries as opposed to only correlational or
Lipschitz queries) for weakly learning two-hidden-layer ReLU networks under the standard Gaus-
sian. We obtain this by lifting the problem of learning parities under Ud, which is well-known to
require exponentially many queries.

Theorem 3.1. Fix any α ∈ (0, 1). Any SQ learner capable of learning poly(d)-sized two-hidden-
layer ReLU networks under N (0, Idd) up to squared loss ε (for some sufficiently small ε =

1/ poly(d)) using bounded queries of tolerance τ ≥ 2−(log d)2−α

must use at least Ω(22
(log d)α

τ2) =
dω(1)τ2 such queries.

8

This theorem is proven using the following key reduction, which adapts the compressed DV lift
(Theorem 2.3) to the SQ setting. The proof is deferred to Appendix E.

Theorem 3.2. Let q = poly(d) be a modulus, and let m = m(d) = ωd(1) be a size parameter.
Let C be a class of compressible L-hidden-layer poly(d)-sized ReLU networks mapping Zd

q to [0, 1],
and let C△ be the lifted class of (L + 1)-hidden-layer dΘ(m)-sized ReLU networks corresponding
to C, mapping Rd to R (as in Theorem 2.3). Suppose there is an SQ learner A capable of learning
C△ over N (0, Idd) up to squared loss d−Θ(m) using queries of tolerance τ , where τ ≥ d−Θ(m2).
Then there is an SQ learner B that, using the same number of queries of tolerance τ/2, produces a
weak predictor B̃ for C over Unif(Zd

q) with advantage d−Θ(m) over guessing the constant 1/2 (in
expectation over both the data and the internal randomness of B̃).

Proof of Theorem 3.1. Let m = m(d) = logc d for c = 1
α − 1, and let d′ = dm = 2log

c+1 d, so
that d = 2log

1/(1+c) d′
. It is easy to see that the class C of parities on {0, 1}d can be implemented

by compressible one-hidden-layer poly(d)-sized ReLU networks. Indeed, for any S ⊆ [d] recall
that χS(x) = 1(

∑
j∈S xj is odd), which is a compressible one-hidden-layer network with the inner

depth-0 network being x 7→
∑

j∈S xj and σ(t) = 1[t is odd]. Thus the lifted class C△ can be
implemented by two-hidden-layer dΘ(m)-sized ReLU networks over Rd. A padding argument lets
us embed these classes into dimension d′. By using the predictor from Theorem 3.2 (with q = 2),
we obtain an SQ algorithm capable of distinguishing parities from random labels using queries of

tolerance τ/2, assuming τ ≥ d−Θ(m2) = 2− log2c+1 d = 2− log
2c+1
c+1 d′

. It is well-known [Kea98,

BFJ+94] that the lower bound for learning parities is Ω(2dτ2), which becomes Ω(22
log1/(1+c) d′

τ2).
Substituting α = 1

1+c gives the result.

By way of an alternative construction that arguably remains hard even for non-SQ algorithms, in
Appendix F we provide a different proof of this SQ lower bound using the LWR functions in place
of the parities. We stress that this alternative proof remains unconditional and relies only on the
LWR function family, not on the LWR hardness assumption itself.

4 Cryptographic Hardness Based on LWR

In this section we show hardness of learning two-hidden-layer ReLU networks over Gaussian inputs
based on LWR. This is a direct application of the compressed DV lift (Theorem 2.3) to the LWR
problem, which is by definition a hard learning problem over Unif(Zd

q).

Theorem 4.1. Let n be the security parameter, and fix moduli p, q ≥ 1 such that p, q = poly(n)
and p/q = poly(n). Let d = n. Let c > 0, m = m(d) = logc d and d′ = dm. Suppose
there exists a poly(d′)-time algorithm capable of learning poly(d′)-sized depth-2 ReLU networks
under N (0, Idd′) up to squared loss 1/ poly(d′). Then there exists a poly(d′) = 2Θ(log1+c n) time
algorithm for LWRn,p,q .

Proof. We claim that the class CLWR is implementable by compressible poly(d)-sized one-hidden-
layer ReLU networks over Zd

q , or, after padding, over Zd′

q . Indeed, by definition we have fw(x) =
1
p⌊(w ·x) mod q⌉p, which is a compressible one-hidden-layer ReLU network with the inner depth-0
network (i.e., affine function) being w 7→ w · x and σ(t) = 1

p⌊t mod q⌉p. Let C△
LWR denote the

corresponding lifted class of poly(d′)-sized two-hidden-layer ReLU networks, padded to have do-
main Rd′

. Applying Corollary C.6 to the assumed learner for C△
LWR, we obtain a poly(d′)-time weak

predictor predictor for CLWR, which readily yields a corresponding distinguisher for the LWRn,p,q

problem. Using the facts that d′ = dm = 2log
1+c d and d = n, we may translate poly(d′) into

2Θ(log1+c n), yielding the result.

Remark 4.2. Note that the choice of m = m(d) = logc d in Theorem 4.1 is purely for simplicity.
By pickingm(d) = ωd(1) to be a suitably slow-glowing function of d, such as log∗ d, we can obtain
a running time for the final LWR algorithm that is as mildly superpolynomial as we like.

9

In addition, we also obtain a hardness result for one-hidden-layer networks under Unif{0, 1}d, im-
proving on the hardness result of [DV21] (see Theorem 3.4 therein) for two-hidden-layer networks
under Unif{0, 1}d. For this application, we let d = n log q = Õ(n), so that we may identify the do-
main Zn

q with {0, 1}d via the binary representation. This also identifies Unif(Zn
q) with Unif{0, 1}d.

Corollary 4.3. Let n, p, q be such that p, q = poly(n) and p/q = poly(n), and let d = n log q =

Õ(n). Suppose there exists an efficient algorithm for learning poly(d)-sized one-hidden-layer ReLU
networks under Ud up to squared loss 1/4. Then there exists an efficient algorithm for LWRn,p,q .

5 Hardness of Learning using Label Queries

Here we show hardness of learning constant-depth ReLU networks over Gaussians from label
queries by lifting pseudorandom function (PRF) families. For preliminaries on PRFs and their con-
nection to hardness of learning, see Appendix A.4. Since PRFs are not necessarily compressibile,
we will simply use the original DV lift (Theorem B.1).
Theorem 5.1. Assume there exists a family of PRFs mapping {0, 1}d to {0, 1} implemented by
poly(d)-sized L-hidden-layer ReLU networks. Then there does not exist an efficient learner that,
given query access to an unknown poly(d)-sized (L+ 2)-hidden-layer ReLU network f : Rd → R,
is able to output a hypothesis h : Rd → R such that Ez∼N (0,Idd)[(h(z)− f(z))2] ≤ 1/16.

Proof. Let fs : {0, 1}d → {0, 1} be an unknown L-hidden-layer ReLU network obtained from the
PRF family by picking the key s at random. Consider the lifted (L+2)-hidden-layer ReLU network
fDV
s : Rd → R from Eq. (10), given by fDV

s (z) = ReLU(fs(N1(z)) − N ′
2(z)), where N1 and N2

are from Lemmas 2.4 and 2.5, and N ′
2(z) =

∑
j N2(zj). Suppose there were an efficient learner

A capable of learning functions of the form fDV
s using queries. By the DV lift (Theorem B.1), A

yields an efficient predictor B achieving small constant error w.r.t. the unknown fs, contradicting
Lemma A.3. We only need to verify that A’s query access to fDV

s can be simulated by B. Indeed,
suppose A makes a query to fDV

s at a point z ∈ Rd. Then B can make a query to fs at the point
sign(z) and return ReLU(fs(sign(z))−N ′

2(z)) = fDV
s (z), as this was the key property satisfied by

fDV
s . This completes the reduction and proves the theorem.

Acknowledgments and Disclosure of Funding

We would like to thank our anonymous reviewers for pointing out an issue in the first version of our
proof. Part of this work was completed while the authors were visiting the Simons Institute for the
Theory of Computing. SC is supported in part by NSF Award 2103300. AG and ARK are supported
by NSF awards AF-1909204, AF-1717896, and the NSF AI Institute for Foundations of Machine
Learning (IFML). RM is supported by NSF CAREER Award CCF-1553605.

References
[AAK21] Naman Agarwal, Pranjal Awasthi, and Satyen Kale. A deep conditioning treatment of

neural networks. In Algorithmic Learning Theory, pages 249–305. PMLR, 2021. 1.1

[ADHV19] Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, and Kiran Vodrahalli. Attribute-
efficient learning of monomials over highly-correlated variables. In Algorithmic
Learning Theory, pages 127–161. PMLR, 2019. 1, 1.1

[AK95] Dana Angluin and Michael Kharitonov. When won’t membership queries help? Jour-
nal of Computer and System Sciences, 50(2):336–355, 1995. 1.1

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited. In Annual Cryptology Conference, pages 57–74. Springer, 2013.
1, A.3

[APVZ14] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse
polynomial functions. In Proceedings of the twenty-fifth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 500–510. SIAM, 2014. 1, 1.1

10

[ATV21] Pranjal Awasthi, Alex Tang, and Aravindan Vijayaraghavan. Efficient algorithms for
learning depth-2 neural networks with general relu activations. Advances in Neural
Information Processing Systems, 34, 2021. 1, 1, 1

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning dnf and characterizing statistical query learning us-
ing fourier analysis. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 253–262, 1994. 3

[BG17] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet
with gaussian inputs. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 605–614, 2017. 1, 1

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On
the hardness of learning with rounding over small modulus. In Theory of Cryptogra-
phy Conference, pages 209–224. Springer, 2016. 1, A.3, A.2, A.3

[BGML+18] Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman,
Markku-Juhani O Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Compact
and fast post-quantum public-key encryption. IACR Cryptol. ePrint Arch., 2018:725,
2018. 1, A.3

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J Wu. Exploring
crypto dark matter. In Theory of Cryptography Conference, pages 699–729. Springer,
2018. A.4

[BJW19] Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified
neural networks in polynomial time. In Conference on Learning Theory, pages 195–
268. PMLR, 2019. 1, 1

[Bog21] Andrej Bogdanov. Personal communication, 2021. F

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudo-
random functions. In Annual Cryptology Conference, pages 353–370. Springer, 2014.
A.4

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 719–737. Springer, 2012. 1, A.3, A.4

[BR89] Avrim Blum and Ronald L Rivest. Training a 3-node neural network is np-complete.
In Advances in neural information processing systems, pages 494–501, 1989. 1.1

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In
Tutorials on the Foundations of Cryptography, pages 79–158. Springer, 2017. A.4, F

[BRST21] Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous lwe. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 694–
707, 2021. 1

[CGV15] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. Aggregate pseudoran-
dom functions and connections to learning. In Theory of Cryptography Conference,
pages 61–89. Springer, 2015. 1.1

[CKLS18] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut off
the tail! a practical post-quantum public-key encryption from lwe and lwr. In In-
ternational Conference on Security and Cryptography for Networks, pages 160–177.
Springer, 2018. 1, A.3

[CKM20] Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep relu networks is fixed-
parameter tractable. arXiv preprint arXiv:2009.13512, 2020. 1, 1, 1

[CKM21] Sitan Chen, Adam Klivans, and Raghu Meka. Efficiently learning one hidden layer
relu networks from queries. In Advances in Neural Information Processing Systems,
2021. 1

11

[DG21] Amit Daniely and Elad Granot. An exact poly-time membership-queries algorithm
for extraction a three-layer relu network. arXiv preprint arXiv:2105.09673, 2021. 1

[DGK+20] Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi
Soltanolkotabi. Approximation schemes for relu regression. In Conference on Learn-
ing Theory, 2020. 1, 1

[DGKP20] Abhimanyu Das, Sreenivas Gollapudi, Ravi Kumar, and Rina Panigrahy. On the learn-
ability of random deep networks. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 398–410. SIAM, 2020. 1.1

[DK20] Ilias Diakonikolas and Daniel M. Kane. Small covers for near-zero sets of polyno-
mials and learning latent variable models. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 184–195, 2020. 1, 1, 1

[DK21] Ilias Diakonikolas and Daniel M. Kane. Non-gaussian component analysis via lattice
basis reduction, 2021. 1

[DKKZ20] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms
and sq lower bounds for pac learning one-hidden-layer relu networks. In Conference
on Learning Theory, pages 1514–1539. PMLR, 2020. (document), 1, ??, 1.1, 1.1

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Ver-
cauteren. Saber: Module-lwr based key exchange, cpa-secure encryption and cca-
secure kem. In International Conference on Cryptology in Africa, pages 282–305.
Springer, 2018. 1, A.3

[DKZ20] Ilias Diakonikolas, Daniel M Kane, and Nikos Zarifis. Near-optimal sq lower
bounds for agnostically learning halfspaces and relus under gaussian marginals. arXiv
preprint arXiv:2006.16200, 2020. (document), 1.1

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complex-
ity to improper learning complexity. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 441–448, 2014. 1

[DSS16] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning
dnf’s. In Conference on Learning Theory, pages 815–830. PMLR, 2016. 1

[DV20] Amit Daniely and Gal Vardi. Hardness of learning neural networks with natural
weights. Advances in Neural Information Processing Systems, 33, 2020. 1, 1.1

[DV21] Amit Daniely and Gal Vardi. From local pseudorandom generators to hardness of
learning. In Conference on Learning Theory, pages 1358–1394. PMLR, 2021. (doc-
ument), 1, 1, ??, 1, 1.1, 1.2, 1.2, 2, 2, 4, B.1, D

[Ear19] Mike Earnest. Proving an identity involving the alternating sum of products of bi-
nomial coefficients. Mathematics Stack Exchange, 2019. URL: https://math.
stackexchange.com/q/3108805 (version: 2019-02-11). C.2

[Fel09] Vitaly Feldman. On the power of membership queries in agnostic learning. The
Journal of Machine Learning Research, 10:163–182, 2009. 1.1

[GGJ+20] Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans.
Superpolynomial lower bounds for learning one-layer neural networks using gradi-
ent descent. In International Conference on Machine Learning, pages 3587–3596.
PMLR, 2020. (document), 1, ??, 1.1, 1.1

[GGK20] Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-query lower bounds
via functional gradients. Advances in Neural Information Processing Systems, 33,
2020. (document), 1.1

[GKK19] Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs for
learning a relu with respect to gaussian marginals. In Proceedings of the 33rd Inter-
national Conference on Neural Information Processing Systems, pages 8584–8593,
2019. 1.1

12

https://math.stackexchange.com/q/3108805
https://math.stackexchange.com/q/3108805

[GKKT17] Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning
the relu in polynomial time. In Conference on Learning Theory, pages 1004–1042.
PMLR, 2017. 1.1

[GKM18] Surbhi Goel, Adam R. Klivans, and Raghu Meka. Learning one convolutional layer
with overlapping patches. In ICML, volume 80, pages 1778–1786. PMLR, 2018. 1, 1

[GLM18] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks
with landscape design. In 6th International Conference on Learning Representations,
ICLR 2018, 2018. 1, 1, 1

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.
Threshold circuits of bounded depth. Journal of Computer and System Sciences,
46(2):129–154, 1993. A.4

[JCB+20] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Pa-
pernot. High accuracy and high fidelity extraction of neural networks. In Srdjan
Capkun and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1345–1362. USENIX Association, 2020. 1

[JSA15] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. arXiv
preprint arXiv:1506.08473, 2015. 1, 1, 1

[JWZ20] Rajesh Jayaram, David P. Woodruff, and Qiuyi Zhang. Span recovery for deep neural
networks with applications to input obfuscation. In ICLR. OpenReview.net, 2020. 1

[JZ16] Zhengzhong Jin and Yunlei Zhao. Optimal key consensus in presence of noise. arXiv
preprint arXiv:1611.06150, 2016. 1, A.3

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM (JACM), 45(6):983–1006, 1998. 3, A.2

[Kha95] Michael Kharitonov. Cryptographic lower bounds for learnability of boolean func-
tions on the uniform distribution. Journal of Computer and System Sciences,
50(3):600–610, 1995. 1.1

[KK14] Adam Klivans and Pravesh Kothari. Embedding hard learning problems into gaus-
sian space. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014. (document), 1.1, B

[KL01] Matthias Krause and Stefan Lucks. Pseudorandom functions in in tc0 and crypto-
graphic limitations to proving lower bounds. computational complexity, 10(4):297–
313, 2001. A.4

[KS09] Adam R Klivans and Alexander A Sherstov. Cryptographic hardness for learning
intersections of halfspaces. Journal of Computer and System Sciences, 75(1):2–12,
2009. 1, 1.1

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische annalen, 261:515–534, 1982. 1

[LMZ20] Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning over-parametrized two-
layer neural networks beyond ntk. In Conference on Learning Theory 2020, volume
125, pages 2613–2682. PMLR, 2020. 1, 1

[LSSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency
of training neural networks. Advances in Neural Information Processing Systems,
27:855–863, 2014. 1.1

[LY17] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
relu activation. In Advances in Neural Information Processing Systems 30, pages
597–607, 2017. 1, 1

13

[MSDH19] Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. Model recon-
struction from model explanations. In FAT, pages 1–9. ACM, 2019. 1

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In Proceedings 38th Annual Symposium on Foundations of Com-
puter Science, pages 458–467. IEEE, 1997. A.4

[Pei16] Chris Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.,
10(4):283–424, mar 2016. A.3

[PMG+17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine learning.
In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors, Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages
506–519. ACM, 2017. 1

[PSP17] PSPACEhard. Alternating sum of binomial coefficients identity. Mathematics Stack
Exchange, 2017. URL: https://math.stackexchange.com/q/2183223 (ver-
sion: 2017-03-12). C.2

[Raz92] Alexander A Razborov. On small depth threshold circuits. In Scandinavian Workshop
on Algorithm Theory, pages 42–52. Springer, 1992. A.4

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009. 1

[Reg10] Oded Regev. The learning with errors problem. Invited survey in CCC, 7(30):11,
2010. A.3

[Rey20] Lev Reyzin. Statistical queries and statistical algorithms: Foundations and applica-
tions. arXiv preprint arXiv:2004.00557, 2020. A.2

[RK20] David Rolnick and Konrad P. Kording. Reverse-engineering deep relu networks. In
ICML, volume 119 of Proceedings of Machine Learning Research, pages 8178–8187.
PMLR, 2020. 1

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997. A.4

[Sha18] Ohad Shamir. Distribution-specific hardness of learning neural networks. The Journal
of Machine Learning Research, 19(1):1135–1163, 2018. 1.1

[SVWX17] Le Song, Santosh Vempala, John Wilmes, and Bo Xie. On the complexity of learn-
ing neural networks. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 5520–5528, 2017. 1.1

[SZB21] Min Jae Song, Ilias Zadik, and Joan Bruna. On the cryptographic hardness of learning
single periodic neurons. arXiv preprint arXiv:2106.10744, 2021. 1, 1, 1.1

[Tia17] Yuandong Tian. An analytical formula of population gradient for two-layered relu
network and its applications in convergence and critical point analysis. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, volume 70,
pages 3404–3413. PMLR, 2017. 1, 1

[TJ+16] Florian Tramèr, Fan Zhang 0022, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Stealing machine learning models via prediction apis. CoRR, abs/1609.02943,
2016. 1

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984. 1, 1.1, A.4

[VRPS21] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth
separation in approximating natural functions with neural networks. arXiv preprint
arXiv:2102.00314, 2021. A.4

14

https://math.stackexchange.com/q/2183223

[VSS+22] Kiran Vodrahalli, Rakesh Shivanna, Mahesh Sathiamoorthy, Sagar Jain, and Ed Chi.
Algorithms for efficiently learning low-rank neural networks, 2022. 1

[Vu06] VH Vu. On the infeasibility of training neural networks with small mean-squared
error. IEEE Transactions on Information Theory, 44(7):2892–2900, 2006. 1.1

[VW19] Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural
networks: Polynomial convergence and sq lower bounds. In COLT, volume 99, 2019.
(document), 1, 1.1

[ZSJ+17] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recov-
ery guarantees for one-hidden-layer neural networks. In International conference on
machine learning, pages 4140–4149. PMLR, 2017. 1, 1, 1

[ZSWB22] Ilias Zadik, Min Jae Song, Alexander S. Wein, and Joan Bruna. Lattice-based methods
surpass sum-of-squares in clustering, 2022. 1

[ZYWG19] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-
layer relu networks via gradient descent. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1524–1534. PMLR, 2019. 1, 1

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See open question in Section 1.1.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are present

in either the main body or the forthcoming supplement.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

A Technical preliminaries

A.1 Notation

We use Unif(S) to denote the uniform distribution over a set S. We use Ud as shorthand for
Unif{0, 1}d. We use N (0, Idd) (or sometimes Nd for short) to denote the standard Gaussian, and
|N (0, Idd)| (or |Nd| for short) to denote the positive standard half-Gaussian (i.e., g ∼ |N (0, Idd)|
if g = |z| for z ∼ N (0, Idd)). We use [n] to denote {1, . . . , n}.

For q > 0, Zq will denote the integers modulo q, which we will identify with {0, . . . , q − 1}. We
use Zq/q to denote {0, 1/q, . . . , (q − 1)/q}. Our discrete functions will in general have domain Zd

q

for some q. The q = 2 case, namely Boolean functions, have domain {0, 1}d. For the purposes
of this paper, sign : R → {0, 1} is defined as sign(t) = 1[t > 0]. We will extend this to Zq by
defining thresq : R → Zq in terms of a certain partition of R into q intervals I0, . . . , Iq−1 (formally
defined later) as the piecewise constant function that takes on value k on Ik for each k ∈ Zq . Scalar
functions and scalar arithmetic applied to vectors act elementwise. We say a quantity is negligible
in a parameter n, denoted negl(n), if it decays as 1/nω(1).

A one-hidden-layer ReLU network mapping Rd to R is a linear combination of ReLUs, that is, a
function of the form

F (x) =W1 ReLU
(
W0x+ b0

)
+ b1,

whereW0 ∈ Rk×d,W1 ∈ R1×k, b0 ∈ Rk, and b1 ∈ R. A two-hidden-layer ReLU network mapping
Rd to R is a linear combination of ReLUs of one-hidden-layer networks, that is, a function of the
form

F (x) =W2 ReLU
(
W1 ReLU

(
W0x+ b0

)
+ b1

)
+ b2,

where W0 ∈ Rk0×d, W1 ∈ Rk1×k0 , W2 ∈ R1×k1 , b0 ∈ Rk0 , b1 ∈ Rk1 , and b2 ∈ R. Our usage of
the term hidden layer thus corresponds to a nonlinear layer.

A.2 Learning models

Let C be a function class mapping Rd to R, and let D be a distribution on Rd. We consider various
learning models where the learner is given access in different ways to labeled data (x, f(x)) for
an unknown f ∈ C and must output a (possibly randomized) predictor that achieves (say) squared
loss ε for any desired ε > 0. In the traditional PAC model, access to the data is in the form of iid
labeled examples (x, f(x)) where x ∼ D, and the learner is considered efficient if it succeeds using
poly(d, 1/ϵ) time and sample complexity. In the Statistical Query (SQ) model [Kea98, Rey20],
access to the data is through an SQ oracle. Given a bounded query ϕ : Rd × R → [−1, 1] and a
tolerance τ > 0, the oracle may respond with any value v such that |v − Ex∼D[ϕ(x, f(x))]| ≤ τ .
A correlational query is one that is linear in y, i.e. of the form ϕ(x, y) = ϕ̃(x)y for some ϕ̃, and
a correlational SQ (CSQ) learner is one that is only allowed to make CSQs. An SQ learner is
considered efficient if it succeeds using poly(d, 1/ϵ) queries and tolerance τ ≥ 1/poly(d, 1/ϵ).
Finally, in the label query model, the learner is allowed to request the value of f(x) for any desired
x, and is considered efficient if it succeeds using poly(d, 1/ϵ) time and queries.

A.3 Learning with Rounding

Here we provide some further details about LWR (Definition 1.2) and known hardness results.
Remark A.1. Traditionally the LWR problem is stated with labels lying in Zp instead of Zp/p,
although both are equivalent since the moduli p, q may be assumed to be known to the learner. The
choice of Zp/p is simply a convenient way to normalize labels to lie in [0, 1]. For consistency, we
similarly normalize LWE labels to lie in Zq/q.

It is known that LWEn,q,B is as hard as worst-case lattice problems when q = poly(n) and B =
q/poly(n) (see e.g. [Reg10, Pei16] for surveys). Yet this is not known to directly imply the hardness
of LWRn,p,q in the regime in which p, q are both poly(n), which is the one we will be interested in
as p, q will dictate the size of the hard networks that we construct in the proof of our cryptographic
lower bound.

17

Unfortunately, in this polynomial modulus regime, it is only known how to reduce from LWE to
LWR when the number of samples is bounded relative to the modulus [AKPW13, BGM+16]. For
instance, the best known reduction in this regime obtains the following hardness guarantee:
Theorem A.2 ([BGM+16]). Let n be the security parameter, let p, q ≥ 1 be moduli, and letm,B ≥
0. Assuming q ≥ Ω(mBp), any distinguisher capable of solving LWRn,p,q usingm samples implies
an efficient algorithm for LWEn,q,B .

For our purposes, Theorem A.2 is not enough to let us base our Theorem 1.3 off of LWE, as we are
interested in the regime where the learner has an arbitrary polynomial number of samples.

LWR with polynomial modulus and arbitrary polynomial samples is nevertheless conjectured to be
as hard as worst-case lattice problems [BPR12] and has already formed the basis for a number of
post-quantum cryptographic proposals [DKRV18, CKLS18, BGML+18, JZ16]. We remark that one
piece of evidence in favor of this conjecture is a reduction from a less standard variant of LWE in
which the usual discrete Gaussian errors are replaced by errors uniformly sampled from the integers
{−q/2p, . . . , q/2p} [BGM+16].

Note also that for our purposes we require quasipolynomial-time hardness (or T (n)-hardness for
T (n) being any other fixed, mildly superpolynomial function of the security parameter) of LWR.
While slightly stronger than standard polynomial-time hardness, this remains a reasonable assump-
tion since algorithms for worst-case lattice problems are still believed to require at least subexpo-
nential time.

A.4 Pseudorandom functions and hardness of learning

We recall the classical connection between pseudorandom functions and learning from label queries
(also known as membership queries in the Boolean setting), due to Valiant [Val84] (see e.g. [BR17,
Proposition 12] for a modern exposition).
Lemma A.3. Let C = {fs} be a family of PRFs from {0, 1}d to {0, 1} indexed by the key s. Then
there cannot exist an efficient learner L that, given query access to an unknown fs ∈ C, satisfies

P
x,s

[L(x) = fs(x)] ≥
1

2
+

1

poly(d)
,

where the probability is taken over the random key s, the internal randomness of A, and a random
test point x ∼ Unif{0, 1}d.

There exist multiple candidate constructions of PRF families in the class TC0 of constant-depth
Boolean circuits built with AND, OR, NOT and threshold (or equivalently majority) gates. Because
the majority gate can be simulated by a linear combination of ReLUs similar toN1 from Lemma 2.4,
any TC0

L (meaning depth-L) function f : {0, 1}d → {0, 1} may be implemented as a poly(d)-
sized L-hidden-layer ReLU network (see e.g. [VRPS21, Lemma A.3]2). Thus we may leverage the
following candidate PRF constructions in TC0 for our hardness result:

• PRFs in TC0
4 based on the decisional Diffie-Hellman (DDH) assumption [KL01] (improv-

ing on [NR97]), yielding hardness for depth-6 ReLU networks
• PRFs in TC0 based on Learning with Errors [BPR12, BP14], yielding hardness for depth-
O(1) ReLU networks

Note that depth 4 is the shallowest depth for which we have candidate PRF constructions based on
widely-believed assumptions, and the question of whether there exist PRFs in TC0

3 is a longstanding
open question in circuit complexity [Raz92, HMP+93, RR97, KL01]. Under less widely-believed
assumptions, [BIP+18] have also proposed candidate PRFs in ACC0

3.

A.5 Partial assignments

Let α ∈ {0, 1, ⋆}d be a partial assignment. We refer to S(α) : {i ∈ [d] : αi = ⋆} ⊆ [d] as the set of
free variables and [d]\S(α) as the set of fixed variables. Given two partial assignments α, β, let the

2Note that what the authors term a depth-(L + 1) network is in fact an L-hidden-layer network in our
terminology.

18

resolution α↘ β denote the partial assignment γ obtained by substituting α into β. That is,

γi =


⋆ i ∈ S(α) ∩ S(β)
βi i ∈ [d]\S(β)
αi i ∈ S(β)\S(α)

In this case we say that γ is a refinement of β that is the result of applying α. We write γ ∈ App(α)
to denote that γ is a result of applying α. Note that the set of refinements of β consists of all 3|S(β)|

partial assignments γ ∈ {0, 1, ⋆}d which agree with β on all fixed variables of β.

Given α, let w(α) denote |{i : αi = 1}|, that is, the Hamming weight of its fixed variables. Note
that w(α↘ β) ≤ w(α) + w(β).

Given a function h : Rd → R and partial assignment γ, we use hγ : Rd → R to denote its partial
restriction given by substituting in γi into the i-th input coordinate if γi ∈ {0, 1}. Note that given
two partial restrictions α, β,

(hβ)α = hα↘β (9)
We say that α is sorted if the restriction of α to its fixed variables is sorted in nonincreasing order,
e.g. α = (1, ⋆, 1, ⋆, ⋆, 0, 0) is sorted, but α = (1, ⋆, 0, ⋆, ⋆, 0, 1) is not. Given α which is not
necessarily sorted, denote its sorting by α. In general, we will use overline notation to denote sorted
partial assignments.

B The original DV lift

In order to set the stage for our compressed DV lift, we briefly outline the idea of the original DV
lift in the setting of Boolean functions (q = 2). The goal is to approximate any given f ∈ C by a
ReLU network fDV : Rd → R in such a way that fDV under Nd behaves similarly to f under Ud.
As a first attempt, one might consider the function f⋆(z) = f(sign(z)) (also studied in [KK14]),
where recall that sign(t) = 1[t > 0]. We could implement the following reduction: given a random
example (x, y) where x ∼ Ud and y = f(x), draw a fresh half-Gaussian g ∼ |Nd| and output
((2x − 1)g, y) (where the arithmetic in defining the vector (2x − 1)g is done elementwise). Since
2x−1 is distributed uniformly over {±1}d, the marginal is exactly Nd, and the labels are consistent
with f⋆ since sign((2x − 1)g) = x and so f(sign((2x − 1)g)) = f(x). However, the issue is that
the sign function is discontinuous, and so f⋆ is not realizable as a ReLU network.

Daniely and Vardi address this concern by devising a clever construction for fDV that interpolates
between two desiderata:

• For all but a small fraction of inputs, an initial layer successfully “Booleanizes” the input.
In this case, one would like fDV(z) to simply behave as f(sign(z)).

• For the remaining fraction of inputs, we would ideally like fDV to output an uninformative
value such as zero, but this would violate continuity of fDV.

The trick is to use a continuous approximation of the sign function, N1, that interpolates linearly
between 0 and 1 on an interval [−δ, δ] (see Fig. 1a), and to pair it with a “soft indicator” function
N2 : R → R for the region where N1 ̸= sign. Concretely, N2(t) is constructed as a one-hidden-
layer ReLU network that (a) is always nonnegative, (b) equals 0 when |t| ≥ 2δ, and (c) equals 1
when |t| ≤ δ (see Fig. 1b). Now let N ′

2(z) =
∑

j N2(zj), and define

fDV(z) = ReLU(f(N1(z))−N ′
2(z)). (10)

One can show that fDV satisfies fDV(z) = ReLU(f(sign(z)) − N ′
2(z)), since N ′

2 “zeroes out”
fDV wherever N1 ̸= sign for any coordinate. This lets us perform the following reduction:
given examples (x, y) where x ∼ Ud and y = f(x), draw a fresh g ∼ |Nd| and output
(z, ỹ) = ((2x − 1)g,ReLU(y − N ′

2((2x − 1)g))). The marginal is again Nd, and the labels are
easily seen to be consistent with fDV. Correctness of the reduction can be established by using
Gaussian anticoncentration to argue that fDV is a good approximation of f . Formally, one can prove
the following theorem.
Theorem B.1 (Original DV lift, implicit in [DV21]). Let C be a class of L-hidden-layer poly(d)-
sized ReLU networks mapping {0, 1}d to [0, 1]. There exists a class CDV of (L + 2)-hidden-layer

19

−δ′ δ′

1

(a) N1 : R → [−1, 1]

−2δ′ −δ′ δ′ 2δ′

1

(b) N2 : R → [0, 1]

Figure 1: Schematic plots of N1 and N2 in the q = 2 case, where N ′
2(z) may be realized as∑

j∈[d]N2(zj). Here, δ′ = Θ(δ) where δ is the parameter from Lemmas 2.4 and 2.5.

poly(d)-sized ReLU networks mapping Rd to [0, 1] such that the following holds. Suppose there is
an efficient algorithm A capable of learning CDV over N (0, Idd) up to squared loss 1

64 . Then there
is an efficient algorithm B capable of weakly predicting C over Unif{0, 1}d with squared loss 1

16 .

C Full proofs for Section 2

C.1 Gadget constructions

We begin with the constructions of N1 and N2.

Proof of Lemma 2.4. This can be done by considering the piecewise linear function that approxi-
mates the function thresq by matching it exactly on R \ ∪kRk, and interpolating linearly between
values k − 1 and k on the interval Rk for each k ∈ [q − 1].

Proof of Lemma 2.5. Consider the piecewise linear function that is 0 on R\∪kSk, is 1 on ∪kRk, and
interpolates linearly between 0 and 1 (or 1 and 0) on Sk \Rk for every k ∈ [q − 1]. Put differently,
the graph of N2 consists of a trapezoid on each Sk that achieves its maximum value of 1 on Rk.

We now detail the construction of the gadget N3. First let us briefly look at one approach that
almost satisfies Eq. (2), except at the cost of exponential size. Let ψ(s1, . . . , sd; t) be any function
that vanishes whenever t ∈ Z \ {0} (for all s1, . . . , sd ∈ [0, 1]d). For simplicity, let us consider the
d = 3 case. Consider the following expression that resembles the inclusion-exclusion formula:

ψ(s1, s2, s3; t)− ψ(1, s2, s3; t)− ψ(s1, 1, s3; t)− ψ(s1, s2, 1; t) (11)
+ ψ(s1, 1, 1; t) + ψ(1, s2, 1; t) + ψ(s1, 1, 1; t)− ψ(1, 1, 1; t)

Notice that whenever any sj = 1, this expression vanishes identically. Moreover, for any t ∈ Z\{0}
(and any s1, . . . , sd), the expression vanishes again because each summand vanishes. Thus the first
two properties are satisfied; the third property turns out to be more subtle, and we will ignore it for
the moment. The natural generalization of this expression to general d can be stated in the language
of partial assignments.

20

Lemma C.1. Let ψ : Rd → R be any function. Let Pi denote the set of partial assignments
γ ∈ {1, ⋆}d with i 1s. The expression

d∑
i=0

∑
γ∈Pi

(−1)iψγ (12)

vanishes whenever any sj = 1. (We may view t as an additional parameter that is always left free,
as in Eq. (11))

Proof. For concreteness, suppose s1 = 1. Let P⋆
i (resp. P1

i) denote the set of γ ∈ Pi with s1 = ⋆
(resp. s1 = 1). For every i ∈ {0, . . . , d − 1}, we can form a bijection between P⋆

i and P1
i+1

using the map γ 7→ γ′ where γ′ = (1, γ2, . . . , γd). When s1 = 1, for every such pair (γ, γ′), we
have ψγ = ψγ′ , and moreover they occur in (12) with opposite signs. Thus the entire expression
vanishes.

Let us assume for now that ψ is picked suitably and the rest of the reduction goes through with
this construction (as one can verify when we come to the proof of Theorem 2.3, this would indeed
be the case). This construction has size 2d, meaning that the resulting lifted functions would have
size S = poly(2d). But by Theorem F.5, the SQ lower bound for the LWR functions over Zn

q with
n = d and q = poly(n) scales as qΩ(n) = 2Ω(d log d) = SΩ(log log S), which is still superpolynomial
in S. Thus after padding the dimension to d′ = 2d, this construction would actually still yield a
superpolynomial SQ lower bound for two-hidden-layer ReLU networks over Rd′

.

Instead of pursuing this route, however, we give a more efficient construction that has size only
slightly superpolynomial in d by changing our goal to be closer to Eq. (3) (although still only ap-
proximately), while retaining the spirit of constructing N3 using a linear combination of partial
restrictions. The key lemma in proving Lemma 2.6 is the following.
Lemma C.2. Let m = m(d) = ωd(1) be a size parameter. Let A denote the set of all partial
assignments α ∈ {0, 1, ⋆}d for which |S(α)| = m and w(α) = 1. Let B denote the set of all sorted
partial assignments given by refining some element of A and sorting. Given i, j ≥ 0, let Bi,j denote
the set of β ∈ B for which |S(β)| = i and w(β) = j. For any symmetric function ψ : Rd → R,
define the function

ψ∗ ≜ ψ −
m∑
i=0

m+1−i∑
j=1

(−1)m−i · λi+j

∑
β∈Bi,j

ψβ , for λk ≜

(
d− k − 1

m− k + 1

)
Then

(a) |B| ≤
(
d
m

)
(d−m) · 3m

(b) ψ∗ is symmetric
(c) ψ∗

α : Rd → R is the identically zero function for all α ∈ A.

Proof. Note that |A| =
(
d
m

)
(d−m). Any partial assignment β has at most 3|S(β)| refinements, and

B is a subset of all refinements of partial assignments from A, so |B| ≤
(
d
m

)
(d−m) · 3m.

For the remaining parts of the lemma, it will be useful to observe that B consists exactly of all partial
assignments with i free variables and j 1s for any 0 ≤ i ≤ m and j ≥ 1 satisfying i+ j ≤ m+ 1.

To prove the second part of the lemma, it suffices to show that∑
β∈Bi,j

hβ (13)

is symmetric for all i, j. As transpositions generate the symmetric group on d elements, it suffices
to show that (13) is invariant under swapping two input coordinates, call them a, b ∈ [d]. For all
β ∈ Bi,j for which a, b are either both present or both absent in S(β), this clearly does not affect
the value of hβ . Now consider the set Sa (resp. Sb) of partial assignments β ∈ Bi,j for which only
a (resp. only b) is present in S(β). There is a clear bijection f : Sa → Sb: given β ∈ Sa, swap the

21

a- and b-th entries, and vice-versa, and for any β ∈ Sa, the function hβ + hf(β) is unaffected by the
swapping of input coordinates a, b. This concludes the proof of the second part of the lemma.

Finally, to prove the third part of the lemma, it suffices to verify it for a single α ∈ A, as h∗ is
symmetric. So consider α = {1, 0, · · · , 0, ⋆, · · · , ⋆}. We apply (9) to get

h∗α = hα −
m∑
i=0

m+1−i∑
j=1

(−1)m−i · λi+j

∑
β∈Bi,j

hα↘β

= hα −
∑

γ∈B∩App(α) sorted

hγ ·
m∑
i=0

m+1−j∑
j=1

(−1)m−i · λi+j

∑
β∈Bi,j

1[α↘ β = γ] (14)

Note that for γ = α, the only β ∈ B for which α↘ β = γ is β = α. Indeed, for β to be such that
α↘ β = α, it must have S(β) = S(α) and exactly one 1, from which it follows that β = α. Since
α ∈ Bm,1, its coefficient in (14) is given by

(−1)m−m · λm+1 = 1,

and so the hα in (14) cancels with the γ = α-th summand in (14).

In the rest of the proof, we can thus focus on sorted γ ∈ B ∩App(α)\{α}. Note that such γ satisfy
|S(γ)| < m. (15)

To see this, recall that any γ ∈ B with |S(γ)| = m must have exactly one 1, and since γ ∈ App(α)
it must be that γ must have S(γ) = S(α) and so γ = α.

Observe that we must have γ1 = 1. Indeed, it cannot be 0 because γ is sorted and has at least one
1. It also cannot be ⋆. To see this, consider any β for which α↘ β = γ. If we had β1 ̸= ⋆, then
clearly γ1 ̸= ⋆. If we had β1 = ⋆, then (α ↘ β)1 = 1 (as α1 = 1), so γ = α↘ β must also have
first entry given by 1.

We are now ready to calculate the coefficient of hγ (for each γ ∈ B ∩ App(α)\{α}) in (14) by
adding the coefficients of all the β ∈ B for which

α↘ β = γ. (16)

First let us consider the contribution of β ∈ B for which β1 = 1. Observe that such β must
have exactly w(γ) 1s. Furthermore, such a β is an element of B if and only if it has at most
m + 1 − w(γ) free variables, and the set of free variables in β must be S(γ) ∪ V where V is any
subset of [d]\({1} ∪ S(α)). The contribution of all such β to the coefficient of hγ in (14) is thus

m+1−w(γ)∑
i=|S(γ)|

(−1)m−i · λi+w(γ) ·
(
d−m− 1

i− |S(γ)|

)
, (17)

where here the index i denotes the total number of free variables in β, and the factor of
(
d−m−1
i−|S(γ)|

)
is

the number of ways to choose V .

It remains to consider the contribution from β ∈ B for which β1 ̸= 1. First note that clearly we
cannot have β1 = 0, as β is sorted and has at least one 1 because it lies in B. The only possibility is
β1 = ⋆, which we split into two cases based on w(γ).

Case 1: w(γ) = 1. In this case, we claim that there are no β ∈ B simultaneously satisfying (16)
and β1 = ⋆. Suppose to the contrary. Then such a β1 must have at least one 1 in some other entry
(as β ∈ B), but this would imply that the resolution α↘ β has at least two 1s, a contradiction. The
total coefficient of hγ in this case is thus exactly given by (17). Upon substituting w(γ) = 1, this
simplifies to
m+1−w(γ)∑
i=|S(γ)|

(−1)m−i ·λi+1 ·
(
d−m− 1

i− |S(γ)|

)
=

m+1−w(γ)∑
i=|S(γ)|

(−1)m−i ·
(
d− i− 2

d−m− 2

)
·
(
d−m− 1

i− |S(γ)|

)
= 0,

where in the last step we use Lemma C.3 (which we can apply because of (15)).

22

Case 2: w(γ) > 1. Observe that we must have w(β) = w(γ)− 1 (as the only entry of α equal to 1
is the first entry, and the first entry of β is ⋆). As w(γ) − 1 > 0 in the current case, such a β is an
element of B if and only if it has at most m+ 2− w(γ) free variables, and the set of free variables
in β must be {1} ∪ S(γ) ∪ V where V is any subset of [d]\({1} ∪ S(α)). Thus in this second case,
the contribution of all β with β1 = ⋆ to the coefficient of hγ in (14) is

m+2−w(γ)∑
i=|S(γ)|+1

(−1)m−i·λi+w(γ)−1·
(

d−m− 1

i− |S(γ)| − 1

)
=

m+1−w(γ)∑
j=|S(γ)|

(−1)m−j−1·λj+w(γ)·
(
d−m− 1

j − |S(γ)|

)
,

(18)
where here the index i denotes the total number of free variables in β, the factor of

(
d−m−1

i−|S(γ)|−1

)
is

the number of ways to choose V (note that |V | = i− |S(γ)| − 1), and in the second expression we
made the change of variable j = i− 1. We conclude that in this case, the coefficient of hγ in (14) is
given by the sum of (17) and (18), which is 0.

Overall, we conclude that the entire RHS of (14) vanishes for α ∈ A, proving the third part of the
lemma.

We are ready to formally construct N3 and verify that it has the required properties, is of acceptable
size, and that it takes on nonzero values on a significant part of its domain.

Proof of Lemma 2.6. Let

ψ(s1, . . . , sd; t) =

d∑
i=1

ReLU

(
t−

(
si −

1

d− 1

∑
j ̸=i

sj

))
− ReLU(dt),

viewed as a function of s1, . . . , sd parameterized by t, and let ψ∗ be as defined in Lemma C.2.
Define N3(s1, . . . , sd; t) = ψ∗(s1, . . . , sd; t).

Part (a) follows directly from Lemma C.2(c). Part (b) follows by verifying that for any t ∈ Z \ {0},
ψ(s1, . . . , sd; t) = 0 for any s1, . . . , sd ∈ [0, 1]d; this means that ψ∗, which is a combination of
partial restrictions of ψ, also vanishes for such t. First suppose that t is a positive integer. Observe
that t ≥ 1 while si − 1

d−1

∑
j ̸=i sj ∈ [−1, 1], so each ReLU in the definition of ψ is activated and

we get

ψ(s1, . . . , sd; t) =

d∑
i=1

t−
si − 1

d− 1

∑
j ̸=i

sj

− dt = −
d∑

i=1

si − 1

d− 1

∑
j ̸=i

sj

 = 0.

Next suppose that t is a negative integer. Then t ≤ −1 while si − 1
d−1

∑
j ̸=i sj ∈ [−1, 1], so each

ReLU in the definition of h is inactive and we get ψ(s1, . . . , sd; t) = 0.

For part (c), observe that by the size bound in Lemma C.2(a) and the fact that ψ contains O(d)
ReLUs, the size of N3 may be bounded by

S ≤ O(d) · (
(
d

m

)
(d−m) · 3m + 1) ≤ O(d)(

dm+1 · 3m

m!
+ 1) ≤ dm+2 ≤ d2m

for m larger than some absolute constant.

It remains to prove part (d). For brevity, we will omit the parameter t and just refer to
ψ(0, . . . , 0, s; t) and ψ∗(0, . . . , 0, s; t) as ψ(0, . . . , 0, s) and ψ∗(0, . . . , 0, s). We first compute
ψ(0, . . . , 0, s): for s ∈ [0, 1],

ψ(0, . . . , 0, s) = ReLU(−s) + (d− 1)ReLU(
1

d− 1
· s) = s.

23

Next, for any β ∈ B, if w(β) = j for some 0 ≤ j ≤ m+ 1, then if βd = ⋆,

ψβ(0, . . . , 0, s)

= ψ(1, . . . , 1︸ ︷︷ ︸
j

, 0, · · · 0︸ ︷︷ ︸
d−j−1

, s)

= j · ReLU
(
−1 +

1

d− 1
(j − 1 + s)

)
+ (d− j − 1) · ReLU

(
1

d− 1
· j + 1

d− 1
· s
)

+ReLU

(
−s+ 1

d− 1
· j
)

=
d− j − 1

d− 1
· (j + s) + ReLU

(
−s+ 1

d− 1
· j
)

Note that when s ∈ [0, 1/(d− 1)], because j ≥ 1 (as β ∈ B) this simplifies to

=
(d− j − s)j

d− 1
.

On the other hand, if βd ∈ {0, 1}, then

ψβ(0, . . . , 0, s) = ψ(1, . . . , 1︸ ︷︷ ︸
j

, 0, · · · 0︸ ︷︷ ︸
d−j

)

= j · ReLU
(
−1 +

1

d− 1
(j − 1)

)
+ (d− j) · ReLU

(
1

d− 1
· j
)

=
(d− j)j

d− 1
.

As there are
(
d−1
i−1

)
(resp.

(
d−1
i

)
) partial assignments in Bi,j for which βd = ⋆ (resp. βd ∈ {0, 1}),

we can thus explicitly compute h∗(0, . . . , 0, s) for s ∈ [0, 1/(d− 1)] to be

ψ(0, . . . , 0, s)−
m∑
i=0

m+1−i∑
j=1

(−1)m−i

(
d− i− j − 1

m− i− j + 1

)((
d− 1

i− 1

)
· (d− j − s)j

d− 1
+

(
d− 1

i

)
· (d− j)j

d− 1

)
.

By Lemma C.4, the double sum is equal to sero, so h∗(0, . . . , 0, s) = h(0, . . . , 0, s) = s for s ∈
[0, 1/(d− 1)] as claimed.

C.2 Supporting technical lemmas for Lemma 2.6

Lemma C.3. For any 0 ≤ S < m ≤ d,
m∑

i=S

(−1)m−i

(
d− i− 2

d−m− 2

)(
d−m− 1

i− S

)
= 0. (19)

Proof. We will show that for any integers j ≥ ℓ ≥ 1,

ℓ∑
k=0

(−1)k
(
j − k

ℓ− 1

)(
ℓ

k

)
= 0. (20)

We would like to substitute ℓ = d −m − 1 and j = d − 2 − S. Note that this is valid as we can
assume without loss of generality that d −m − 1 ≥ 1 (otherwise

(
d−m−1
i−S

)
= 0 on the right-hand

side of (19)), and j ≥ ℓ by our assumption that S < m. We conclude the identity

0 =

d−m−1∑
k=0

(−1)k
(
d− 2− S − k

d−m− 2

)(
d−m− 1

k

)
=

d−m−1+S∑
i=S

(−1)i−S

(
d− i− 2

d−m− 2

)(
d−m− 1

i− S

)
,

(21)
where the second step is by the change of variable i = k+S. If d−m− 1+S ≥ m, then note that
all summands m < i ≤ d−m− 1 + S vanish because in that case d− i− 2 < d−m− 2 and so(
d−i−2
d−m−2

)
= 0. If d−m− 1+S < m, then note that all summands d−m− 1+S < i ≤ m vanish

24

because in that case d−m− 1 < i− S and so
(
d−m−1
i−S

)
= 0. We conclude that (21) is equal, up to

a sign, to the left-hand side of (19), so we’d be done.

It remains to establish (20), which we do by following an argument due to [Ear19]. Observe that the
left-hand side of (20) is simply counting via inclusion-exclusion the number of subsets of {1, . . . , j}
of size ℓ− 1 which contain {1, . . . , ℓ}. Indeed, the k = 0 summand counts all subsets of size ℓ− 1.
The k = 1 summands subtract out the contribution, for every 1 ≤ x ≤ ℓ, from the subsets of
size ℓ − 1 which contain x. The k = 2 summands add back the contribution, for every distinct
1 ≤ x < y ≤ ℓ, from the subsets of size ℓ− 1 which contain both of x, y, etc.

Lemma C.4. For any integers m ≥ 3 and a ∈ {0, 1, 2},

m∑
i=1

m+1−i∑
j=1

(−1)m−i

(
d− i− j − 1

m− i− j + 1

)(
d− 1

i− 1

)
· ja = 1[a = 0]

m∑
i=0

m+1−i∑
j=1

(−1)m−i

(
d− i− j − 1

m− i− j + 1

)(
d− 1

i

)
· ja = 0

Proof. By taking ℓ = i+ j, we can rewrite these sums as

Sa,m ≜
m+1∑
ℓ=2

ℓ−1∑
i=1

(−1)m−i

(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i− 1

)
(ℓ− i)a

Ta,m ≜
m+1∑
ℓ=1

ℓ−1∑
i=0

(−1)m−i

(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i

)
(ℓ− i)a

We proceed by induction on m. The base cases follow from a direct calculation. By the change of
variable ℓ′ = ℓ− 1, we can rewrite Sa,m+1 as

−
m+1∑
ℓ′=1

ℓ′∑
i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

)
(ℓ′ + 1− i)a

= −
m+1∑
ℓ′=1

ℓ′∑
i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

)
(ℓ′ − i)a

−
m+1∑
ℓ′=1

ℓ′∑
i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

) a−1∑
b=0

(
a

b

)
(ℓ′ − i)b (22)

Note that the first term on the right-hand side differs from Sa,m only in the summands given by
1 ≤ i = ℓ′ ≤ m + 1, and those summands clearly vanish. We conclude that the first term on the
right-hand side of (22) is exactly Sa,m. For the second term on the right-hand side of (22), the part
coming from any 0 < b ≤ a− 1 is also zero, so we thus get

= Sa,m −
m+1∑
ℓ′=1

ℓ′∑
i=1

(−1)m−i

(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

i− 1

)

= Sa,m − S0,m −
m+1∑
ℓ′=1

(−1)m−ℓ′
(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

ℓ′ − 1

)

= Sa,m − 1−
m+1∑
ℓ′=1

(−1)m−ℓ′
(
d− 1− ℓ′

m+ 1− ℓ′

)(
d− 1

ℓ′ − 1

)
= Sa,m = 1[a = 0], (23)

where the penultimate step follows e.g. by applying the identity in [PSP17]. This completes the
induction for Sa,m.

25

For Ta,m, note that by the change of variable i′ = i+ 1,

Ta,m = −
m+1∑
ℓ=1

ℓ∑
i′=1

(−1)m−i′
(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i′ − 1

)
(ℓ− i′ + 1)a

= −
m+1∑
ℓ=2

ℓ−1∑
i′=1

(−1)m−i′
(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

i′ − 1

)
(ℓ− i′ + 1)a −

m+1∑
ℓ=1

(−1)m−ℓ

(
d− 1− ℓ

m+ 1− ℓ

)(
d− 1

ℓ− 1

)

= −
a∑

b=0

(
a

b

)
Sb,m + 1 = 0,

where in the second step we pulled out the summands corresponding to i′ = ℓ, in the third step we
used (23), and in the last step we used that for m ≥ 3, Sb,m = 1[b ̸= 0] for 0 ≤ b ≤ 2.

C.3 Full proof of Theorem 2.3

Continued proof of Theorem 2.3. Let us compute the probability mass of the “good region” G. For
coordinates j ∈ [d − 1], note that P[N2(zj) = 0] = P[zj /∈ ∪kSk] = 1 − 2δ = 1 − d−Θ(m). For
zd, we need a lower bound on the probability that N2(zd) ∈ (1

2d ,
1
d). Consider the behavior of N2

on just the interval Sk that is closest to the origin (which will be k = ⌈q/2⌉): it changes linearly
from 0 to 1 (and again from 1 to 0) on Sk \ Rk. It is not hard to see that N2 takes values in (1

2d ,
1
d)

on a O(1/d) fraction of Sk. Since the Gaussian pdf will be at least some constant on all of Sk, the
probability that zd lands in this fraction of Sk is Ω(|Sk|/d) = Ω(δ/qd) ≥ d−Θ(m). Overall, we get
that

P[z ∈ R] = P
[
N2(zd) ∈

(1

2d
,
1

d

)] ∏
j∈[d−1]

P[N2(zj) = 0] ≥ (1−d−Θ(m))d−1d−Θ(m) = d−Θ(m),

which is still 1/ poly(S) and hence non-negligible in the size S of the network.

The discrete learner B can now adapt f̂ as follows. Given a fresh test point x ∼ Unif(Zd
q), the

learner forms z such that for each coordinate j ∈ [d], zj is drawn from N (0, 1) conditioned on
zj ∈ Ixk

; for brevity, we shall denote the random variable z conditioned on x (formed in this way)

by z|x. If z ∈ G, then B predicts ŷ = f̂(z)
N2(zd)

(recall that when z ∈ z, N2(zd) >
1
2d), and otherwise

it simply predicts ỹ = 1
2 . The square loss of this predictor is given by

E
x∼Unif(Zd

q)
[(ŷ − f(x))2] = E

x
E
z|x

[(ŷ − f(x))2]

= E
x,z|x

[(ŷ − f(x))2 | z ∈ G]P[z ∈ G] + E
x,z|x

[(ŷ − f(x))2 | z /∈ G]P[z /∈ G]

= E
x,z|x

[(f̂(z)

N2(zd)
− f(x)

)2

| z ∈ G
]
P[z ∈ G] + E

x,z|x

[(1
2
− f(x)

)2

| z /∈ G
]
P[z /∈ G]

= E
x,z|x

[(f̂(z)

N2(zd)
− f△(z)

N2(zd)

)2

| z ∈ G
]
P[z ∈ G] + E

x

[(1
2
− f(x)

)2]
P[z /∈ G]

(by Eq. (8), when z ∈ G, f△(z) = f(x)N2(zd))

< 4d2 E
z
[(f̂(z)− f△(z))2 | z ∈ G]P[z ∈ G] + E

x

[(1
2
− f(x)

)2]
P[z /∈ G]

(when z ∈ G, N2(zd) >
1
2d)

≤ 4d2 E
z
[(f̂(z)− f△(z))2] + E

x

[(1
2
− f(x)

)2]
P[z /∈ G]

≤ 4d2ε+ E
x

[(1
2
− f(x)

)2]
P[z /∈ G]

= E
x

[(1
2
− f(x)

)2]
+ 4d2ε− E

x

[(1
2
− f(x)

)2]
P[z ∈ G].

In the case of the hard classes C that we consider, we may assume without loss of generality that
Ex∼Unif(Zd

q)
[(12 −f(x))

2] ≥ 1/poly(d), since otherwise the problem of learning C is trivial (in fact,

26

in our applications we will have Ex∼Unif(Zd
q)
[(12 − f(x))2] = Θ(1)). This means that by taking

ε = P[z ∈ G]/ poly(d) = d−Θ(m)/ poly(d) = d−Θ(m)

sufficiently small (but still 1/ poly(S)), we may ensure that the square loss of the discrete learner B
is at most Ex∼Unif(Zd

q)
[(12 − f(x))2]− d−Θ(m), as desired.

Remark C.5. The only property of the Gaussian N (0, Idd) used crucially in the proof above is that
it is a product distribution P = ⊗i∈[d]Pi where each Pi is suitably anti-concentrated. By some
simple changes to the parameters of N1, N2 and N3 (i.e., adjusting the widths and locations of the
intervals Ik, Rk, Sk depending on each Pi), the proof can be made to work more generally for such
distributions P .
Corollary C.6 (Compressed DV lift with padding). Let q, m and d be as above, and let d′ =

dm. View C and C△ as function classes on Zd′

q and Rd′
respectively, defined using only the first

d coordinates, so that C△ is now a poly(d′)-sized class over Rd′
. Then an algorithm capable of

learning C△ over Nd′ up to squared loss 1/ poly(d′) implies a weak predictor for C over Unif(Zd′

q)
with advantage 1/ poly(d′).

D Barriers for constructing N3

We briefly discuss why one natural approach to constructing N3 satisfying the ideal properties in
Eq. (2) ultimately requires two hidden layers rather than one, unlike the construction we give in
Appendix C.

The most straightforward way to ensure that a function of s1, . . . , sd, t vanishes whenever there
exists j for which sj = 1 would be to threshold on

∑
sj , e.g. by taking ReLU(1 −

∑
j sj).

While this function is a one-hidden-layer ReLU network, it is unclear how to modify it to satisfy the
remaining desiderata in (2) while preserving the fact that it has only one hidden layer. We note that
[DV21] takes this approach of thresholding on

∑
j sj but uses two hidden layers.

Here we informally argue that such an approach inherently requires an extra hidden layer. That
is, we argue that no function N : R2 → R that takes as inputs s ≜

∑
j sj and t and satisfies

(2) can be implemented as a one-hidden-layer network. Concretely, N(s, t) must vanish whenever
s ≥ 1 or t ∈ Z\{0}. Any function computed by a one-hidden-layer ReLU network of the form
(s, t) 7→

∑
i ReLU(ais + bit − ci), unless if it is affine linear, must in general be nowhere smooth

(i.e. have a discontinuous gradient) along the entire line where a particular neuron of the network
vanishes. In our example, these are the lines {(s, t) : ais + bit = ci}. But this means that such a
line cannot intersect the region {(s, t) : s ≥ 1}, as otherwise it would be zero (hence smooth) on an
infinite segment of the line. This can only happen if bi = 0, i.e. none of the neurons of N depend
on t. Such a network clearly cannot satisfy (2).

E Proof of Theorem 3.2

Proof of Theorem 3.2. Recall that B is given SQ access to a distribution of pairs (x, y) where x ∼
Unif(Zd

q) and y = f(x) for an unknown f ∈ C. A can request estimates E[ϕ(x, y)]±τ for arbitrary
bounded queries ϕ : Zd

q × [0, 1] → [−1, 1] and any desired τ . We know that given (x, y), the
distribution of (z, ỹ), where z = z(x) is defined by drawing each zj from N (0, 1) conditioned
on zj ∈ Ixj and ỹ = ỹ(y, z) is as in Eq. (7)), is consistent with some f△ ∈ C△ except on a
region of probability mass at most d−9m2

(recall Eq. (6)). Suppose we could simulate SQ access to
the distribution of (z, f△(z)) using only SQ access to that of (x, f(x)). Then by the argument in
Theorem 2.3, simulating A on the (z, f△(z)) distribution would give us a weak predictor B̃ for the
distribution of (x, f(x)), satisfying

E
[(
B̃(x)− f(x)

)2]
< E

[(1
2
− f(x)

)2]− d−Θ(m).

What we must describe is how B can simulate A’s statistical queries. Say A requests an estimate
Ez[ϕ(z, f

△(z))] ± τ for some query ϕ : Rd × R → [−1, 1]. Consider the query ϕ̃ : Zd
q × [0, 1] →

27

[−1, 1] given by ϕ̃(x, y) = Ez(x)[ϕ(z(x), ỹ(y, z(x)))]. This function can be computed without any
additional SQs, since the distribution of (z, ỹ) = (z(x), ỹ(y, z(x))), given (x, y), is fully determined
and known to B. Observe that

E
x,y
ϕ̃(x, y) = E

x,z(x)
[ϕ(z(x), ỹ(y, z(x)))] = E

z,ỹ
[ϕ(z, ỹ)]. (24)

We must also account for the difference between Ez[ϕ(z, f
△(z))] and Ez,ỹ[ϕ(z, ỹ)]. But because

the distributions only differ on a region of mass d−9m2

and ϕ is bounded, we have∣∣∣E
z
[ϕ(z, f△(z))]− E

z,ỹ
[ϕ(z, ỹ)]

∣∣∣ ≤ Θ(d−9m2

) ≤ τ

2
(25)

since we assumed τ ≥ d−Θ(m2). Putting together (24) and (25), we see that B can simulate A’s
query ϕ to within tolerance τ by querying ϕ̃ with tolerance τ/2.

F SQ lower bound via the LWR functions

The SQ lower bound obtained via parities is somewhat unconvincing since there is a non-SQ algo-
rithm capable of learning the lifted function class obtained from parities. Indeed, suppose we are
given examples (z, f△(z)) where f is an unknown parity. We know that whenever z lands in the
“good region” G from the proof of Theorem 2.3 (which happens with non-negligible probability),
we have f△(z) = f(sign(z))N2(z) (recall Eq. (8)). This means we can simply filter out all z /∈ G
and form a clean data set of labeled points (sign(z), f(sign(z))). The unknown f (and hence f△)
can now be learnt by simple Gaussian elimination.

In order to give a more convincing lower bound, we now provide an alternative proof of Theorem 3.1
using the LWR functions. The hard function class obtained this way is not only unconditionally hard
for SQ algorithms, it is arguably hard for non-SQ algorithms as well, since LWR is believed to be
cryptographically hard.

We begin by showing an SQ lower bound for the LWR functions using a general formulation in
terms of pairwise independent function families. To our knowledge, this particular formulation has
not appeared explicitly before in the literature, and was communicated to us by [Bog21]. A variant
of this argument may be found in [BR17, §7.7].
Definition F.1. Let C be a function family mapping X to Y , and let D be a distribution on X . We
call C an (1 − η)-pairwise independent function family if with probability 1 − η over the choice
of x, x′ drawn independently from D, the distribution of (f(x), f(x′)) for f drawn uniformly at
random from C is the product distribution Unif(Y)⊗Unif(Y).
Lemma F.2. Fix security parameter n and moduli p, q. The LWRn,p,q function class CLWR = {fw |
w ∈ Zn

q } is (1− 2
qn−1)-pairwise independent with respect to Unif(Zn

q).

Proof. This follows from the simple observation that whenever x, x′ ∈ Zn
q are linearly independent,

the pair (w · x mod q, w · x′ mod q) for w ∼ Unif{Zn
q } is distributed as Unif(Zq) ⊗ Unif(Zq).

For such x, x′, (fw(x), fw(x′)) = (1p⌊w · x mod q⌉p), 1p⌊w · x′ mod q⌉p) for fw ∼ Unif(CLWR)

is distributed as Unif(Zp/p) ⊗ Unif(Zp/p). The probability that x, x′ ∼ Unif(Zn
q) are linearly

dependent is at most

P[x = 0] + P[x ̸= 0]P[x′ is a multiple of x] ≤ 1

qn
+

q

qn
≤ 2

qn−1
.

We can now prove full SQ lower bounds for any (1 − η)-pairwise independent function family as
follows.
Lemma F.3. Let C mapping X to Y be a (1 − η)-pairwise independent function family w.r.t. a
distribution D on X . Let ϕ : X × Y → [−1, 1] be any bounded query function. Then

Var
f∼Unif(C)

E
x∼D

[ϕ(x, f(x))] ≤ 2η.

28

Proof. Denote Ex∼D[ϕ(x, f(x))] by ϕ[f]. By some algebraic manipulations (with all subscripts
denoting independent draws),

Var
f∼Unif(C)

[ϕ[f]] = E
f

[
ϕ[f]2

]
−
(
E
f
[ϕ[f]]

)2
= E

f
[ϕ[f]ϕ[f]]− E

f
[ϕ[f]] E

f ′
[ϕ[f ′]]

= E
f,f ′

[
E
x
[ϕ(x, f(x))]E

x′
[ϕ(x′, f(x′))]− E

x
[ϕ(x, f(x))]E

x′
[ϕ(x′, f ′(x′))]

]
= E

x,x′
E

f,f ′
[ϕ(x, f(x))ϕ(x′, f(x′))− ϕ(x, f(x))ϕ(x′, f ′(x′))] .

By (1− η)-pairwise independence of C, the inner expectation vanishes with probability 1− η over
the choice of x, x′ ∼ D, and is at most 2 otherwise. This gives the claim.

Theorem F.4. Let C mapping X to Y be a (1 − η)-pairwise independent function family w.r.t. a
distribution D on X . For any f ∈ C, let Df denote the distribution of (x, f(x)) where x ∼ D. Let
DUnif(C) denote the distribution of (x, y) where x ∼ D and y = f(x) for f ∼ Unif(C) (this can be
thought of as essentially D ⊗Unif(Y)). Any SQ learner able to distinguish the labeled distribution
Df∗ for an unknown f∗ ∈ C from the randomly labeled distributionDUnif(C) using bounded queries
of tolerance τ requires at least τ2

2η such queries.

Proof. Let ϕ : X × Y → [−1, 1] be any query made by the learner. For any f ∈ C, let ϕ[f] denote
Ex∼D[ϕ(x, f(x))] = E(x,y)∼Df

[ϕ(x, y)]. Consider the adversarial strategy where the SQ oracle
responds to this query with ϕ = Ef∼Unif(C) ϕ[f] = E(x,y)∼DUnif(C)

[ϕ(x, y)]. By Chebyshev’s
inequality and Lemma F.3,

P
f∼C

[∣∣ϕ[f]− ϕ
∣∣ > τ

]
≤

Varf∼Unif(C)
[
ϕ[f]

]
τ2

≤ 2η

τ2
.

So each such query only allows the learner to rule out at most a 2η
τ2 fraction of C. Thus to distinguish

Df∗ from DUnif(C), the learner requires at least τ2

2η queries.

Theorem F.5 now follows easily as a corollary.
Theorem F.5. Let CLWR denote the LWRn,p,q function class. Any SQ learner capable of learn-
ing CLWR up to squared loss 1/16 under Unif(Zn

q) using queries of tolerance τ requires at least
Ω(qn−1τ2) such queries.

Proof. It is not hard to see that learning CLWR up to squared loss 1/16 certainly suffices to solve the
distinguishing problem in Theorem F.4. The claim now follows by Lemma F.2.

We are ready for an alternative proof of Theorem 3.1.

Alternative proof of Theorem 3.1. Let n be the security parameter, and fix moduli p, q ≥ 1 such that
p, q = poly(n) and p/q = poly(n). Let d = n, so that the SQ lower bound from Theorem F.5 is
Ω(qn−1) = dΩ(d) = 2Ω̃(d). Let m = m(d) = logc d for c = 1

α − 1, and let d′ = dm = 2log
c+1 d,

so that d = 2log
1/(1+c) d′

. Recall from the proof of Theorem 4.1 that the LWRn,p,q function class
CLWR is implementable by one-hidden-layer ReLU networks over Zd

q of size poly(n) = poly(d).
The result now follows by Theorem 3.2 and the same padding argument as in the proof based on
parities.

29

	Introduction
	Discussion and Related Work
	Technical Overview

	Compressing the Daniely–Vardi Lift
	Statistical Query Lower Bound
	Cryptographic Hardness Based on LWR
	Hardness of Learning using Label Queries
	Technical preliminaries
	Notation
	Learning models
	Learning with Rounding
	Pseudorandom functions and hardness of learning
	Partial assignments

	The original DV lift
	Full proofs for sec:lift
	Gadget constructions
	Supporting technical lemmas for lem:n3
	Full proof of thm:continuous-lift

	Barriers for constructing N3
	Proof of thm:sq-continuous-lift
	SQ lower bound via the LWR functions

